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1 Introduction

At least one of the following two properties are usually assumed to be necessary for an
expression to count as vague:

(1) borderline cases: there are things that are as much f as they are not-f);
(2) blurred boundaries: it is not clear where the boundary between fs and non-fs is.

On this basis, a great many natural language expressions are vague. For instance, there
are examples of nouns/NPs, adjectives, VPs, PPs, and adverbial expressions that have
blurred boundaries. E.g., there is no sharp cut-off between (a) kitten and (an) (adult)
cat, between tall and not tall/short, between speak loudly and shout, between under the
table and not under the table, or between quickly and not quickly.

A daunting amount has been written on vagueness in philosophy, linguistics, and
cognitive science, and a large portion of this work has centred on (proposing solutions to)
the sorites paradoz, a logical puzzle generated by a form of slippery slope reasoning from
clear cases to clear non-cases of a predicate by evoking increments so small that, so the
intuition goes, they could not make a difference to whether or not one should apply that
predicate. For example, if a room is (clearly) large, then a room smaller by only one square
centimetre must also be large, but then by repeated applications of this step, a 1 metre-
square room is large, contrary to fact. The argument is troubling as it appears to show
either that there is an inconsistency in how we reason about the extensions of expressions
that leads us into contradiction, or that at least one of the premises of the argument
is false, which, in most commonly used logics, implies that there is a sharp boundary
between fs and non- fs, meaning that, contrary to our intuitions, vague predicates do not
have blurred boundaries or genuine borderline cases after all.

Even setting the sorites paradox aside, there is a tension between the two main diag-
nostics of vagueness in ([ll) and (E) and classical semantic theory in the Montague-Lewis
tradition. Namely, if the extensions of natural language expressions such as common
nouns, adjectives and VPs are modelled in terms of classical sets (or functions from clas-
sical sets to classical sets), it is not clear how such an expression could have borderline
cases or why its application conditions are blurred/non-sharp. Given the prevalence of
vague expressions in natural languages, a proper treatment of the phenomenon of vague-
ness is therefore theoretically pressing. In this chapter, we will examine a broad family of
analyses of vagueness, all of which make use of classical (Bayesian) probability theory.

Although there were some early applications of probability theory to vagueness (Black,
1937; Borel, 1907/2014), in the last eleven to twelve years, the use of this and related
formal tools has seen a resurgence of interest. A core idea runs through each of these
approaches — the use and /or meaning of vague expressions inherently involves uncertainty.



This uncertainty has been characterised, for instance, as uncertainty about what the truth-
conditions of an expression are, or, from a more agent-oriented perspective, uncertainty
about whether a competent speaker would apply a vague expression in a given instance.
Furthermore, some of the advocates of probabilistic approaches to vagueness have argued
that probabilistic analyses of vagueness afford us more clarity on what could be termed
the origins of vagueness, namely, why natural languages have developed vague expressions
in the first place, and it is this issue that will be addressed in this chapter.

Section §P provides an overview of many of the probabilistic proposals for treatments of
vagueness. (For an overview of vagueness theories including non-probabilistic approaches
to vagueness, see Burnett & Sutton, 202(0). Although probabilistic solutions to the sorites
will briefly be discussed in §R.5, our main area of interest here will be what, from a
probabilistic standpoint, underpins why vagueness arises in the first place. Most of the
work to be discussed (see §2.9) forms a loose consensus on this issue, namely, that some
form of noise generates uncertainty about how to apply a predicate. In information
theoretic terms, for an information channel where a message is encoded as a signal and
sent to a receiver where it is decoded, noise increases uncertainty regarding the message,
since it either modulates or confounds the signal, making the message harder to recover
(unless the signal encodes enough redundancies (Shannon, [1948)). Although different
theories propose different explanations of how noise enters the system, the unifying idea
here is that this affects agents’ uncertainty regarding predication and that this uncertainty,
under certain other constraints, characterises vagueness. In §2.3, we will discuss a more
minority view, namely that vagueness arises as a byproduct of semantic learning:
an agent’s learning data in some sense underspecifies how a predicate should be used in
a certain situation and so the semantic representations one develops do not carve out
sharply defined boundaries. Although the noise and semantic learning hypotheses are not
mutually exclusive (both could contribute to vagueness in natural language), they do offer
different perspectives on where the principal source of vagueness lies.

The second part of this chapter, , presents the results of a series of simulations that
were run with the goal of providing a clearer picture of whether noise or a byproduct
of semantic learning contributes to the evolution of vagueness. These simulations were
run with a probabilistic iterated learning model (for non-probabilistic iterated learning
models, see Kirby, 2007; Kirby & Hurford, 2002). In this model, for n + 1 generations
of agents, aq..., a,, each agent a;-, provides a sample of their language as learning data
for a;;1 and each agent a;-o learns on the basic of a sample of the language from a;_;.
Perhaps surprisingly, the results of these simulations indicate that both noise and learning
data sparsity appear to contribute to the development of vagueness in a language. That
is to say that, even if we assign a completely precise (non-vague) language for ag in the
model, the introduction of noise and a restriction on the amount of learning data each
agent receives generates a stable and vague language across generations.

2 Overview of probabilistic approaches to vagueness

2.1 Background

An influential philosophical proposal for the analysis of vagueness is epistemicism, the
theory that vague predicates have sharp boundaries/thresholds that are unknowable since



extension facts supervene on language usage facts, and one cannot, at least practically
speaking, infer the former from the latter (Williamson, 1994, 1992).E] From a probabilistic
standpoint, some aspects of the theory are appealing, since it is a fairly natural move
to recast ignorance regarding the application conditions of a predicate with uncertainty
regarding the application conditions of a predicate, where this uncertainty, and reasoning
in conditions of metalinguistic uncertainty can be modelled with Bayesian probability
theory.

However, despite the apparent affinity with a probabilistic approach to vagueness,
epistemicism has also been criticised by their proponents on the basis that it is unclear
how this theory can explain how meanings can be learned from instances of uses of pred-
icates, and how agents using vague expressions can nonetheless coordinate sufficiently to
communicate successfully (see, e.g., Lassiter, 2011; Sutton, 2013). Bayesian approaches
assuage these concerns in one of two ways: (i) They model agents as a being uncertain
regarding where the threshold for f lies, but nonetheless as approximating its location
(reducing uncertainty). On this conception, probabilities are probabilities of what the
truth conditions of f are (see, e.g., Fernandez & Larsson, 2014; Lassiter, 2011)E; (ii)
They interpret probabilities as reflecting an agents estimation of how likely a competent
speaker, or, alternatively, one’s interlocutor, would use f, given a forced choice between
a set of alternatives of say f, not-f and saying nothing (see Bernardy et al., 2018§; Egré,
2017; Lassiter & Goodman, 2017; Sutton, 2018; Sutton, 2013, among others). This latter
perspective seems to have become more dominant in recent years. In either case, the
kinds of uncertainty being assumed in these approaches will be referred to in this chapter
as metalinguistic uncertainty.

Our focus here, however, will be on the insights Bayesian approaches can provide on
the origins of vagueness (how and why vagueness arises in the first place), especially given
their rootedness in theories of learning and communication. Theories fall into two main
(non-exclusive) categories: those that locate the origins of vagueness in a source of noise,
and those that attribute it to a byproduct of semantic learning.

2.2 Noise giving rise to vagueness

This section gives a summary overview of some of the main probabilistic models that posit
some form of noise as an explanation for why natural language predicates are vague.

Probabilistic linguistic knowledge. = One way to assuage some of the aforementioned
concerns with epistemicism is to assume a sharp boundary for vague predicates at each
context such that agents imperfectly estimate where this boundary is (Eijck & Lappin,
2012; Fernandez & Larsson, 2014; Frazee & Beaver, 2010; Lassiter, 2011). Here, we will
briefly outline one of these more communication-oriented views as proposed by Lassiter
(2011)).

Building on the dynamic logic theory in (Barker, 2002), Lassiter (2011) defines a
probabilistic belief space that can be updated dynamically to model both uncertainty
about the world (which possible world is actual) and metalinguistic uncertainty (what
the precise meaning of an expression is in a communicative context). An agent reasons

'However, for a different conception of epistemicism based on necessarily unknowable boundaries, see
Sorensen (1988, 2001).

2A problem this gives rise to is that there are, de facto, sharp truth conditions for every vague
predicate, at least relative to a context.



about the most likely precise interpretation of a vague expression in the context, given
their beliefs about what the world is like. The basic idea here is that agents may be
able to approximately converge on what the relevant threshold is for a vague expression.
Although, Lassiter does not discuss noise explicitly, one way to think about this is that
the inherent uncertainty we have regarding others’ metalinguistic beliefs is generated by
a source of noise that is seldom if ever eliminated entirely.

Approximative measurement.  Egré (2017) develops a probabilistic model of vague
judgement based on an idea from psychology that magnitudes, such as height, and loud-
ness, are mentally represented only with some degree of approximation. Egré (2017)
explicitly proposes that there is noise in the information channel between how the world
is (sizes/height of objects etc.) relative to a unit of measurement, and the representation
of these entities by agents.

Noise is represented by the value of a random variable summed over the number of
units of measurement being considered, i.e., for each measurement unit (e.g., centimetres,
decibels etc.), there is some chance of over- or underestimating it. These over- and under-
estimations compound, so that for an entity of some size on the given scale, there is
a probability distribution over the size it will be estimated to be such that the greater
the variance in this distribution, the greater the amount of noise there is in the agent’s
estimation system. The probability of applying some predicate to an entity is derived via
a context- and comparison class dependent criterion value which can be thought of as a
kind of threshold, above which Pr(‘z is f) > Pr(‘z is not f).

Egré’s (2017) proposal, furthermore, makes progress on the proposals considered above
insofar as he pays closer attention to the complexities of the interactions between context
and the comparison class for vague predicates and also provides an explanation of how
the contextual standards of agents can diverge on the basis of interest relativity (See also
Fara, 2000).5

Introducing Measurement Error. Bernardy et al. (2018, 2019) implement a com-
positional semantics for natural language that includes a treatment of vague gradable
adjectives such as tallB Conditional probabilities in (Bernardy et al., 2018) represent the
likelihood that a competent speaker of the language would endorse an assertion, given cer-
tain evidence/assumptions/hypotheses. The predicates and individuals are represented
as vectors, and the probability that a predicate applies to an individual is estimated via
Markov chain Monte Carlo (MCMC) sampling over these vectors, conditioned by certain
observations. Two advantages of this system are, firstly, that semantic judgements are
inherently graded, which as argued by Sutton (2018) is a promising basis for modelling
vagueness, and, secondly, an arbitrarily rich notion of context is built into the model via
the inclusion of data (observations) upon which probabilistic judgements are conditioned
(a feature which is shared by the richly-typed approaches in Fernandez & Larsson 2014,
see also Cooper et al. 2015 and Schuster et al. 2020).

To model vagueness, Bernardy et al. (2018, 2019) introduce a Gaussian error into
probabilistic evaluation, i.e., an error due to the Gaussian distribution, which introduces
additional uncertainty into a predication. The effect of this is to introduce an added

3Egré (2017) also proposes further applications of his theory. For instance, how the model can be
applied in the context of Egré’s other work on borderline contradictions (see, e.g., Egré et al., 2013).

4Tt is beyond the scope of this chapter to go into the full details of their model (which includes a
treatment of quantifiers, for instance), and so we will restrict our focus to (vague) predication.



amount of uncertainty into the system. As such, this approach is an explicit example of
a noise-based theory of vagueness.

Game theoretic and Bayesian Pragmatics approaches. A further proposal that
incorporates noise as part of the explanation of vagueness is made within game theoretic
models (Correia & Franke, 2019; Franke & Correia, 2018; Franke et al., 2011; Qing &
Franke, 2014). One of the main questions that arise regarding vagueness from a game-
theoretic perspective is why we should have vagueness at all, given that, on standard
assumptions, vague expressions are sub-optimal communication tools compared to precise
ones. A solution proposed by Correia & Franke (2019) and Franke & Correia (2018) is
that vagueness can be seen as boundedly rational under the hypothesis that agents have
an error rate in the calculation of their utilities (See Frazee & Beaver, 2010, for an early
version of a similar idea.).

Relatedly, within a Rational Speech Act (RSA) model, Lassiter & Goodman (2017)
propose that the interpretation of a vague adjective in context is the result of a balancing of
two pressures: “the listener’s preference for interpretations which are likely to be true, and
the speaker’s preference for interpretations that are informative” (Lassiter & Goodman,
2017, p. 3815). To take their example of tall, hearers reason about the likely height of an
individual, given a description of them as tall (as opposed to not tall, or no description),
and an estimation of a contextual parameter (approximately the threshold, above which,
the probability that a speaker would use tall instead of not tall is greater than 0.5).
Although Lassiter & Goodman (2017) do not discuss noise explicitly, they intend their
model to be an adaptation of a traditional information theoretic model of communication
(Shannon, [1948), and a reasonable interpretation of their model is that part of the noise
in the system generates uncertainty about what the threshold value of the adjective is in
the context, given a use of that adjective to describe somebody.

To the extent that Correia & Franke (2019), Franke & Correia (2018), Franke et
al. (2011), and Qing & Franke (2014) have a speaker-centred approach and Lassiter &
Goodman (2017) have a hearer-centred approach, the two analyses are, to some extent,
different sides of the same coin. The ‘error rate in the calculation of utilities’ of the
game-theoretic approach could, in Lassiter and Goodman’s terms, be seen as attributable
to the hearer’s speaker model only imperfectly estimating the threshold of the relevant
expression in the context, thus introducing uncertainty with respect to the point at which
the use of a vague expression will successfully communicate what it is that they intend
(such that this uncertainty propagates ‘up’ to the pragmatic hearer).

2.3 Vagueness and semantic learning
We now turn to the work that proposes an alternative source of vagueness, namely that

it arises as a byproduct of semantic learning.

Semantic learning as a source of vagueness. Eijck & Lappin (2012, §5.2) propose
that vagueness can be seen as “the residue of probabilistic learning”. Rather than noise,

5Correia & Franke (2019) also discuss further applications of such models such as how to simulate
whether there are evolutionary advantages to vague languages (i.e. to different levels of imprecision
employed in game-theoretic strategies), and furthermore which levels of imprecision emerge as dominant
within simulated populations.



the idea is that the sample of a language from which a learner must establish how to prop-
erly use expressions does not necessarily fully determine their extensions because of ‘gaps’
in the learning data. Given a domain of entities, ordered with respect to the degree/extent
that they instantiate some property (e.g., height, colour etc.), and a witnessed instance
of the use of a predicate to describe one of these entities, on the plausible assumption
that agents to infer a higher probability of applying the same predicate to comparatively
similar entities than to comparatively dissimilar entities (see Decock & Douven, 2014, for
a related idea articulated in terms of conceptual spaces), vagueness can be seen as arising
from the very process of learning to navigate a semantic space with a limited number of
data points (as, indeed, humans must). A similar idea is echoed in (Sutton, 2013, ch. 5)
in which it is argued that, given a restricted amount of learning data, a plausible means
of modelling how some data points provided stronger reasons than others for forming
semantic judgements regarding previously unseen cases is probabilistic reasoning.

Semantic learning and noisy approximation. Ferndndez & Larsson (2014) propose
that expressions such as tall are vague as a result of two factors: (i) agents approximate
a threshold value (the point at which entities transition from more probably f to more
probably not-f), based on a set of witnessed situations (i.e., the learning data) in which the
predicate has been used; (ii) when it comes to making judgements, agents do not perfectly
track the difference between the threshold value and the relevant properties of the entity
being judged (modelled by an error function, a parameter of which is a noise ratet).
While (ii) bears similarities to some of the proposals regarding noise discussed above,
(i) constitutes a different proposal for a source of metalinguistic uncertainty, namely,
similar to the idea outlined by Eijck & Lappin (2012, §5.2), an agent’s learning data can
underspecify what the application conditions for a predicate are. As an example of how
these two components work together, if noise is very high, then even if an individual’s
height is quite far from the threshold value, they will not be judged as being tall with a
probability significantly above 0.5. If noise is very low, then even a tiny difference between
an individual’s height and the threshold will push the probability to 1 or 0.

2.4 Summary: Two sources of uncertainty

A unifying theme in all of the proposals outlined in this section is that vagueness arises as
a result of some form of uncertainty being introduced into our cognitive representations.
On the one hand, uncertainty can arise due to a source of noise, such as an imperfect
mapping between the exact properties in the world an entity may have, and the inexact
means we have for representing that property. Alternatively, uncertainty can arise due
to a an insufficiency of learning data. As we have seen with Ferndndez & Larsson’s
(2014) proposal, for instance, these two sources of uncertainty could both be part of the
explanation of why so many natural language expressions are vague. One of the main
goals of §8 is to delve deeper into these potential sources of vagueness and the ways in
which they interact.

SFernandez & Larsson (2014) ground this error rate based upon the empirical findings in (Schmidt
et al., 2009).



2.5 The sorites paradox

To end this section, we turn to the sorites paradox. Rather than detailing specific prob-
abilisitic ‘solutions’ to the paradox, I will outline what I take to be the commonalities
between such solutions, as well as the main challenges that they face.

The structure of the paradox. The sorites paradox can be generated for any expres-
sion, such that, for some relevant dimension, we have the intuition that a small difference
between two entities along that dimension cannot mark a difference in whether to apply
that expression. For instance, for tall, the dimension is height/vertical size, for heap,
number of entities in the heap, and for under the table, the relative locations of the table
and the entity said to be under it. In each case, the intuition is that there are clear cases
for applying these expressions, and also clear non-cases. Paradox arises, if we follow the
further intuition that any small change along the relevant dimension cannot take us from
a clear case to a clear non-case (or even to a non-clear case), and we end up concluding
that something that is a clear non-case (or a non-clear case) is a clear case, contrary to
our initial assumption.

The argument has two structures, the ‘short’ and ‘long’ sorites arguments. In either
case, we start with an ordering of entities D = {(dy,dq, ..., d, ) such that for any d;, d; 41
differs only slightly along some relevant dimension for a predicate f (e.g., differs in height
by 1mm for tall). By assumption, dy is clearly f and d,, is clearly not-f. In the long sorites,
the argument proceeds by repeated applications of modus ponens based upon tolerance
conditionals of the form f(dy) — f(dy), ... f(dn—1) — f(d,). In the short sorites, the
tolerance conditional premises are replaced with either a universally quantified conditional
(Vx[f(x;) — f(zi41)]) or an inductive premise.

The probabilistic treatment of the paradox: With respect to both versions of
the sorites, in a probabilistic setting, the categorical propositions in the argument are
interpreted probabilistically. Both assumptions can have an arbitrarily high probability
m. The appeal of the long sorites is explained because the probability of each tolerance
conditional can be as high as m — ¢, for some small value €. Therefore, each application
of modus ponens feels like a good inference, since the drop in probability value between
f(d;) and f(d;41) is so minute. However, over repeated applications of modus ponens, the
probability of f(d;) approaches 1 — 7 as i approaches n, therefore the conclusion has a
probability of at most €. This explanation of the long sorites captures the slippery slope
appeal of the argument, while still diagnosing where we go wrong: inferences in which the
conclusion is slightly less probable than the premises are, in general, reliable, but we can
go wrong if we string too many of these inferences together.

Challenges for the probabilistic treatment of the paradox: There are at least
two main challenges that probabilistic analyses of the sorites face. I take them in turn.

The short sorites: Along with other theories of vagueness such as supervaluationism (Fine,
1975; Kamp, [1975), probabilistic treatments of vagueness face a challenge when it comes
to explaining the reason why the premise in the short sorites is no easier to deny than
any one of the premises in the long sorites (Edgington, 1997). The basis of the problem
is that, unlike any single tolerance conditional, all of which have high probabilities, the
universally quantified premise in the short sorites should have a very low probability on
the assumption that the probability of a universally quantified statement is the same as



the probability of the conjunction of its instances. Although this problem is not trivial
to explain away, one possible explanation could be attributed to a performance error or
faulty heuristic in the way we evaluate multiple propositions with high probability values
(see Sutton, 2013, ch. 8 for a similar point put in terms of cognitive efficiency.).
Higher-order vagueness: A version of a higher-order vagueness problem arises on a prob-
abilistic approach to the sorites when one is forced to say something about assertion
conditions. For instance, if ¢ is assertable iff Pr(¢) > 6, for some threshold 6, then
there should be a sharp cut-off point in the short sorites such that f(a;) is assertable,
but f(a;41) is not. Yet, that result seems to be antithetical to the vagueness of f. For
an extensive discussion of this problem and the options probabilistic approaches have for
addressing it, see (Sutton, 2018).

3 A probabilistic, iterated learning model

3.1 Overview and hypotheses

In this section, I present the results of simulations that were designed to test two of the
common hypotheses that we have seen in the literature:

(H1) Vagueness arises as a result of noise — when an agent hears a vague predicate being
used, due to noise, they are unsure exactly what the situation being described is
like.

(H2) Vagueness arises as a result of learning based upon incomplete data — when an agent
learns a predicate, they do not witness (enough) uses of that predicate. As a result,
for some situations, agents are unsure whether to apply the predicate.

Both of these sources of uncertainty can, in principle, result in similar effects: the
hearer’s semantic representation encodes some uncertainty, and, while there may be
canonical uses of the predicate in which there is little uncertainty, at the ‘edges’, compet-
ing predicates’ extensions bleed into one another, giving rise to the borderline cases and
blurred boundaries that are hallmarks of vague predicates. The goal of the simulations,
which were run with a probabilistic iterated learning model for simple artificial languages,
is to test whether one, both or neither of (H1) and (H2) is sufficient to derive vagueness
in multiple predicates defined over a meaning space.

A further aim of this work, that distinguishes it from the approaches discussed in
section [, is to investigate the meaning spaces over which multiple predicates are defined.
In most other approaches, at most two predicates are tested e.g., tall vs. short or tall vs.
not tall. While this is understandable as a simplifying assumption, it may be beneficial
to see what the effects of, e.g., noise, are when the extensions of several predicates are
competing with each other for part of the domain.

In the most general terms, the simulations were as follows. We assume a series of
generations of agents, one agent per generation, and an ordered set of entities. For
example, these entities could be a meaning space of discrete shades of colour between red
and yellow (ordered from the red shades through into the orange into the yellow). The
first agent has a completely precise, non-vague language. To take the previous example,
this would mean a unique predicate for each shade, such that that predicate only applies
to entities of that shade of colour. The first agent is then given a set of messages to
encode in their language. These signal-message pairs, constitute a sample of the use of



the first agent’s language from which the second agent must learn, as best they can given
the data, the extensions of each of the predicates to which they are exposed. This learned
language of second agent, which may differ from the language of the first agent, is then
sampled as learning data for the third agent and so on. The purpose of this set-up is to
see under what conditions a vague language arises, i.e., one on which predicates that have
both clear cases, clear non-cases, and unclear cases.

The parameter that was used to test (H1) was to introduce noise into the learning
data. To take the example of shades of colour, the result of noise is that if an agent is
trying to refer to some particular shade of, say orange, with a predicate, f, the learner
will be uncertain exactly which shade of colour that use of the predicate is being used to
denote.l Given, however, that we are assuming an ordered meaning space (typical of that
associated with vague predicates), we will assume that the closer as shade of colour is to
the intended message, the more likely it is that the learner with extend the extension of
f to this shade.

The parameter used to test (H2) controls the size of the learning bottle neck (Kirby,
2007; Kirby & Hurford, 2002). With no bottleneck, every learner witnesses at least
one use of every predicate from the previous generation’s language. As the bottleneck
narrows, the probability of witnessing at least one use of every predicate from the previous
generation’s language gets lower. The effect of the bottleneck is therefore to introduce
gaps in the learning data. To take our example of shades of colour once again, suppose
that a learner has witnessed a predicate f; applied to a shade of red, and a predicate
fo applied to a shade of orange. Based upon no further data, the agent has no direct
evidence for which predicate they should use to describe the shades of reddish-orange,
and so must reason whether to use f; or f5, based on what shades f; and f; have been
used to apply to and how close the shades of reddish-orange are to these shades. The
result will be that there will be at least on shade of colour that the agent infers is neither
clearly fi nor clearly fs, all else being equal.

These two parameters were modulated in order to test four conditions: 1. No noise,
no bottleneck; 2. Bottleneck, no noise; 3. Noise, no bottleneck; 4. Bottleneck and noise.
In all conditions, the criteria of success was whether the language of the agent in the last
generation had the hallmark characteristics of vagueness, which, here, we shall assume to
be predicates that have both clear cases, clear non-cases, and unclear classes. These test
conditions were designed to test whether noise alone, a bottleneck alone, both noise and
an bottleneck, or neither noise nor a bottleneck are sufficient to account for the emergence
of a vague language, even when the starting conditions for each run were a completely
precise language.

Perhaps surprisingly, these simulation runs suggest that both noise and a bottleneck
are needed for vagueness to emerge. In §3.2, I briefly discuss the differences between the
iterated learning model used in these tests and others in the literature. In , the details
of the four main test conditions are given. The results are presented in §8.5 and these are
discussed in section §@ The formal details of the probabilistic iterated learning models
are given in the appendix.

3.2 Comparison with other learning models

Iterated learning models. Iterated learning models (ILMs) (Kirby, 2007; Kirby &
Hurford, 2002) simulate ways in which a language can evolve over generations of agents.

"This treatment of noise differs from that standardly assumed. This issue is further discussed in §@



A parameter of these models controls the size of the semantic bottleneck (learners may
not witness every string or meaning). However, learning is neither probabilistic nor un-
dertaken in noisy conditions: learners receive a set of string-meaning pairs and instantly
learn these pairs. Kirby and Hurford’s aim was to evaluate whether a language can evolve
that is both ezpressive and stable. A language is expressive if agents, after the learning
phase, are able to provide a string for any meaning that is in the meaning space. A
language is stable if each learner ends up with a reasonably similar set of string-meaning
pairs as the agent from whose language their training sample is provided. A major finding
of these models was that compositionality is required for stable and expressive languages
to emerge.

The probabilistic ILM presented here differs in three key respects from those in (Kirby,
2007; Kirby & Hurford, 2002):

i. An ordering on the meaning domain (here, the set of situations).B The moti-
vation for this ordering relation is to simulate the similarity relations there are for
entities in the denotations of vague expressions, e.g., entities that can be ordered
from least to greatest heights, or hues that can be ordered from, say, red to yellow.

ii. Learning is probabilistic. If an agent is tasked with describing a situation s; and if
they have learned no predicates to describe it, then the agent infers what predicate to
use on the basis of the situations close to s; that they have witnessed being described
(with at least some probability).

iii. Noise can be introduced. When noise is present in the simulation, agents do not
receive, as their learning data, a set of predicate-situation pairs (i.e., string-meaning
pairs in Kirby and Hurford’s terminology). Rather, if the speaker is tasked with
describing a situation s; and chooses a predicate f;, the learner receives only a pair
of f; and a distribution over situations with a mean centred around s; (the standard
deviation of this distribution is the noise parameter of the model).

Runs of the simulation were conducted and noise and the width of the semantic bot-
tleneck were modulated in order to test (Hm) and (HE) on the basis of whether, after some
number of generations, stable, vague languages emerge. Stability, like in previous models
will de defined in terms of whether there are significant changes between the languages
of agents from one generation to another. Vagueness will be cast in terms of whether the
resulting language has predicates that each have clear cases, clear non-cases and blurred
boundaries.

Modelling of Noise. As pointed out by Shalom Lappin (p.c.), this representation of
noise differs from that introduced by Shannon ([1948). For example, for an ordering of
situations (e.g., shades of colours), si, sq, s3, and a predicate f, on a standard modelling
of noise, if the original message-signal pair was (s, f), then, in line with some stochastic
function, the learner receives either (s, f), (sq, f), or (s3, f). However, if we take seriously

8For brevity, I will refer to the denotations of predicates as situations, but these are, more correctly,
best thought of as situations of a certain type, namely those that witness some entity with a relevant
property such as a size, weight, or shade of colour etc.

9 Expressiveness is not relevant for these probabilistic iterated learning models, since, unlike in non-
probabilistic ILMs, agents are able to reason about likely language usage in conditions of uncertainty.
Furthermore, compositionality does not factor in these models, since each data point for a learner is
assumed to be a simple predication (that for some situation s; and predicate f;, s; is (of type) f;).
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Figure 1: The starting condition (the language of the first agent) for a space of five
situations sg, $1, So, S3, S4. There are also five predicates fo, f1, fo, f3, fs.For each
situation s; there is exactly one predicate f; such that Pr(f;|s;) = 1. In other words, the
language is completely precise and predicates have non-graded extensions. This language
has a vagueness score of 0.

the idea in Egré 2017, that the relevant notion of noise is one in which the perceptual
systems of humans only represent properties with some degree of approximation, then
this modelling of noise does not quite fit what we want. Taking our previous example, the
idea is that if an object with a shade s, is described as being of colour f, then, rather than
assuming that a learner represents this as either (s, f), {(sa, f), or {(s3, f) based on some
stochastic function, a more accurate model would be to assume that the learner associates
f with some probability distribution over shades of colour. In other words, for any use
of, say, a colour term to refer to an object, with a noisy representation system, we have
evidence that it applies to some graded convex portion of the colour space centred around
the actual shade of colour of that object. In future studies it would be interesting to
see whether a model with a stochastic error based representation of noise would produce
different results.

3.3 The model

This section outlines the model in relatively informal terms. Please see the appendix for
more details.

Languages. Languages are represented as sets of conditional probability distributions:
Pr(F|S) (The probability, for each predicate f € F, and for each situation s € S that
the agent applies f, given s). Samples of languages that provide the learning data for
the next agent are probabilistic. First a random sample of situations is generated. The
size of this sample is governed by a parameter data_size (see below). For each situation
s; in this sample, a predicate is chosen based upon the probability distribution for that
language for s; (from Pr(f € F|s;)).

Starting conditions. For all simulation runs, the language of the first agent (ag) is
completely precise (without vagueness). In other words, for the first agent, for each
situation s;, there is one predicate f; such that Pr(f;|s;) = 1 (when describing a situation,
there is never any uncertainty about which predicate applies to that situation), and for
each predicate f;, there is one situation s; such that Pr(s;|f;) = 1 (for speakers of this
language, when one hears a predicate being used, there is no uncertainty about what
situation it describes). In other words, ay has enough predicates to singularly describe
every type of entity in that space (e.g., a different predicate for every hue).

10A further possibility would be to test a combination of both error rate and probabilistic perturbation.
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An example of a starting condition language for a space of five situations is given
in Figure [l. (Nb., in all of the simulation runs reported below, the starting number of
situations and predicates was 15: S = {sq, ..., sia} and F' = {fo, ..., fia}).

Parameters. The parameters of the model that govern the four test conditions are
data_size, delta, and noise:

data_sizél'he number of situation-predicate pairs a learner
witnesses. When data_size is high compared to
|S], there is little or no bottleneck. As data_size
gets closer to the size of the situation space, the
bottleneck narrows.

1 |
08 .
@ 0.6 fO @
< iy, S
- 04 =
S~ 02 =
0

Figure 2: A possible ending condition for
a situation space so-s5. The depicted lan-
guage has two predicates f2. Both
predicates fail conditions (@) and (@)
and so the vagueness score is 0: neither
predicate is vague.

Figure 3: A possible ending condition for
a situation space sp-s4. The depicted lan-
guage has two predicates f;, f5. Both
predicates meet all conditions in (B) and
so the vagueness score is 1: both predi-
cates are vague.

delta  This parameter controls reasoning about gaps
in the learning data. Il.e., for an extension gap
G between two predicates f;, f;, how quickly
Pr(fi|ls € G) and Pr(fj|s € G) approach 0.5.
See the appendix for details.

This parameter controls the level of noise in the
learning data. If the intended message is the pair
of a situation s; and a predicate f;, then the noisy
data is a normalised discrete probability distribu-
tion Pr(sy € S|f;) with a mean for Pr(s; € S|f;)
and a standard deviation of noise.

noise

Criteria of success. For each run of each test condition, the languages of the final
20 generations were checked for stability, namely, whether the number of predicates was
stable. The main criterion of success was whether for each run of each test condition,
the ending condition (the final language of this run) was vague. Vague predicates, as
is defined here, are predicates that have both clear cases, clear non-cases, and non-clear
classes. The criteria for this was as follows. For each run, for each predicate f;:

(3) a. There is a clear case for f;: 3s,.Pr(f;|s1) > 0.8

12



Table 1: The four different simulation condition types for runs of the model. For all
conditions, the initial number of predicates and situations in the language of the first
agent was set to 15 and simulations were run for 350 generations.

Simulation conditions | No Bottleneck Bottleneck
No Noise | 1. 2.
Noise | 3. 4.

b. There is a non-clear case for f;: 35,.0.2 < Pr(f;]s1) < 0.8

c. There is a clear non-case for f;: 3s;.Pr(f;|s1) < 0.2

The two principal ways in which predicates failed to meet these conditions were, first,
they were precise and so had no non-clear cases (see, e.g., Figure m) Le., (BY) was false.
Second, they could fail to have clear positive cases at all (i.e., %@) was false). An example
of such an outcome is given in Figure .

This criterion was quantified as a score in the range [0,1]: the proportion of all
predicates in all runs that were vague (that satisfy the conditions in (é)) This will be
referred to as the vagueness score for a setting of the model. An example of a possible
resulting language with a vagueness score of 1 is given in Figure J).

(4) Vagueness score: For a setting of the model, the proportion of vague predicates
that result on average. Where n is the sum of the number of predicates in all ending
conditions, and m is the number of these predicates that satisfy the conditions in
(B), the vagueness score is m/n.

3.4 Test conditions

The four types of simulation conditions are given in Table m For all conditions, the
number of predicates and situations in the initial language was set to 15 (S = {so, ..., S14}
and F' = {fo, ..., fia}). The number of generations was set to 350. A total of 258 simulation
runs were conducted with 43 different parameter settings (6 runs per condition).

Condition 1. is a control condition where the expectation is that the final agent has
the same precise language as the first agent. The noise parameter was set to 0.01, which,
in computational terms, amounts to zero noise.2 Runs of the simulation were tested
with data_size values of 150 and 200 (both at least 10 times greater than the number
of predicates and situations in the initial language, 15).

Condition 2. tests whether the bottleneck alone can yield a stable, vague language.
The noise parameter was set to 0.01. The variables in Condition 2 were data_size and
deltaévith runs for data_size values of 45, 60 and 75, each with delta-values of 0, 0.5,
and 1.

HFor a situation distance 1 away from the situation in the initial data, the probability of the relevant
predicate applying to this situation was so small, that it was treated by the computer as zero.

12Tn pre-testing, wider bottlenecks (i.e. lower data_size values) tended to lead to languages collapsing
into single-predicate languages.
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Table 2: Tables of results for the vagueness scores in Conditions 1-4: ‘No bottleneck, no
noise’, ‘Bottleneck, no noise’, ‘Noise, no bottleneck’, and ‘Noise and bottleneck’ Vague-
ness scores are the proportion of vague predicates to feature in the final language across
all simulation runs for each setting of the model. Aside from the the ‘No bottleneck, no
noise’ (control) condition 1, the least successful condition is ‘Bottleneck, no noise’ (Cond.
2), closely followed by the ‘Noise, no bottleneck’ Condition 3. The highest vagueness
scores were produced in the ‘Noise and bottleneck’ Condition 4.

(a) Condition 1: No bottleneck, no noise. The effect of data_size on the vagueness score.
‘ delta=1
data_size = 150 0.00
data_size = 200 0.00

(b) Condition 2: Bottleneck, no noise. The effect of data_size and delta-value on the vagueness
score.

delta=0 delta=0.5 delta=1

data_size = 45 0.62 0.27 0.29
data_size = 60 0.38 0.09 0.19
data_size = 75 0.00 0.19 0.10

(c) Condition 3: Noise, no bottleneck. The effect of data_size and noise-value on the vagueness
score.
| noise = 0.25 0275 0.3 04
data_size = 150 0.28 0.68 0.57 0.12
data_size = 200 0.35 0.33 0.20 0.03

(d) Condition 4: Noise and bottleneck. The effect of data_size and noise-value on the emer-
gence of vague predicates. Results given for delta = 0.5/1.0

noise 0.30 0.35 0.40

delta 0.5/1.0  05/1.0  0.5/1.0
data_size = 45 0.50/0.46  0.67/0.60  0.67/0.44
data_size = 50 0.43/0.50 0.73/0.75  0.80 /0.25
data_size = 60 0.31/0.40 1.00/0.85 0.73/0.62
data_size =75 0.41/0.72 0.67/0.77  0.56/0.80

Condition 3. tests whether noise alone can yield a stable, vague language. Runs were
conducted with data_size values of 150 and 200. delta was kept fixed at 1. The variable
for these runs was the noise value. Runs were conducted for noise values 0.25, 0.275.
0.3 and 0.4.

Condition 4. combines noise and the bottleneck. Runs were conducted with data_size
values of 45, 50, 60, 75, and 90. For each of these data sizes, noise values of 0.3, 0.35 and
0.4 were tested. Simulations were run with delta-values of 0.5 and 1.0.
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Figure 4: Condition 2: Bottleneck, no noise. There were two types of typical ending
conditions when data_size = 45, delta = 0 (when there was a bottleneck, but no
noise).
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(a) First type of ending condition: A language with two predicates, in this run it was fo and
f13. Both predicates have sharply graded boundaries. In this case, only s7 is a borderline case.
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(b) Second type of ending condition: A language with two predicates, in this run it was fg and
f13. Neither predicate is vague.

3.5 Results

Condition 1: No noise, no bottleneck. All runs in the data_size = 200 and all
but one in the data_size = 150 condition produced the same results, namely that the
language of generation 350 was identical to the, non-vague language: 15 predicates, each
of which uniquely identifies one situation. One run resulted in 14 non-vague predicates,
one with an extension covering two situations. The vagueness scores for these settings
are given in Table Ra. (All runs scored 0.) As expected, in this control condition, no
vagueness arose when there is no noise and no bottleneck.

Condition 2: Bottleneck, no noise. With these settings, a number of trends emerged
(see Table RH). First, in general, the lower the data_size, the higher the vagueness score
was. Second, when data size was low (45 or 60), a low delta value increased vagueness
score. The highest result over 6 runs was for data_size = 45, delta = 0 resulting in a
vagueness score of 0.62. This is not a terrible result, however, the resulting languages had
only very narrow boundaries. Two typical examples of the resulting languages are given
in figure @ A further effect of the bottleneck was that the end condition language had a
smaller vocabulary (2-3 predicates) than the starting condition (15 predicates).

Condition 3: Noise, no bottleneck. Perhaps surprisingly, the results in this con-
dition were somewhat chaotic, even with relatively low levels of noise such as 0.25 or
0.275. Vagueness scores were not significant improvements on Condition 2, and in many
runs, especially with the higher data_size of 200, other trends emerged such as partial
synonymy and predicates with non-convex extensions.

When the data_size was 150, the best vagueness score arose at the relatively low noise
level of 0.275. (See Table Rd). However, at 0.68, this vagueness score is only marginally
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Figure 5: Condition 3: Noise, no bottleneck. The typical end condition for runs with these
settings (data_size = 150, noise = 0.275) was a language that displayed displayed some
vagueness. For example, predicate f; below is vague. However, this model setting also
resulted in non-convex predicates such as fo and fi1: fo9 has an extension gap in sg and
sg and fi; has an extension gap in siq.
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Figure 6: Condition 3: Noise, no bottleneck. The typical end condition for this setting
of the model (data_size = 200, noise = 0.275) was a language with some vagueness.
For example, predicates f3, fo and f1yp below count as vague. However, other predicates
failed to be vague because they lack clear cases. For instance predicates fy, fo and fi4.
Languages also had non-convex predicates such as f7; and fy below.
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better than the best score in the bottleneck, no noise condition (0.62). In other words,
like in the best settings for Condition 2., more often than not, predicates had blurred
boundaries. However, in this condition, unlike in Condition 2., there were cases of non-
convexity (where a predicate has an extension gap filled by another predicate), see Figure

. In the worst runs, something evocative of partial synonymy arose, where two predicates
were competing for similar parts of the situation space. Under the success criterion, these
predicates were not classed as vague, since they failed to have clear cases in the meaning
space.

When the data size was increased to 200, the vagueness scores decreased in all but the
lowest noise level settings. The maximum score was only 0.33 (only one third of predicates
met the vagueness criteria, see Table @) A further difference that arose with the increase
of data_size to 200, was that there were typically more predicates in the final languages
(an average of 7.4 predicates per run as opposed to an average of 5.7 when data_size was
150). It is possible, therefore, that the decrease in vagueness score was due, in part, to an
overcrowding the situation space. In this setting, more non-convex predicates resulted as
we see for f; and fy in Figure fj, for instance (f; has an extension gap in s; and s7, and
fo has an extension gap in s7, sg and sg). Furthermore, once again, something evocative
of partial synonymy often arose, where two predicates were competing for similar parts
of the situation space. Under the success criterion, these predicates were not classed as
vague, since they failed to have clear cases in the meaning space. For example, fy, fo,
fi13, and fi4 in Figure p failed to meet this criteria, since none exceeded a probability of
0.8 in any situations. In other words, unlike the results in Condition 2 (bottleneck, no
noise), lower scores resulted not from many sharp, non-vague predicates, but from many
predicates that had only non-clear cases or clear non-cases.

In summary, when there was noise and no bottle neck, providing agents with too much
noisy learning data seems to give rise to some vagueness, but also a lot of uncertainty
where, for large swaths of the situation space no one term is inferred to apply. For noise
values above 0.275, the resulting languages were chaotic, so much so that they were often
hard to interpret. Interestingly, the introduction of noise decreased the vocabulary size of
end condition languages (typically 5-8 predicates) compared to the starting condition (15
predicates). The decrease in vocabulary size was smaller than in condition 2, however.

Condition 4: Bottleneck and noise. This condition yielded the most successful re-
sults. Not only was there a combination of settings that yielded resulting languages where
every predicate had graded boundaries (see Table @), but on all settings, the average
values generated were higher than in any of the other conditions. This sometimes resulted
in what could be described as a prototypical image of a system of vague predicates as we
see in the three-predicate language in figure [. As in Condition 2., the vocabulary size
of the ending condition of languages was smaller with a lower data_size. For instance,
when data_size was 45, typically, final languages had just two predicates, see Figure 8.

The effect of delta on the results in Condition 4 was unclear, although, in general,
for higher noise values, the lower delta setting of 0.5 yielded slightly higher vagueness
scores than when it was set to 1.0.

Interestingly, if we compare the results for this condition with those for noise and
no bottleneck (Condition 3), we see that, not only were vagueness scores higher, but, in
general, there is a greater tolerance for noise in the system when a bottle neck was also
present. In Condition 3, the best results were obtained with noise set to 0.275, with
results
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Figure 7: Condition 4: Noise and Bottleneck. The typical end condition for this setting of
the model (data_size = 60, delta = 1.0, noise = 0.35) was a language with relatively
few predicates, all of which were vague. For example, the final language depicted below
has three predicates f4, fs, and fig all of which have clear cases, non clear cases and clear
non-cases.
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Figure 8: Condition 4: Noise and bottleneck. The typical end condition for this setting
of the model (data_size € {45, 75}, noise = 0.3) was a language with 2-5 predicates, all
of which were vague. The vocabulary size of the languages increases with data_size.

(a) When data_size = 45, delta = 1.0, the typical end condition was a language with two
predicates (f2 and f7 below), both of which were vague.
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(b) When data_size = 75, delta = 1. , the typical end condition was a language with three or
four predicates (the language below has four predicates fi, f3, f¢ and f11 below), all of which
were vague. In the end point of the run depicted below, there is a sharp boundary between
predicates fs3 and fg. However, there is a graded boundary between predicates f; and fs and
between predicates fg and fq1.
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getting worse for higher noise settings such as 0.3 and 0.4. However, in Condition 4,
results peaked with with a noise setting of 0.35. With with a noise setting of 0.40, there
was an increased tendency for languages to collapse into single predicate languages, an
effect that arose to a lesser extent when noise was set to 0.35. In fact, the lower figures
in Table Rd for noise = 0.35 can be attributed almost entirely to this occurrence. For the
lower noise setting of 0.3, the low vagueness scores in Condition 4 arise because, although
predicates have graded boundaries, the gradience of these boundaries was too sharp to
fall into the definition used here.
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3.6 Discussion

The most interesting upshot of these simulations is that, although a semantic bottleneck
alone or noise alone can generate some vagueness, a combination of noise and a semantic
bottleneck produced the best results. In other words, a combination of (H1) and (H2)
best explains the emergence of vagueness. This can be seen in the contrast between
Tables @ and @, on the one hand and Table @ on the other. With both noise and a
bottleneck, 50% (12/24) of the different parameter settings resulted in vagueness scores
> (.66 and the mean vagueness score across all parameter settings was 0.61. For the noise
only condition only 12.5% (1/8) of the settings exceeded a vagueness score of 0.66. The
mean vagueness score in this condition was 0.32. For the bottleneck only condition, no
settings resulted in a vagueness score above 0.66 and the mean score was 0.24. This result
does, however, raise some questions.

Why is a semantic bottleneck alone insufficient? In order to generate predicates with
graded boundaries as a result of a semantic bottleneck, there need to be gaps in the
learning data (of at least one situation). However, for this to occur frequently enough,
the size of the learning data needs to be small. As we see in Table RH, for the bottleneck-
only condition, the highest vagueness scores occurred with a data_size parameter value
of 45. Vagueness scores dropped to nearly zero when this parameter was set to 75.
However, there is a lower limit on how low the data size can be. With a value lower
than 45, the simulation runs collapsed into trivial one-predicate languages. Therefore, a
semantic bottleneck alone can only generate some amount of vagueness, since narrowing
the bottleneck further leads to learning a trivial language.

Why is a noise alone insufficient? Why do noise and a semantic bottleneck together do
better? The reason why noise alone is insufficient is less clear. When the noise was set
too low (at 0.25), predicates were not vague because they had sharp boundaries. When
noise was increased, predicates were not vague because they did not have clear cases. One
observation that may explain this, and also why a combination of noise and a bottleneck
does better, is that the noise-only condition resulted in languages with significantly higher
vocabulary sizes than in either the bottleneck only or noise and bottleneck conditions (2-4
predicates vs 5-9 predicates), i.e., that one effect of the semantic bottleneck is to constrain
the vocabulary size of languages. This observation suggests the possibility that lower
vocabulary sizes allow for more noise in the system. In other words, there seems to be an
inverse relationship between how many vague predicates can be accommodated within a
semantic space, on the one hand, and how much noise can give rise to this vagueness on
the other: For a fixed situation space, the more predicates one has, the less noise there
can be without these predicates failing to have any clear cases. Therefore, one way in
which we can increase noise, and thereby the gradedness of predicate boundaries, is to
constrain the size of the vocabulary independently of the noise level. As we saw from the
bottleneck-alone condition, narrowing the bottleneck is one way to achieve a reduction on
vocabulary size, and so it makes sense that a combination of a bottleneck and noise can
allow for more vagueness.

If these conclusions are correct, then we have evidence that the introduction of the
semantic bottleneck plays two roles in the emergence of stable vague languages: First, as
we saw from the bottleneck-only Condition 2, in line with Hypothesis (H2), a semantic
bottleneck paired with probabilistic reasoning about data gaps can contribute to the
mergence of vagueness. Second, an unexpected effect was that the bottleneck, in virtue of
constraining the vocabulary size of a language, facilitates more tolerance of noise within
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the system, noise which, in turn, contributes to the emergence of vagueness. An obvious
question this raises is whether one can separate out these two contributions of the semantic
bottleneck. I address this in §@

3.7 Possible criticisms of and improvements to the model

Finally, let us consider some possible objections to the model as well as ways potential
ways in which the model could be refined.

An over-simplified view of communicative need. The model presented here as-
sumes that, for each generation, the list of situations that a speaker is tasked with describ-
ing to a learner is drawn (pseudo)-randomly from a list of the situations in the situation
space. However, plausibly, this assumption is an oversimplification. For example, it is
not obvious that the colours and hues we encounter in the world are distributed evenly,
or that, even if they were, we would be equally likely to encounter descriptions of each of
them (either evolutionary or social factors might make some hues more prominent and/or
likely to be described by others). Therefore, the model could be adjusted to allow for the
list of situations to be described to be drawn from a non-flat distribution. It is possible,
with this adjustment, that some of the more chaotic tendencies we saw in the noise-only
condition and in the higher noise settings of the noise and bottleneck condition may be
reduced.

An over-simplified model of communication. One way in which the probabilistic
iterated learning model presented above is a refinement of non-probabilistic models is that
it does not treat learning as trivial (e.g., the probabilistic model does not assume that a
learner can learn an expression from one instance of a form-meaning pair). However, the
model of communication in this probabilistic iterated learning model was trivial insofar
as a learner received, simultaneously, all of their learning data. Arguably, one way in
which the meanings of expressions can become more self-regulated is via interaction and
corrective feedback loops between agents (Kempson et al., 2019). But the model presented
above has no such mechanisms for coordination and interaction between interlocutors.

An over-simplified speaker (and hearer) model. The speaker and hearer models
we assumed were effectively what amount to ‘literal hearers’ and ‘literal speakers’ in
the Bayesian pragmatics literature (see, e.g., Lassiter & Goodman, 2017, and references
therein). For example for an agent a; with a vague language, given some situation to
describe s;, the predicate chosen by the agent was simply a sample from the distribution
Prq,(f; € F|s;). Arguably, however, this is too simple insofar as if the speaker is taking
into account what the learner may infer from the use of one predicate over another, given
the alternatives available, then, given a situation s;, this may make the probability that
a speaker will use a predicate f; much lower than Pr, (f;]s;), especially if for some other
predicate fi, Prq,(fi|s;) is much higher than Pry, (f;|s;). This is because, for example, a
hearer would be more likely to infer that the speaker does not intend to convey s;, but
rather a more paradigm case of f;.

Relatedly, as pointed out by Shalom Lappin (p.c.), when learning multiple predicates,
it can be advantageous to filter out inferences that have low probabilities on the basis of the
learning data. A threshold-based filter plus renormalisation of likelihoods inferred from
the learning data could be incorporated into future models. Plausibly, this would reduce
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occurrences of non-convexity in the noise, no bottleneck condition (Condition 3.), since
in this condition, relatively large data sizes over many generations of agents makes the
occurrence of at least some predications in the learning data based on very low conditional
probabilities, quite likely.

Hard-wiring a limit on the size of the language. Since the model presented above
was designed such that the language of ag was maximally precise, given the size of the
situation space, the model was not flexible enough test a starting condition in which a
large situation space is covered by relatively few precise predicates (a hard-coding of the
downwards pressure on vocabulary size). It is possible that, were this to be tested, the
noise-only and bottleneck-only testing conditions may have produced more concordant
results.

A vague starting condition. Finally, since human languages, we may assume, never
had a non-vague starting point, the model does not resolve what factors, given a vague
language as a starting condition, contribute, as stable attractors, to such vagueness per-
sisting across generations.= The results of these simulations do suggest that noise and a
semantic bottleneck do not prevent vagueness in a language from persisting across gener-
ations in the iterated learning model, however, it would certainly be interesting, in future
work, to compare the outcomes of a vague and non-vague starting condition.

4 Conclusion

In relation to the literature discussed in section E, this simulation study provides some
evidence in favour both of accounts that posit some form of noise as an underlying factor
in why natural language predicates are vague, and those that attribute at least part of the
explanation to the residue of semantic learning (see §@) In other words, the hypotheses
that best account for the vagueness are a combination of (H1) and (H2). More broadly,
given that both the bottleneck and noise generate conditions of uncertainty in language
learning, we have evidence that vagueness arises as a result of reasoning in these conditions
of uncertainty, a claim that virtually all probabilistic accounts of vagueness make in one
form or another.

However, this study also uncovers something that has received less notice in the lit-
erature. As remarked in the introduction to section B, a common simplifying assumption
in previous approaches is to consider minimal pairs such as tall and short (possibly with
the addition of a ‘say nothing’ alternative as in (Lassiter & Goodman, 2017)) . However,
when more predicates are involved, an extra crucial ingredient for stable vague languages
to emerge is some kind of downwards pressure on vocabulary size (see §3.6). This chimes
well with Zipf-inspired information theoretic analyses of the origins of ambiguity. For
instance, Piantadosi et al. (2011)) propose that the balancing of two pressures: clarity
and ease, which can be paraphrased as pressures toward a larger vocabulary, which maps
straightforwardly onto only one or a few meanings on the one hand, and a smaller vocab-
ulary, the tokens of which are, for example, more frequent and easier to access.*2 The

13Thank you to Daniel Lassiter (p.c.) for raising this issue.

1 An important part of Piantadosi et al’s (2011) proposal is that a prima facie decrease in clarity
resulting from a smaller vocabulary can be assuaged if context reduces uncertainty about what is meant.
In the context of vagueness, this idea is likely also to be highly relevant when considering the role of
context in the interpretation of vague predicates.
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simulations presented here suggest that the semantic bottleneck may be one source of a
pressure towards ease (i.e., a smaller vocabulary size), and that this pressure contributes
to the emergence of vague, stable languages.

5 Further reading

Early foundations of probabilistic approaches to vagueness and a discussion thereof:
(Black, 1937; Borel, 1907/2014; Egré & Barberousse, 2014).

A more philosophically oriented proposal from Edgington based on degrees of close-
ness to clear cases of truth that has influenced several of the papers cited above
(Edgington, [1997, 1992). See also a review of probabilistic approaches to vagueness
from a more philosophical perspective (Sutton, 2018).

Extension of Rational Speech Act approaches to morphological and lexical negation
for expressions such as happy (Tessler & Franke, 2018), to probability expressions
such as likely (Herbstritt & Franke, 2019), and to generics (Schuster & Degen, 2020;
Tessler & Goodman, 2019).

Probabilistic_pragmatics applied to quantifiers (Tiel et al., 2021) (but see also
(Emerson, 2020) for a distributional approach); estimating thresholds for vague
quantifiers (Scholler & Franke, 2017)).

Collections of papers on vagueness: (Dietz & Moruzzi, 2009; Keefe & Smith, 1997;
Nouwen et al., 2011)

A handbook article that places probabilistic approaches to vagueness in the context
of other theories: (Burnett & Sutton, 2020).

Appendix: The probabilistic iterated learning model

This probabilistic iterative learning was coded in Python.@ For ease of presentation, the
model is represented below in mathematical and set-theoretic notation.

Preliminaries: The model assumes the following sets. F', S, and A are taken as primi-
tives. L, I, and D, are defined further below:

F ={fo,....,fu} A set of predicates

S ={s0,..-,Sny  An ordered set of situations

A = {ag,...,a,y An ordered set of agents

L={la,-0la,} A set of languages, one for each

agent

I ={iogars-rla, 1.an A set of intended data, one for

pair of agents where 44, q,,, is
data a,_ intends to convey to a,

D ={duyars-rda, 1.a,} A set of learning data, one for

pair of agents where d,, q, ., is the
learning data a,,; receives from
-

15 A link will be added here to a GitHub repository containing the code and the results from simulation
runs etc.
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Parameters: The following are parameters within the model. The parameters relevant
for testing the hypotheses (H1) and (H2) are data_size, noise, and delta:

NumPredSit the cardinality of F' and S (always identical
for ag)
NumGen the cardinality of A

data_size the number of samples given to a; from the
language of a;_4

noise the degree to which an agent a; can discern
which situation a;_; is describing with a pred-
icate. This governs how precisely intended
datasets are mapped to learning datasets.

delta When there is a gap in the learning data set
(when a learner has no direct information re-
garding what predicate to apply to a situ-
ation), the learner must reason about what
predicate to use. This parameter affects how
strongly witnessed uses of ‘near-by’ predicates
influence this reasoning.

A language for an agent, ay, is a set of (posterior) conditional probability distributions
{Prq,(fils;) : fi € F,s; € S}. For agents a;~o these posterior probabilities are calculated
from priors and the learning data (which provide the likelihoods) via Bayes’ Rule. In
cases where the learning data is ‘gappy’ and so provides no information about at least
one situation in S, this gap is filled on the basis of reasoning about how best to extend
the extensions of predicates to this/these situations.

Language for ap, is a set of conditional probabilities Pr,,(f; € Fl|s; € S) (for each
predicate and situation, the probability that the agent will use that predicate to describe
that situation). The number of situations and predicates for_aqy is always the same.
Pro,(fils;) = 1if i = j and Pra,(fi|s;) = 0if i # j. See Figure [I|.

Intended data. For each a;,a;11, a set of tuples {(s;,f;) : s; € S, fi € F}. The
situations s € S are randomly generated. The size of this list is governed by the parameter
data_size. The predicate in the tuple is derived from the language of a;. The intended
data is akin to what learners receive in non-probabilistic iterated learning models in which
learning is trivial (i.e., the intended message is always paired with the signal). In this
probabilistic model, learners do not receive the intended data, but rather the learning
data which may be modulated by noise.

Learning data (likelihoods) are, for an agent a; probability distributions Pr,, (s; €
S|fj € Flia,_,a.), calculated from intended data with the addition of noise. Noise is
governed by the noise parameter. For each member of the intended data set ¢, = (s;, f;),
we derive a distribution Prg, (s; € S|fj,tx) based on a normal distribution with a mean
of s; and a standard deviation of noise.

Ezxample: suppose that for a space of three situations sq, s1, S2, a member of the intended
data set is t; = (s1, f1). If noise= 0.5, then for a Gaussian function f, the corresponding
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member of the learning data set is a probability distribution:

f(sili = 1,0% = 0.5%)

PT( ‘fbtl)
Dsses F(sjln = 51,07 = 0.5%)
PT(So|f1,t1) ~ 0.11
PT(81|f1, 1) ~ (.78
P?"(82|f1,t1) ~ 0.11

If a predicate, f; is witnessed more than once in the intended dataset ¢ then the learning
data relating to that predicate is calculated as the normed average of Pr(s; € S|f;,t € i),
such that t € 7 is the set of tuples that witness f;.

Example: Suppose following the first intended data point above, the second intended data
point is to = {s9, f1). This gives us:

PT‘(So|f1,t2) o 000
P?"(81|f1,t2) ~ 0.12
P?"(82|f1,t2) ~ (.88

The normed average over both of these data points is:1d

PT(Sz’|f1;t1) + PT’(Si|f1,t2)

Pr it —

(silfi,t1,t2) YO
PT(SO|f17t17 2) ~ 0.055
Pr(si|fi,t1,t2) ~ 0.45
Pr(ss|fi,t1,t2) ~ 0.495

Priors for situations are calculated from the learning data:

ijeF Pra(si|fja Z)
Zskes,ijF PTU«(SkJ|fj’ Z)

Prq(s;) =

Priors for predicates are also calculated from the learning data. Each item in the
learning data consists of a pair of a predicate and a probability distribution over situations:

Number of instances of f; in the learning data for a

PTa(fi) =

data_size

Languages for ax.o are sets of conditional probabilities Pr,, (f; € F'|s; € S) (for each
predicate and situation, the probability that the agent will use that predicate to describe
that situation). Initial values for Pr,, (f; € F|s; € S) are calculated from the learning
data and priors using Bayes’ theorem. If there are no situations with a prior probability
of 0, these initial values are used as the language of the agent.

If there are situations with a prior probability of 0 (i.e., when some situation s;, does
not occur in the intended data set due to the semantic bottleneck), the agent reasons
about which predicate to apply with what probability based on their learning datasets.
This reasoning is governed by the value of the delta parameter and a distance measure
between situations in the ordered tuple.

16The reason why so gets a slight boost over s; is because s, in this toy example is at an end point in
the ordering of S.
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FExample: Suppose we have a case where the priors for s; and s, are zero, and so we only
have a partial language:

Pr(F|S) | sy s1 sz s

Jo I - =0

fi 0o - — 1
For s; € {s1, 52}, the values for Pr(fi|s;) and Pr(fs|s;) are calculated from the values

for Pr(folso), Pr(folss), Pr(fi|so) and Pr(f1|ss) along with a distance measure between
situations and the delta value. Where Dist(s;, s;) = abs(i — j),

Pr(fo|s1)ocexp(Iin(Pr(fo|so) — (delta x Dist(sy, so))

If similar calculations are made for Pr(fo|s2), Pr(fi]s1) and Pr(fi|s2), the above case
yields:

delta =1 delta = 0.5
Pr(F|S) sy s1  s2  s¢  Pr(F|S)|ss s1 52 s
fo 1 073 027 0 fo 1 062 038 0
fi 0 027 073 1 fi 0 038 0.62 1
delta =0

Pr(F|S) | sy s1  s2 s

7 1 050 0.50 0

fi 0 050 0.50 1
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