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SUMMARY  
 
Isogenic cells in a common environment show substantial cell-to-cell variation in gene 
expression, often referred to as “expression noise”. Here we use multiple single cell RNA 
sequencing datasets to identify features associated with high or low expression noise in 
mouse embryonic stem cells. These include the core promoter architecture of a gene, 
with CpG island promoters and a TATA box associated with low and high noise, 
respectively.  High noise is also associated with ‘conflicting’ chromatin states – the 
absence of transcription-associated histone modifications or the presence of repressive 
ones in active genes.  Genes regulated by pluripotency factors through super-enhancers 
show high and correlated expression variability, consistent with fluctuations in the 
pluripotent state. Together, our results provide an integrated view of how core 
promoters, chromatin, regulation and pluripotency fluctuations contribute to the variability 
of gene expression across individual stem cells.  
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INTRODUCTION 
 
Understanding the origins of phenotypic variation is a fundamental goal of biology 
(Lehner, 2013). Genetic and environmental differences are two important sources of 
variation, but even isogenic organisms and cells growing in a controlled environment can 
show substantial phenotypic variation, including in the expression of individual genes 
(Burga and Lehner, 2013; Raj and van Oudenaarden, 2008). Cell-to-cell or individual-to-
individual variation in gene expression can have substantial phenotypic consequences, 
including determining the outcome of inherited detrimental mutations (Burga et al., 2011; 
Eldar et al., 2009; Raj et al., 2010) and generating phenotypic diversity as a “bet-
hedging” strategy to facilitate adaptation in an unpredictable environment (Casanueva et 
al., 2012; Kussell and Leibler, 2005; Thattai and van Oudenaarden, 2004; Wolf et al., 
2005). Expression variation can also be important during multi-cellular development, 
influencing the differentiation potential of stem cells, lineage decisions and receptor 
choices (Balázsi et al., 2011; Raj and van Oudenaarden, 2008). 
 
Cell-to-cell heterogeneity in gene expression (often generically referred to as “noise”) 
arises from the stochastic nature of the molecular processes involved in transcription 
and post-transcriptional regulation (Elowitz et al., 2002; Ozbudak et al., 2002; Sanchez 
and Golding, 2013; Schmiedel et al., 2015), from variation in the internal states of each 
cell such as the concentration or activity of key cellular components (Neves et al., 2010; 
Pedraza and van Oudenaarden, 2005; Stewart-Ornstein et al., 2012), and from 
differences in the external micro-environment (Battich et al., 2015; Snijder et al., 2009).  
 
Transcription typically occurs in “bursts” motivating a multi-step model where 
transcription is restricted to an “active” state reachable from one or more “inactive” states 
involving chromatin remodelling and/or recruitment of co-factors(Coulon et al., 2013; 
Peccoud and Ycart, 1995; Zoller et al., 2015).  The causes of cell-to-cell variation in 
expression have been more extensively investigated in microbes than in mammalian 
cells (Balázsi et al., 2011). In budding yeast, the core promoter is an important influence 
on the expression noise of each gene. Yeast genes can be classified into two classes by 
their promoter nucleosome organisation where high nucleosome occupancy close to the 
transcription start site (TSS) is associated with high noise, whereas a depleted proximal-
nucleosome state is characterised by low transcriptional variability (Tirosh and Barkai, 
2008). These two classes also distinguish genes with strikingly different patterns of 
expression responsiveness/plasticity across conditions and during evolution (Choi and 
Y.-J. Kim, 2009; Field et al., 2008; Lehner, 2008; Tirosh and Barkai, 2008). Underlying 
promoter sequence properties partially explain these differences (Sanchez and Golding, 
2013) with the presence of a well-defined TATA box increasing expression noise and 
plasticity (Hornung et al., 2012; Landry et al., 2007; Lehner, 2010; Segal et al., 2006; 
Tirosh et al., 2006). In mammalian cells, the presence of a TATA box is also associated 
with increased noise, which has been attributed to a relatively reduced number of 
inferred inactive promoter cycles or rate-limiting steps (Zoller et al., 2015). However, 
mammalian cells have more diverse core promoter architectures (Lenhard et al., 2012) 
and the association of specific promoter features with noise has not been systematically 
investigated. 
 
In multicellular organisms, different classes of genes can vary quite substantially in their 
chromatin architectures and how their chromatin relates to expression(Rach et al., 2011; 
Vavouri and Lehner, 2012). Some of these differences in chromatin have been related to 
patterns of gene expression across conditions and cell types. For example, in flies, 
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worms and mammals, genes with tissue-specific expression tend to have low levels of 
active chromatin modifications even when they are highly expressed (Pérez-Lluch et al., 
2015), consistent with what was previously reported comparing between genes with 
CpG island (CGI) and non-CGI promoters (Vavouri and Lehner, 2012) and broad and 
narrow distributions of transcription start site usage (Rach et al., 2011). In mammalian 
cells, broad domains of H3K4me3 around key cell identity genes have also been 
associated with more stable expression between individual cultured cells and biological 
replicates of cell populations (Benayoun et al., 2014). Moreover, in C. elegans, high 
levels of the transcription-elongation associated histone modification H3K36me3 have 
been associated with increased expression stability during aging (Pu et al., 2015).  
 
To better understand influences on expression variation in mammalian cells, we have 
focussed on a single cell type for which multiple single cell RNA-sequencing datasets as 
well as many additional functional genomic datasets are available – mouse embryonic 
stem cells.  In an integrative analysis, we show that both the core promoter and the 
chromatin architecture of a gene is predictive of altered levels of cell-to-cell expression 
noise. In particular, active chromatin states in a gene body are associated with reduced 
noise and conflicting chromatin states – the absence of activation-associated histone 
modifications or the presence of repressive ones – are associated with increased noise. 
Moreover, genes with super-enhancers have unusually high cell-to-cell expression 
variation, and this variation is correlated between genes. Additional targets of 
pluripotency transcription factors have correlated expression, consistent with it reflecting 
fluctuations in pluripotency. This pluripotency fluctuation is associated with anti-
correlated expression of differentiation genes and, in serum conditions, of expression 
from bivalent promoters in general. Our results provide an integrated view of the 
influences on the variability of expression across individual stem cells. 
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RESULTS 
 
To systematically investigate the determinants of cell-to-cell expression variability in 
mouse embryonic stem cells (mESCs) we collated existing single cell RNA sequencing 
(scRNA-seq) datasets. We used three datasets from two studies employing unique 
molecular identifiers (UMI)-based methods: Islam et al. (Islam et al., 2014) (41 cells in 
serum medium), Grün et al. (Grün et al., 2014) (59 cells in serum, 75 cells in 2i medium), 
as well as three non-UMI based datasets from Kolodziejczyk et al. (Kolodziejczyk et al., 
2015) (262 cells in serum, 300 cells in 2i and 147 cells in alternative 2i medium).  
 
To compare expression noise between sets of genes with varying properties we 
processed the raw single cell transcript counts in three steps.  
 
First, We quantified expression noise as the coefficient of variation, CV, which, 
consistent with previous analyses (Bar-Even et al., 2006; Fan et al., 2016; Grün et al., 
2014; Islam et al., 2014; Newman et al., 2006) is strongly anti-correlated with the mean 
expression level of each gene in all of these datasets (Figure 1A, Figure S1A):  lowly 
expressed genes tend to exhibit higher levels of noise than highly expressed genes and 
vice-versa.   
 
Second, we accounted for this global dependency using the SCDE/PAGODA method 
that normalises each gene’s observed expression variance to its genome-wide expected 
value (Fan et al., 2016; Kharchenko et al., 2014). PAGODA also controls for various 
sources of technical variation inherent in single-cell sequencing protocols including 
differences in total read count, gene length and experimental batch(Fan et al., 2016) 
(Figure 1B, Figure S1B). Consistent with previous results (Buettner et al., 2015; Klein et 
al., 2015; Kolodziejczyk et al., 2015; Macosko et al., 2015), we found that the cell cycle 
represents a significant source of gene expression heterogeneity in these datasets 
(Figure S2A-F). We therefore factored out this component of variation in order to 
minimise cell cycle phase-related biases from the results of our downstream noise 
analyses (Figure S2G-J). 
 
Finally, we further normalised each gene’s adjusted variance by calculating its adjusted 
variance rank in a sliding window of the 100 genes with most similar mean expression . 
This additional sliding window rank normalisation step removes the dependency of noise 
variance on mean expression magnitude (Figure 1C, Figure S1C) and represents a 
methodological extension to the existing PAGODA framework to accommodate 
comparisons of total gene set noise levels. The resulting relative noise rank measure, 
which is corrected for the confounding effect of transcript abundance, provides a robust 
way to compare relative noise levels on a unified scale within and between datasets and 
experiments (Figure 1D,E). Our analyses are based on comparisons of these relative 
noise rank estimates between sets of genes using the Mann–Whitney U Test, a non-
parametric equivalent of the t-test. As a measure of effect size we use the area under 
the ROC curve (AUC) statistic (Figure 1F), which can be directly derived from the Mann-
Whitney U statistic (Mason and Graham, 2002). In this context, the AUC is interpreted as 
the probability that a randomly chosen gene from a given gene set will have higher noise 
than a randomly chosen gene not in the gene set. Given the technical difficulty of 
obtaining reliable and comparable estimates of (absolute) transcript variability from 
scRNA-seq data, we focussed our analyses on datasets that made use of UMIs (Grün et 
al., 2014; Islam et al., 2014).  
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We tested the feasibility of using currently available scRNA-seq datasets, with their 
limited capture efficiencies, in our analysis. We used simulations to create in silico 
scRNA-seq datasets to test the influence of cell number and transcript capture efficiency 
on the accuracy of gene set noise estimates (Figure S3). As expected, low cell numbers 
and low capture efficiency diminish the effect sizes of noise estimates. We find, 
however, that even datasets with as low as 50 cells and 3% capture efficiency only 
reduce effect size estimates by less than two-fold (Figure S4), showing that our analysis 
approach is appropriate for the used scRNA-seq datasets. 
 
Core promoter architectures associated with high or low expression noise 
 
 
Both global analyses (Bar-Even et al., 2006; Newman et al., 2006) and systematic 
mutagenesis have identified multiple features of yeast promoters that modulated noise 
through effects on transcriptional kinetics (Bai et al., 2010; Blake et al., 2006; Carey et 
al., 2013; Dadiani et al., 2013; Hornung et al., 2012; Murphy et al., 2010; To and 
Maheshri, 2010). We compiled diverse experimental and sequence-based information 
on gene regulation in mESCs and then tested whether sets of genes with shared 
promoter features, chromatin states or chromatin domains have unusually high or low 
expression noise at the mRNA level, both individually and in multivariate models. 
 
First, we tested ten mammalian core promoter features for noise biases: five sequence 
motifs (TATA box, Initiator motif, GC motif, CCAAT motif, CpG island) (Dreos et al., 
2015), broad and sharp transcription initiation defined by Cap Analysis of Gene 
Expression (CAGE) (Lizio et al., 2015) and an alternative three-class definition (single 
initiation site, multiple initiation sites, broad initiation region) (Dreos et al., 2015).  
 
The presence of a TATA box is the core promoter feature most associated with elevated 
expression noise in all the tested datasets (Figure 1D and Figure 2A), consistent with the 
well-established influence of the TATA box on expression noise in yeast (Hornung et al., 
2012; Landry et al., 2007; Tirosh et al., 2006) and previous analyses in mammalian cells 
(Zoller et al., 2015).  In contrast to the TATA box, the presence of a CpG island (CGI) is 
associated with comparatively low noise, that is, transcriptional consistency, particularly 
when the CGI extends into the gene body (Figure 2A,C). We consistently observe that 
promoters characterised by a single or limited number of transcription start sites (TSSs) 
are associated with higher levels of noise compared to promoters with broad initiation 
(Figure 1D, Figure 2A,C,D, Figure S5). Notably, these trends are absent when using 
“pool-and-split” control samples generated by pooling thousands of cells and then 
splitting their mRNAs into single-cell equivalents (Grün et al., 2014) (Figure 2B, Figure 
S6B,C, Figure S5B,D,F,H). Moreover, neither mean expression level, GC content nor 
gene length can account for these relationships (Figure S6A). This suggests that our 
noise metric reflects biological and not technical variation in measured transcript levels 
between individual cells.  Accordingly, our observations are insensitive to technical 
choices made during analysis (Figure S7, S8, and S9). 
 
We next combined these partially overlapping core promoter features in a sparse logistic 
regression model (Figure 2E). Overall these results indicate that CGI and TATA status 
are the most important and consistent core promoter features associated with 
transcriptional noise. However, TSS width (a quantitative description of Sharp/Broad 
TSS) also had consistently negative coefficients in the regression models, suggesting 
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that (TATA/CGI) sequence-defined promoter type is not sufficient to explain its influence 
on noise (Figure 2E). 
 
 
Effect of chromatin on expression noise 
 
We next tested for associations between chromatin and gene expression variability 
using matched ChIP-seq data (Yue et al., 2014) (Figure 3A, Figure S10). Four different 
gene sub-regions were interrogated: the transcription start site (TSS), core promoter 
(TSS-200bp, TSS+100bp), promoter (TSS-500bp, TSS+2000bp) and the whole gene 
body (TSS to transcription termination site, TTS). 
 
Given the well-established role of CTCF in mediating three-dimensional chromatin 
interactions (Merkenschlager and Odom, 2013), which show substantially variability 
between individual cells (Nagano et al., 2013), we were surprised to find that its 
presence or absence near a gene had no detectable association with expression noise 
(Figure 3A). Likewise, despite the link between the accumulation of RNA polymerase II 
(RNAP2) near the promoter and transcriptional pausing (Lenhard et al., 2012), the 
presence of an RNAP2 peak is only weakly associated with decreased noise (Figure 
3A). Moreover, neither the presence of the co-factor EP300 nor its active enhancer-
associated histone modification H3K27ac (Creyghton et al., 2010) are strongly 
associated with noise. 
 
However, we discovered three promoter-proximal histone modifications consistently 
associated with increased noise (H3K27me3, H3K4me1, H3K9me3) and three histone 
modifications associated with low noise when occurring within the gene body 
(H3K36me3, H3K4me3, H3K9ac, Figure 3A). Like TATA boxes and CGIs, these trends 
are not evident in results obtained using “pool-and-split” control datasets implying that 
any residual variability of a technical origin does not underlie these relationships (Figure 
S6B,C). 
 
We observed that the generally repressive H3K27me3 mark is associated with elevated 
noise when present on expressed genes, particularly when targeted to the TSS (Figure 
3A). The vast majority (91%) of promoters with H3K27me3 in mESCs also possess 
peaks for H3K4me3, a mark generally present at active promoters. The co-occurrence of 
these two opposing histone modifications, predominantly at CGI promoters, is termed 
bivalency and has been linked to transcriptional “priming” of genes that are rapidly either 
up- or down-regulated at subsequent developmental time-points (Azuara et al., 2006; 
Bernstein et al., 2006; Boyer et al., 2006; Lee et al., 2006). This class of bivalent genes 
show unusually high levels of cell-to-cell transcriptional variability (Figure 3B), while 
promoters possessing only H3K4me3 or H3K27me3 are less noisy (Figure 3C, Figure 
S11A,B,G,H). Using co-ChIP data obtained from sequential ChIP experiments with two 
different antibodies (Weiner et al., 2016), we confirm that it is the simultaneous presence 
of these opposing marks at the same promoters in single cells which is associated with 
increased transcriptional noise (Figure S11E-H) (Bernstein et al., 2006; Pan et al., 
2007). 
 
Of the other histone modifications characterized, H3K4me1, which is associated with 
active or poised enhancers (Creyghton et al., 2010), is associated with increased 
variability when present at the TSS. Likewise, when H3K9me3 is present, it is associated 
with elevated noise (Figure. 3A).  The paucity of detected genes with H3K9me3 at their 
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promoters testifies to this mark’s role in repression (median odds ratio of the association 
between H3K9me3 presence and gene detection=0.5, Fisher’s Exact Test P=4e-5). 
Promoters marked by H3K4me3 show little bias in transcriptional noise, whereas when 
this modification occurs in the gene body it is consistently associated with low cell-to-cell 
variability. The same is true for two other modifications associated with transcription – 
H3K9ac and H3K36me3 – whose presence in the gene body, but not around the TSS, is 
associated with more stable expression across individual cells (Figure 3A).  
 
Consequently, the lack of H3K36me3 in the body of genes is strongly associated with 
higher than expected expression noise across single cells (Figure 4A, Figure S11C). We 
confirmed that genes lacking H3K36me3 in ESCs also tend to have lower than expected 
levels of H3K36me3 when expressed in other cell types (Figure S12A-C), which also 
holds when correcting for expression level (Figure S12D-F). Reproducibly noisy genes 
(above average relative noise rank in all UMI-based datasets) that lack H3K36me3 
peaks within their bodies in ESCs are also enriched for significant variation in average 
expression level (FDR=5%, fold change>4) across a panel of eight different mouse cell 
types (odds ratio=2.1, P=8e-3). Genes that become active with unusually low levels of 
H3K36me3 in their gene bodies therefore vary in expression at two scales – across 
individual cells and also across tissues. 
 
To test whether higher order features of the genome are predictive of noise, we defined 
sets of genes according to their occurrence within four classes of topologically 
associating domains (TADs) (Dixon et al., 2012; Nora et al., 2012) and two classes of 
Lamina-associated domains (LADs) (Guelen et al., 2008). None of the TAD sub-classes 
– defined based on their average chromatin state – showed any significant noise 
association (Figure S10A-C). However, genes with detectable expression in single cells 
despite their occurrence within the generally repressive environment of constitutive 
LADs (cLADs) – i.e. regions proximal to the nuclear periphery in all assayed cell types – 
tend to have slightly elevated noise levels (Figure S13A,C,D). This suggests that the 
location of an active gene in a repressed neighbourhood may result in high cell-to-cell 
variability in expression.  
 
 
Integrative analysis of chromatin and promoter features 
 
To further examine the relationship between chromatin states, core promoter 
architectures and transcriptional noise, we used logistic regression to address which 
features best distinguish genes in the upper noise tercile from those in the lower tercile 
(Figure 4B).  
 
Overall, the logistic regression suggests that chromatin features (the quantitative ChIP 
enrichments) are more important than promoter sequence features when predicting 
expression noise. TATA box and CpG island status do not contribute to models in two 
out of three cases (zero coefficients in Figure 4B), suggesting that their impact on noise 
can be accounted for by their influence on chromatin. Also, although H3K4me3 in the 
gene body is individually associated with decreased noise (also see Figure 3A), other 
features in the combined model can account for its contribution. On the other hand, 
several histone modifications including H3K27me3, H3K4me1, H3K9me3, H3K9ac and 
H3K36me3 are consistently retained (non-zero coefficients in all models). This suggests 
that their effects on noise are (i) at least partially independent of each other and (ii) 
cannot be simply explained by core promoter architecture features. 
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These results also confirm the primacy of gene body H3K36me3 and promoter 
H3K27me3 in predicting expression noise levels. However, other features consistently 
contribute to the predictions including gene body H3K9me3 and core promoter H3K9ac, 
which are both associated with lower noise levels in the integrated model. In other 
words, better estimates of transcriptional noise are obtained by combining multiple 
aspects of the chromatin state.   
 
Taken together, the individual and joint analyses of chromatin modifications support a 
model in which genes with “conflicting” chromatin modifications are associated with high 
noise, i.e. where a “mismatch” or “conflict” between a gene’s chromatin state and its 
transcriptional state is associated with increased expression variability. To further test 
this idea we classified genes by the number of conflicting chromatin modifications that 
they carry. Here we defined “mismatched” chromatin states as H3K27me3 at the 
promoter, H3K9me3 or H3K4me1 at the TSS, the absence of H3K9ac, H3K36me3 or 
H3K4me3 within the gene body, or the absence of H3K27ac at the promoter. These 
choices were motivated by these marks’ observed associations with mean expression 
level (Figure S14E-G). Consistent with the “conflict” model, genes with a greater number 
of mismatched chromatin states indeed have higher noise (Figure 4C, Figure S11D).  
This is particularly true for genes with high mean expression levels (Figure 4C, Figure 
S11D), and is not accounted for by covariation with promoter types (Figure S15).  
 
Lastly, although mean expression level is individually a poor predictor of noise (Figure 
S16A), it ranks highly in terms of its importance when combined with chromatin features 
in the integrated model (Figure S16B,C). In other words, when controlling for chromatin 
state, increased expression level is positively associated with higher levels of noise. A 
similar effect is seen for gene length whose contribution is greater in the integrated 
model (Figure S16).  
 
 
Correlated fluctuations in pluripotency underlie the high noise of genes with 
super-enhancers  
 
Super-enhancers (SEs) are large genomic regions defined by high levels of chromatin 
marks and transcriptional cofactors associated with active enhancers (H3K4me1, 
H3K27ac, MED1) that are densely occupied by master transcription factors 
(OCT4/POU5F1, SOX2, NANOG) regulating the expression of nearby cell identity genes 
(Parker et al., 2013; Whyte et al., 2013). We found that genes with super-enhancers 
have particularly high levels of noise (Figure 5A, Figure S13A). This is true for ESCs 
grown in serum where fluctuations in the pluripotent state are well-established 
(Chambers et al., 2007; Kalmar et al., 2009), but also for cells grown in 2i conditions 
(Figure S13A,B). 
 
We tested whether the high noise genes with super-enhancers could be due to coherent 
fluctuations in their expression levels within individual cells. For this we used the 
PAGODA method to determine the levels of coordinated variability within sets of genes 
from single cell RNA-seq data (Fan et al., 2016). This revealed that super-enhancer 
target gene expression is coordinated genome-wide for cells in serum medium, but not 
in 2i conditions (Figure 5B,C, Figure S17A). In serum we see that the expression 
correlation of super-enhancer target genes is higher than the vast majority of other gene 
sets tested (P=0.08; P=0.04 for UMI-based dataset; see Figure S10 for the complete list 
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of gene sets). As a negative control we included super-enhancer targets from other cell 
types (myotube, macrophage, T-helper and pro-B cells) in our analysis; these sets 
covary to a much lower degree than genes with super-enhancers in ES cells (Figure 5B, 
Figure S17A, black dashed lines).  
 
We hypothesised that coherent super-enhancer target gene expression variability is due 
to shared regulation by the master regulators OCT4, SOX2, and NANOG. These factors 
bind cooperatively to thousands of other genes in the ESC genome apart from SE 
targets (Whyte et al., 2013). We therefore asked whether additional genes that covary 
with super–enhancer target genes are also enriched for previously validated in vivo 
binding events for all three master regulators at their promoters as determined by ChIP-
chip/-seq in ESCs (J. Kim et al., 2008; Whyte et al., 2013). This is indeed the case, with 
OCT4, SOX2, and NANOG targets strongly enriched amongst the genes most correlated 
with the expression of genes with SEs (Figure 5D, Figure S17B). Similarly, OCT4, 
SOX2, and NANOG targets are more strongly correlated with SE targets than expected 
by chance – a finding that is not replicated using SE targets from other cell types (Figure 
5E, Figure S17C). However, “conventional” OCT4, SOX2, and NANOG targets as 
defined by ChIP-chip/-seq have lower levels of covariation with each other than do 
super-enhancer OCT4, SOX2, and NANOG targets (Figure 5B, Figure S17A). Thus, 
some but not all OCT4, SOX2, and NANOG targets detectably co-vary in expression 
across single cells with the presence of a super-enhancer associated with stronger 
covariation with the pluripotency network fluctuations. 
 
We investigated whether the correlated fluctuations in genes with super-enhancers and 
other OCT4, SOX2, and NANOG targets are associated with fluctuations in the 
expression of differentiation genes. The expression of genes annotated to Gene 
Ontology (GO) biological process terms including the words “differentiation” or 
“development” indeed tend to be anti-correlated with super-enhancer targets (Figure 5F). 
This result is consistent across multiple datasets and independent of the growth medium 
– it is observed for cells in both serum and 2i (Figure S14A). Thus, the coordinated 
fluctuations in super-enhancer targets across single cells are associated with a 
fluctuation in the pluripotent state. 
 
Finally, in serum medium, we also detected an anti-correlation between the expression 
of super-enhancer targets and the expression of all genes with bivalent promoters 
(Figure 5H,I, Figure S18A,B, median AUC=0.42, P=3e-4; compare to Figure S14B-D). 
This might be expected given the established link between this particular chromatin state 
and genes with differentiation-type functions. On exit from pluripotency polycomb target 
genes are generally up-regulated (Lee et al., 2006). However, this trend persists when (i) 
ignoring genes with “differentiation” or “development” GO annotations and (ii) excluding 
OCT4, SOX2, and NANOG targets (Figure S18C,D). Interestingly, there is no consistent 
association between super-enhancer target correlation for gene sets defined based on 
promoter type (Figure 5G). For example, although TATA box genes have unusually high 
noise levels, their fluctuations in single cells are not correlated with those of super-
enhancer targets. In summary, these results indicate that a bivalent chromatin state is 
associated with high noise in embryonic stem cells and that, additionally in serum 
conditions, fluctuations in the expression of bivalent genes tend to be aligned with 
fluctuations in pluripotency, i.e. anti-correlated with fluctuations in super-enhancer 
targets.   
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High mRNA stability masks the increased transcriptional noise of expression from 
a single X chromosome 
 
The independent stochastic production of transcripts from multiple loci is expected to 
reduce transcriptional noise – even when controlling for mean levels (Cook et al., 1998). 
In male ESCs, genes on the X chromosome are expressed from a single locus in 
contrast to predominantly biallelic expression of autosomal genes. However, in all of the 
single cell RNA-seq datasets, X-linked genes have similar noise levels to genes 
expressed from the autosomes present in two copies in these cells (Figure S13A,E, 
Figure S10). These results are consistent with those obtained using replicate 
populations of bulk measurements from populations of cells showing unexpectedly low 
variation of genes on the X chromosome in contrast to other monoallelically expressed 
genes (Yin et al., 2009). 
 
The time-scales of transcription are known to influence expression variability (Paulsson, 
2004; Pedraza and Paulsson, 2008). Specificially, longer lived mRNAs are expected to 
exhibit lower expression variability, due to improved averaging over transcriptional bursts 
(Zoller et al., 2015). It was recently shown that genes expressed from the X 
chromosome have unusually high mRNA stability (Faucillion and Larsson, 2015). We 
therefore hypothesized that the increased mRNA stability of X-linked genes might be 
masking the increased noise resulting from mono-allelic expression. Combining data 
from four independent studies(Friedel et al., 2009; Schwanhäusser et al., 2011; Sharova 
et al., 2009; Tippmann et al., 2012) we could validate that X-chromosome transcripts 
have longer half-lives than those expressed from other chromosomes (Figure 6A, Figure 
S19A-D). The extreme stability of mRNAs transcribed from the X chromosome can be 
clearly be appreciated when comparing the average half-life of these transcripts to those 
of random sets of autosomal genes (P<1e-4, Figure 6B, Figure S19E-H).  
 
We find that, in mESCs, mRNA half-life is indeed negatively associated with mRNA 
expression noise with an effect size similar to the strongest chromatin modifications 
(Figure S20A). We next tested whether, given their unusually high mRNA stability, X-
linked genes do – or do not – have high noise. We constructed random gene sets of 
varying size and average mRNA half-life using a weighted sampling strategy. We then 
tested each of these random gene sets for biased expression noise. The strength of a 
gene set’s mRNA stability bias is strongly anti-correlated with its average level of 
expression noise (median Spearman’s rho=-0.62, Figure S19I-K). This analysis reveals 
that genes on the X chromosome do indeed have increased noise (median residual 
AUC=0.03, empirical P=0.03) compared to other gene sets with matched mRNA 
stabilities (Figure 6C, Figure S19I-K). Thus, the unusually stable transcripts of X-linked 
genes contribute to reducing their mRNA noise levels to match those of genes 
expressed from the autosomes. However, given the differential effects of mRNA stability 
on mRNA and protein noise (Ozbudak et al., 2002), it remains to be tested whether this 
noise buffering effect in X-linked genes also extends to the protein level. 
 
By contrast, we observe that super-enhancer targets have noise levels that are much 
higher than would be expected given their average mRNA half-life, indicating that 
although they produce short-lived transcripts this alone is insufficient to explain their 
unusually high noise levels. Likewise, biases in mRNA stability are insufficient to explain 
the contribution of other promoter and chromatin features associated with high or low 
noise (Figure 6C, Figure S19I-K, for further analysis see Figure S20.). 
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DISCUSSION  
 
We have conducted a genome-scale survey of genomic features associated with gene 
expression variation in single mouse embryonic stem cells. Our results provide an 
integrated view of the regulatory properties associated with stable or variable gene 
expression across individual ES cells (Figure 6D). 
 
This composite portrait promotes the formulation of specific hypotheses about how gene 
regulation is coordinated.  For example, we observe that chromatin is an important 
determinant of transcriptional stability across individual cells and that “conflicting” 
chromatin states in active genes are associated with more variable expression. When 
combined with analyses of the variability of expression across cell types (Benayoun et 
al., 2014; Pérez-Lluch et al., 2015) and during aging (Pu et al., 2015; Sen et al., 2015), 
this suggests that chromatin may be more important for modulating the robustness vs. 
responsiveness of gene expression in time and across conditions, rather than 
modulating expression levels per se. 
 
We also found that genes with super-enhancers have unusually high noise in mESCs, 
and this noise is correlated across genes with super-enhancers and, to a lesser extent, 
also with other genes that are targets of OCT4, SOX2, and NANOG. This suggests 
fluctuations in the pluripotent state as an important upstream driving factor in the cell-to-
cell variation in the expression of these genes. Accordingly, many genes with functions 
in differentiation and development had expression that detectably anti-correlates with the 
expression of super enhancer targets, and we detected an anti-correlation between 
pluripotency-driven fluctuations and the expression from bivalent promoters in general. 
This is consistent with results showing that polycomb target genes are de-repressed 
upon exit from pluripotency (Lee et al., 2006), and we suggest that bivalent genes both 
have high noise in general and fluctuations that are anti-correlated with the pluripotent 
state when grown in serum.  
 
In total, this work demonstrates that core promoter architecture, chromatin state, the 
presence of super-enhancers, and mRNA half-life all associated in definable ways to a 
gene’s mRNA expression variability. 
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FIGURES 
 

 
Figure 1. Gene expression noise quantification and gene set analysis procedure. 
A. Noise in transcript counts versus average transcript counts for all detected genes as 
determined using raw count data from a single-cell RNA-seq experiment: Grün et al. 
(serum)(Grün et al., 2014). B. We used SCDE/PAGODA to account for the global 
dependency of gene expression noise on the mean expression level, as well as to 
control for technical and cell cycle-related co-variation. C. An additional rank 
normalisation step removes the effect of mean expression on noise variance. A local 
smooth (loess) using all the data (and corresponding running upper and lower deciles) is 
shown in red in each panel. The Rrm2 gene, which possesses a TATA box at its 
promoter, is highlighted in orange in each panel. D. We defined sets of genes based on 
various shared genomic features, chromatin states and annotations. Indicated is the 
result of a Binomial smooth of relative noise (rank) versus mean expression magnitude 
shown separately for detected genes with a well-defined TATA box (orange) and the set 
of remaining background genes (black; detected genes for which TATA status was 
available). Shaded regions indicate 95% confidence intervals. Tick marks on the x-axis 
depict the distribution of individual gene mean expression magnitudes. See Figure S5C 
for similar results based on noise estimates from all three UMI-based datasets. Also see 
Figure S21A,B for comparisons to results where expression noise is represented by 
adjusted variance values (i.e. without rank normalisation). To quantify the relative noise 
bias of genes belonging to a given gene set with respect to background genes (E), we 
use the area under the ROC curve (AUC) statistic, which can be directly derived from 
the Mann-Whitney U statistic i.e. a non-parametric equivalent of the t-statistic (F).  
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Figure 2. Gene set noise analysis reveals associations between core promoter 
architectures and cell-to-cell gene expression variability. A. Noise biases of gene 
sets constructed based on a selection of core promoter architecture features. Effect 
sizes are indicated as AUC, where a value of 0.5 corresponds to a random sample of 
genes. Each data point is shown in biological triplicate (three UMI-based single-cell 
RNA-seq datasets) and colours indicate the location of the corresponding feature (see 
legend). B. Results of an identical analysis to that shown in A, but instead using “pool-
and-split” control datasets from Grün et al. where biological variation was eliminated by 
pooling thousands of cells and then splitting their mRNAs into single-cell equivalents. C. 
Binomial smooth results of relative noise (rank) versus mean expression magnitude 
shown separately for detected genes with a CpG island (CGI, orange) and the set of 
remaining background genes (black; detected genes for which CGI status was 
available). Shaded regions indicate 95% confidence intervals. Tick marks on the x-axis 
depict the distribution of individual gene mean expression magnitudes. D. A similar 
noise-mean curve to that shown in C constructed using genes with Sharp or Broad 
TSSs. Panels C-D show results obtained using noise estimates from Grün et al. 
(serum)(Grün et al., 2014). See Figure S5C,E,G for similar results based on noise 
estimates from all three UMI-based datasets. Also see Figure S21C-H for comparisons 
to results where expression noise is represented by adjusted variance values (i.e. 
without rank normalisation). E. Feature coefficients in a penalised logistic regression 
model (Lasso) distinguishing genes with noise levels in the upper tercile from those in 
the lower tercile (genes with intermediate noise levels in the mid tercile were excluded). 
The regularisation parameter lambda was chosen to yield the most regularized model 
such that deviance from 10-fold cross-validation was within one standard error of the 
minimum. Apart from previously considered (binary) core promoter sequence features, 
we also included TSS width (a quantitative description of Sharp/Broad TSS), mean 
expression level and gene length as continuous features in the model. See Figure S22 
for comparisons to feature coefficients corresponding to single (univariate) and multi-
feature logistic regression models (i.e. conventional as opposed to penalised logistic 
regression).  
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Figure 3. Chromatin states and domains associated with high or low expression 
noise. A. Noise biases of gene sets constructed based on shared ChIP-seq peaks at the 
indicated gene regions (see Figure 2A). B-C. Binomial smooth results of expression 
noise versus mean expression magnitude for genes with H3K4me3 and H3K27me3 
peaks at their promoters (bivalent) or H3K4me3 peaks only (green). Black curves show 
background gene set trends, shaded regions indicate 95% confidence intervals and tick 
marks show individual gene mean expression magnitudes (as in Figure 2C-D). Panels B 
and C show results obtained using noise estimates from Grün et al. (serum)(Grün et al., 
2014). See Figure S11A,B for similar results based on noise estimates from all three 
UMI-based datasets. Also see Figure S23A-D for comparisons to results where 
expression noise is represented by adjusted variance values (i.e. without rank 
normalisation). 
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Figure 4. Integrative analysis of chromatin and promoter features. A. Binomial 
smooth results of expression noise versus mean expression magnitude for genes with 
H3K36me3 peaks overlapping their bodies (blue). Black curves show background gene 
set trends, shaded regions indicate 95% confidence intervals and tick marks show 
individual gene mean expression magnitudes (as in Figure 2C-D). B. Feature 
coefficients in a penalised logistic regression model (Lasso) distinguishing genes with 
noise levels in the upper tercile from those in the lower tercile (see Figure 2E). The 
regularisation parameter lambda was chosen to yield the most regularized model such 
that deviance from 10-fold cross-validation was within one standard error of the 
minimum. We included chromatin state datasets (quantitative ChIP enrichment), gene 
body constitutive LAD membership, the presence of a TATA box or CpG island at the 
core promoter (binary features), as well as mean expression level and gene length 
(continuous features) in the model. See Figure S16A,B for feature coefficients 
corresponding to single (univariate) and multi-feature logistic regression models (i.e. 
conventional as opposed to penalised logistic regression). C. Binomial smooth results of 
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expression noise versus mean expression magnitude for genes with increasing numbers 
of “mismatched” chromatin states defined based on average chromatin state feature 
associations with mean expression level (see Figure S14E-G). Panels A and C show 
results obtained using noise estimates from Grün et al. (serum)(Grün et al., 2014). See 
Figure S11C,D for similar results based on noise estimates from all three UMI-based 
datasets. Also see Figure S23E-H for comparisons to results where expression noise is 
represented by adjusted variance values (i.e. without rank normalisation). 
 
 

 
Figure 5. Super-enhancers are associated with high noise due to fluctuations in 
pluripotency. A. Binomial smooth results of expression noise versus mean expression 
magnitude for genes with SEs (blue). Black curves show background gene set trends, 
shaded regions indicate 95% confidence intervals and tick marks show individual gene 
mean expression magnitudes. Shown are results obtained using noise estimates from 
Grün et al. (serum)(Grün et al., 2014). See Figure S13B for results based on noise 
estimates from all three UMI-based datasets. B. Histogram (grey bars) and kernel 
density plot (black line) of weighted PCA-based expression covariability scores for gene 
sets corresponding to shared sequence, promoter architecture, chromatin state and 
domain membership features (grey bars). See Figure S10 for the complete list of gene 
sets. Vertical dashed lines indicate covariability scores of the selected gene sets 
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indicated. C. Heatmap showing normalised expression levels of the top 20 super-
enhancer target genes in 262 single mouse ESCs in serum medium. Cells are sorted 
according to the aggregate SE target pattern. D. Enrichment for promoter OSN 
occupancy (odds ratio) calculated separately for ten equally sized sets of genes 
constructed based on positive expression correlation level with SE targets (increasing 
from 1 to 10). Significance was determined based on Fisher’s Exact Test. Super-
enhancer target and bystander genes themselves were excluded from the analysis. The 
analysis was repeated using SEs from mouse ES cells (red) as well as those obtained 
from four other cell types (grey; macrophages, C2C12 mouse myoblast, pro-B and T 
helper cells). Two independent definitions of OSN promoter occupancy were used based 
on either ChIP-chip or ChIP-seq enrichment for all three transcription factors (see inset 
legend). Data point size indicates significance level (see panel E). E. Bias in the positive 
expression correlation of conventional OSN target gene sets with SE targets from mouse 
ES cells (red) or other cell types (grey). Effect sizes are indicated as area under the 
receiver operating characteristic curve (AUC), where a value of 0.5 corresponds to a 
random sample of genes. Symbol size corresponds to significance level. Symbol type 
indicates ChIP dataset (see panel D inset legend) F. Bias in the expression correlation 
with mouse ESC SE targets for selected gene sets including SE target genes 
themselves (red), conventional OSN targets (orange) and gene sets based on gene 
ontology terms containing the words “differentiation” (green) or “development” (blue). 
Each data point is shown in biological triplicate (three serum medium single-cell RNA-
seq datasets) and ranked according to the median effect size (AUC). Results from a 
similar analysis using 2i/a2i medium single-cell RNA-seq datasets is shown in Figure 
S14B-D. G-I. Bias in the expression correlation with mouse ESC SE targets for core 
promoter, chromatin domain and chromatin state gene sets. As in panel F, we restricted 
our analyses to serum medium single-cell RNA-seq datasets (where SE target induced 
effects are most pronounced). We also controlled for the effect of mean expression level 
on expression correlation using a sliding window approach (see Figure 1C). Panels B-E 
show results obtained using single-cell RNA-seq data from Kolodziejczyk et al. 
(serum)(Kolodziejczyk et al., 2015). See Figure S17 for results obtained using 2i/a2i 
medium UMI- and non-UMI-based datasets. 
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Figure 6. High mRNA stability compensates for the increased transcriptional noise 
of expression from a single X chromosome. A. Boxplots showing the distribution of 
mRNA half-lives for genes according to chromosome. B. Histogram of mean mRNA half-
lives corresponding to random sets of autosomal genes (n=1e4) matching the number of 
assayed genes on the X chromosome (blue dashed line). C. Scatterplot of expression 
noise bias versus mRNA half-life bias for selected promoter/chromatin gene sets and 
random gene sets of varying size (200-2000) and mRNA half-life constructed using 
weighted sampling (grey; n=1e3). Effect sizes are indicated as area under the receiver 
operating characteristic curve (AUC), where a value of 0.5 corresponds to a random 
sample of genes. For chromatin promoter/chromatin gene sets, expression noise values 
are shown as the mean and standard error of three biological replicates (three UMI-
based single-cell RNA-seq datasets). For random gene sets (grey), each data point 
represents the mean expression noise across the same three single-cell RNA-seq 
datasets (see Figure S19I-K for separate results for each dataset). Panels A-C show 
results obtained using mRNA decay data from Friedel et al. (murine NIH-3T3 
fibroblasts)(Friedel et al., 2009). See Figure S19A-H for results obtained using three 
additional mRNA decay datasets. D. Summary scheme showing proposed hierarchical 
relationship of features associated with gene expression noise. Global differences in cell 
state (e.g. cell cycle, cell type, cell size) involve coordinated changes in many or all 
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genes (top panel). Local sequence properties (e.g. core promoter architecture) give rise 
to gene-specific fluctuations (bottom panel). Additionally, results from our gene set 
analysis reveal specific chromatin state features associated with expression noise 
(middle panels). Promoter H3K27me3 / bivalency, genes with super-enhancers and 
other “mismatched” repressive chromatin states in active genes are associated with high 
noise (e.g. the absence of H3K36me3). In serum, expression from bivalent H3K27me3-
marked promoters anti-correlates with expression from super-enhancer targets 
indicating fluctuations in Polycomb activity across single cells. 
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STAR METHODS  
 
QUANTIFICATION AND STATISTICAL ANALYSIS 
 
UMI-based single-cell RNA-seq data pre-processing 
 
Well-identifying barcode demultiplexed raw sequencing reads from Islam et al. were 
processed and filtered as described by the authors (Islam et al., 2014). For the raw pair-
end sequencing data from Grün et al. (Grün et al., 2014), cell barcode sequences from 
the left mate were appended to right mate read names to enable post-alignment 
demultiplexing. Transcript sequences from all UMI-based datasets were mapped to the 
Ensembl v71 mouse transcriptome (GRCm38) using TopHat (v2.0.8) (D. Kim et al., 
2013) with Bowtie2 (v2.1.0) (Langmead and Salzberg, 2012) and the following 
command-line options, which allow up to 5 mismatches and exclude reads with more 
than 24 alternative mappings to genomic sequence: -M -g 24 -N 5 --read-edit-dist 5. 
Transcript models were extended by 100bp upstream of the TSS to account for 
incomplete cap site knowledge. We also included an artificial chromosome consisting of 
concatenated ERCC spike-in sequences (Baker et al., 2005) each separated by 100bp 
of ambiguous (N) spacer sequence. After alignment, reads were filtered to remove those 
with greater than 3 mismatches to unambiguous bases. However, up to 5 matches to 
ambiguous bases were allowed in the case of ERCC spike-in sequences as they were 
found to often include a prepended 5’ sequence of unknown origin (AATTC). In the case 
of reads with multiple mappings, we retained only the mapping where the read 5’/3’ was 
closest to an orientation matching TSS/TTS (depending on the end of each fragment 
sequenced). Unreliable UMIs not supported by sufficient reads (fewer than 1/100 of the 
average of the nonzero UMIs) were discarded. Gene expression molecule counts were 
then determine by counting the number of overlapping unique read start:UMI 
combinations, excluding molecules only supported by a single read or those that could 
not be assigned unambiguously to a single gene. Only genes on canonical 
chromosomes and not overlapping mouse ENCODE “black list” regions (downloaded 
from the UCSC genome browser: https://genome.ucsc.edu/) were considered in our 
analysis. Molecule counts were also corrected for collision probability, but at the gene 
rather than the transcript level, as previously described (Grün et al., 2014). We filtered 
out the same cells as the authors in Islam et al. (Islam et al., 2014). For the data from 
Grün et al., we retained only cells with at least 500 detected spike-in molecules and 
10,000 detected endogenous mRNAs. 
 
non-UMI-based single-cell RNA-seq data pre-processing 
 
For the data from Kolodziejczyk et al.(Kolodziejczyk et al., 2015), estimated counts for all 
Ensembl v71 mouse (GRCm38) transcripts (GRCm38) were obtained using Kallisto 
v0.42.4 (Bray et al., 2016). Estimated counts at the gene level were summarized from 
transcript-level counts using the tximport R package (Soneson et al., 2016). As above, 
only genes on canonical chromosomes and not overlapping mouse ENCODE “black list” 
regions (downloaded from the UCSC genome browser: https://genome.ucsc.edu/) were 
considered in our analysis. Similarly to the authors, we retained only cells with less than 
10% of reads mapping to the mitochondrial genome and at least 1 million reads in total 
(Kolodziejczyk et al., 2015). 
 
Variance normalisation, gene set over-dispersion analysis and cell cycle 
correction with PAGODA 
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We used the PAGODA routines of the SCDE R package (Fan et al., 2016) to analyse 
transcriptional heterogeneity in all single-cell RNA-seq datasets. Molecule counts were 
first filtered with the clean.counts function requiring a gene to be detected in at least two 
cells for any given dataset (min.detected=2). Cell-specific error models were built using 
the knn.error.models function with the number of nearest neighbor cells to use during 
fitting (k) set to one quarter of the total number of cells in each dataset. For non-UMI-
based datasets, which tend to suffer from higher levels of noise, a minimum of two reads 
was required for a given gene to be initially classified as a non-failed measurement 
(min.count.threshold=2). We then normalised gene expression variances relative to 
transcriptome-wide expectations using the pagoda.varnorm function, capping the 
adjusted variance at a value of five (max.adj.var=5) for all datasets, controlling for batch 
in the UMI-based datasets and gene.length in the non-UMI-based datasets. We also 
controlled for the total number of detected genes in each cell (influenced by library and 
cell size) using the pagoda.subtract.aspect function. 
 
Chromatin/promoter type gene set or pathway covariability was determined for each 
valid set of genes (min.pathway.size=10, max.pathway.size=2000) using the 
pagoda.pathway.wPCA function. Briefly, the method runs a weighted PCA analysis on 
the cell-wise expression levels of the genes in each gene set, as well as analogous 
analyses of random gene sets of matched size (n.randomizations=50). It then tests 
whether the amount of shared variance captured by the first principal component (PC1) 
is significantly greater than expected by chance. We used gene sets based on GO terms 
as well as promoter and chromatin gene set definitions as described below. To control 
for cell cycle-related variation, we used the set of genes annotated to the GO biological 
process term “cell cycle”, followed by the pagoda.subtract.aspect function with input 
aspect a vector of cell scores corresponding to the first principle component. This 
procedure was repeated iteratively on each dataset separately until “cell cycle” gene 
covariability was indistinguishable from that expected by chance (FDR=5%). 
 
 
Total noise level bias analysis 
 
We rank normalised the cell cycle corrected adjusted variance measures obtained from 
SCDE/PAGODA using a sliding window approach. For each gene, we ranked its 
adjusted variance measure compared to its 100 nearest mean expression level 
neighbours (50 higher and 50 lower; Figure S2C). The 49 most highly and lowly 
expressed genes in each dataset were discarded due to insufficient neighbours for this 
analysis. To determine the noise bias of individual gene sets, we tested the deviation of 
these ranks compared to “background” genes using the Mann–Whitney U Test. For gene 
body interval (peak overlap) feature associations we excluded short genes from the 
analysis (<1e4 bp). To verify that our results were robust to the chosen noise metric, we 
repeated our noise level bias analyses using (raw) adjusted variance values (i.e. without 
rank normalisation). We also used a more naïve approach to obtain noise estimates 
based on the distance to the running median (DM) (Newman et al., 2006) of squared CV 
values in log space (window width, k=101). Binomial smooth plots in noise-mean space 
for selected gene sets were generated using a second-order spline (formula = y ~ 
splines::ns(x, 2)) as argument to the geom_smooth function in ggplot2 (method=glm, 
family=binomial). Shaded regions indicate 95% confidence intervals (se=T) constructed 
on the link scale (link=logit), and then back-transformed to the response scale. Smooth 
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plots using adjusted variance values (i.e. without rank normalisation) were similarly 
generated (method=gam, family=gaussian). 
 
Simulation of single-cell RNA-seq data 
 
An in silico dataset was generated based on the two Grün et al. (Grün et al., 2014) and 
one Islam et al. (Islam et al., 2014) UMI-based datasets. That is, average expression of 
genes was calculated from aggregated averages from all three datasets and multiplied 
by ten (assuming on average 10% capturing efficiency) to arrive at “biological” cell-wise 
transcript counts. Genes that were not detected in all three datasets were excluded to 
avoid a long tail of transcript counts towards very low expression levels (~below one 
transcript mean expression). This resulted in a set of 12,998 genes and a range of 
average biological transcript counts spanning four orders of magnitude. 
 
Each gene was further assigned a gene expression noise value, assuming a general 
expression noise structure of the form gene_expression_noise = (promoter_noise + 1) / 
average_transcript_counts + extrinsic_noise. Here, the first term in the sum corresponds 
to intrinsic_noise and promoter_noise 𝜂" describes the deviation of intrinsic noise from 
the Poissonian limit due to transcriptional bursting (Pedraza and Paulsson, 2008). For 
each gene, promoter_noise was sampled from a log-normal distribution 𝜂",$ = ℒ𝒩 0,2 . 
For each gene, extrinsic_noise was sampled from a log-normal distribution 𝜂*+,,$ =
ℒ𝒩 log 0.2 2 , 0.5 . Transcript counts of each gene i across 1,000 cells j were drawn 
from a gamma distribution 𝑋$,3~Γ 𝛼$, 𝛽$ , with gene-specific shape parameter 𝛼$ =
𝑚$
9

𝜂",$ + 1
∙ ℒ𝒩(0, 𝜂*+,,$)  and gene-specific rate parameter  𝛽$ =

𝑚$
𝜂",$ + 1

∙

ℒ𝒩(0, 𝜂*+,,$) . Here, following Raj et al. (Raj et al., 2006), under the assumption of short, 
instantaneous transcriptional bursts, the shape parameter describes the burst frequency 
relative to the rate of mRNA degradation and the rate parameter describes the burst 
size. Multiplying both parameters with a random number drawn from a log-normal 
distribution with width proportional to the gene-specific extrinsic noise adds cell-specific 
variation in the parameters, resembling extrinsic influences. 
 
Altogether, this leads to an in silico dataset of transcript counts of 12,998 genes in 1,000 
cells. Justifying the ad hoc parameter choices, the Fano factor distribution resembles a 
previous estimate (Grün et al., 2014), with ~10% of genes with a Fano factor above 10, 
and an extrinsic noise floor of ~20% CV. From the initial in silico cell population, 16 
separate in silico scRNA-seq experiments were simulated with varying cell numbers and 
varying capture efficiencies by randomly sampling cells (1000, 500, 100, 50) and in 
these cells randomly sampling transcripts (100%, 50%, 15%, 3% capture efficiency ck). 
Following Kim & Marioni (J. K. Kim et al., 2015), the single-cell RNA sequencing 
experiments are modelled assuming incomplete capture of transcripts in the reverse 
transcription step, but omitting shot noise from sequencing itself and instead assuming 
saturated sequencing depth. The observed transcript counts in experiment k are thus 
drawn from a binomial distribution 𝑌$,3,@~Binomial 𝑋$,3, 𝑐3,@ . Here, capture efficiency is 
further varied in a cell-specific fashion by drawing the cell-specific capture efficiency 
from a log-normal distribution 𝑐3,@~ℒ𝒩 log 𝑐@ , 0.1 . 
 
Effect of cell number and transcript capture efficiency on gene set noise estimates 
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Pre-processing and variance normalisation of all in silico scRNA-seq experiments was 
performed as described above for real UMI-based datasets. Restricting our analysis to 
genes present in all 16 datasets, we generated 10 independent random sets of 1000 
genes with either low (AUC=0.3), high (AUC=0.7) or unbiased (AUC=0.5) noise using 
adjusted variances from the in silico “true” dataset (population of 1000 cells; optimal 
transcript capture efficiency). Briefly, starting from a random set of 1000 genes 
(unbiased variance), low or high noise gene sets were constructed by iteratively 
substituting individual genes (of lower or higher variance respectively) until achieving the 
desired gene set noise bias. We then determined the individual and combined effects of 
reduced cell number and capture efficiency on these “true” gene set noise estimates 
using adjusted variances from all derived datasets. For comparison, we repeated this 
analysis using relative noise (rank) values in both gene set construction and noise 
estimation. 
 
Logistic regression models to predict expression noise 
 
Logistic regression models were built using various features to distinguish genes with 
noise levels in the upper versus lower tercile (genes with intermediate noise levels in the 
mid tercile were excluded). Model coefficients were used to assess feature importance in 
(i) single-feature models (including only the feature of interest), (ii) multi-feature or 
integrative models (including the feature of interest as well as other selected features), 
and (iii) penalised logistic regression models with lasso regularisation. Single- and multi-
feature logistic regression models were fit with the glm function in R (family=binomial, 
link=logit) using iteratively reweighted least squares (method=glm.fit). Penalised logistic 
regression models were fit with the glmnet package in R (family=binomial) using lasso 
regularisation (alpha=1). In all cases, the regularisation parameter lambda was chosen 
to yield the most regularized model such that deviance from 10-fold cross-validation was 
within one standard error of the minimum (type.measure=deviance). 
 
Continuous features (ChIP-seq enrichment, gene expression level, gene length, mRNA 
half-life, TSS width) were log transformed and standardized to have zero mean and unit 
variance before model fitting. Binary features (chromosome X, constitutive LAD, super-
enhancer target, TATA box and CpG island status) were not standardized. Only genes 
with non-missing values for all corresponding features were used during model fitting. 
Core promoter sequence features from EPD were only available for a subset of 14,208 
genes. To expand TATA box status to all genes for integrated models including 
chromatin features, we scanned the EPD TATA box position weight matrix (PWM) over 
all core promoter DNA sequences. We defined TATA box presence using a maximum 
score threshold corresponding to an FDR of 10%. 
 
Promoter type and chromatin gene set definitions 
 
Where available, we used mouse ESCs promoter type and chromatin state feature 
coordinates corresponding to GRCm38/mm10. Otherwise, we converted NCBI37/mm9 
coordinates to GRCm38/mm10 using the UCSC genome browser batch coordinate 
conversion tool (liftOver).  
 
Coordinates of mouse core promoter type and sequence elements (NCBI37/mm9) were 
downloaded from the Eukaryotic Promoter Database (EPD) (Dreos et al., 2016) using 
the “EPDnew selection tool” (http://epd.vital-it.ch/EPDnew_select.php) (Dreos et al., 
2015). Coordinates of CpG islands (GRCm38/mm10) were downloaded from the UCSC 
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genome browser (https://genome.ucsc.edu/). Whole embryo (E11-E18) FANTOM5 Cap 
Analysis of Gene Expression (CAGE) data (Lizio et al., 2015) was downloaded and 
normalised using the CAGEr R/Bioconductor package (Haberle et al., 2015), followed by 
individual TSS clustering and aggregation to generate a set of consensus promoters. 
TSSs were defined as either “Sharp” or “Broad” based on a promoter width threshold of 
25bp.  
 
Coordinates of mouse ENCODE (Yue et al., 2014) ChIP-seq peaks (NCBI37/mm9) were 
downloaded from the UCSC genome browser (https://genome.ucsc.edu/ENCODE/). We 
used a Hidden Markov model (HMM)-based method (Ernst and Kellis, 2010) to obtain a 
15-state chromatin classification based on peaks for seven histone modifications 
(H3K4me1, H3K4me3, H3K9ac, H3K9me3, H3K27ac, H3K27me3, H3K36me3) and 
CTCF. To define constitutive and facultative LADs we compared previously computed 
HMM state calls (Peric-Hupkes et al., 2010) (NCBI37/mm9) for ESCs to those from three 
other mouse cell types (neural progenitor cells, astrocytes and embryonic fibroblasts). 
Regions were defined as facultative LADs (fLADs) if they were present in mouse ESCs 
but absent in any of the other three cell types. Otherwise they were defined as 
constitutive (cLADs). 
 
Raw Hi-C reads from mouse ESCs were mapped to the mouse genome 
(GRCm38/mm10) and filtered to obtain normalised contact matrices that were then used 
to call TADs on the autosomes using TADbit (Serra et al., 2016). In view of results 
showing that the borders of TADs are enriched for specific regulatory elements and 
genes with specific biological functions (Dixon et al., 2012), we defined a separate list of 
genomic domains of fixed size (100kb) centered on these TAD boundaries, which we 
termed inter-TADs. We used previously defined loops and contact domains from mouse 
lymphoblasts (Rao et al., 2014) (NCBI37/mm9) in the absence of sufficiently high 
resolution Hi-C data to call these regions in mouse ESCs. Normalised probe-level 
mouse ESC replication-timing data (Hiratani et al., 2008) (GRCm38/mm10) was 
downloaded from the ReplicationDomain database(Weddington et al., 2008) and early 
replication timing domains defined as contiguous genomic regions of positive signal. The 
remainder of the genome was defined as late replicating. We used previously defined 
super-enhancer (SE) regions (Whyte et al., 2013) from mouse ESCs (NCBI37/mm9) as 
well as four additional cell types (macrophages, C2C12 mouse myoblast, pro-B and T 
helper cells). We downloaded coordinates of RepeatMasker (Smit et al., 1996) repeat 
families and chromosomal bands from the UCSC genome browser, defining the first 
band of each chromosome as “Centromeric” and the last band of each chromosome as 
“Telomeric”.  
 
K-means clustering of average ChIP-seq signals within TADs recapitulated previous 
(Sexton et al., 2012) results showing the existence of two major classes: those with 
either broadly active or repressive chromatin marks. The former are enriched for SEs, 
whereas the latter are enriched for cLADs. We therefore defined two further TAD classes 
based on their enrichment for these two features: “TAD (super)” and “TAD (LAD)”. The 
remaining TADs were classified as either “TAD (active)” or “TAD (repressed)” based on 
the aforementioned K-means clustering results (K=2). We likewise classified inter-TADs, 
loops and contact domains according to their occurrence within these four TAD classes. 
If a domain overlapped two or more TADs of a different class, we termed these 
“transition” domains. 
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We then determined the overlap of each of the above genomic features with four distinct 
gene sub-regions: transcription start site (TSS), core promoter (TSS-200bp, 
TSS+100bp), promoter (TSS-500bp, TSS+2000bp) and whole gene body (TSS to 
transcription termination site, TTS). However, the following features could only be 
sensibly defined at the whole gene level: short genes (<10kb), genes on the X-
chromosome (chrX) or mitochondrial chromosome (chrM), genes targeted by nonsense 
mediated decay (NMD) (Hurt et al., 2013), genes with high/low mRNA stability (Sharova 
et al., 2009) (upper/lower quartile mRNA half-life). Similarly, promoter type feature 
occurrence was only interrogated within each gene’s core promoter region. 
 
We used a previously described strategy to determine SE target genes (Whyte et al., 
2013): the closest active genes i.e. those with H3K4me3 or RNAP2 peaks within 2.5kb 
of the canonical TSS. SE bystander genes were defined as those overlapping a TAD 
shared with a SE (“TAD (super)”) or within 50kb of a SE if not overlapping a TAD. 
Individual OSN targets (OCT4/POU5F1, SOX2, NANOG) and combination OSN targets 
(1/3, 2/3, 3/3) were defined based on predefined gene lists obtained using ChIP-chip 
data (J. Kim et al., 2008). Additionally, we used a definition based on the promoter 
overlap of enhancers defined by shared OSN peaks as determined by ChIP-seq (Whyte 
et al., 2013). 
 
DATA AND SOFTWARE AVAILABILITY 
 
All statistical analyses were performed using custom R scripts that are available upon 
request. 
 
 


