

Sentiment Analysis on BBC Proms tweets

Mitjana Castro, David

Curs 2019-2020

Director: HORACIO SAGGION

GRAU EN ENGINYERIA EN SISTEMES AUDIOVISUALS

Treball de Fi de Grau

GRAU EN ENGINYERIA EN

xxxxxxxxxxxx

SENTIMENT ANALYSIS ON BBC

PROMS TWEETS

TREBALL FI DE GRAU DE

David Mitjana Castro

Director: Horacio Saggion

Bachelor’s degree in Audiovisual Systems

Engineering

Curs 2019-2020

Acknowledgments

First, I wish to thank Horacio Saggion, my project supervisor, for his expert advice and

guidance through the process.

I also want to mention all the people that have helped me to some extent in the

development of this work: my friends Lucía Hernández, Lorena Pavón, and Adrián

Salvador.

This project also means the end of my journey in UPF university. I would like to thank

Taurons Rugby, the UPF rugby team, for introducing me to rugby five years ago and for

making these years a whole different experience.

Last but not least, I would like to thank my parents for always supporting me in all my

decisions and helping me personally, academically and professionally.

Abstract

Nowadays, with the increasing amount of user-generated data available online in micro-

blogging services like Twitter, the human behavior of wondering what other people think

has become an important field of study. Sentiment Analysis is a sub-field of Natural

Language Processing (NLP) that tackles the issue of detecting the sentiment polarity of a

piece of text, and is being used by a broad type of different businesses to extract insights

of what people think about a product. The goal of this work is to perform a three-point

scale {negative, neutral, positive} Sentiment Analysis on tweets from several editions of

the BBC Proms, one of the biggest classical music festivals. We present a comparison of

machine learning approaches and a state-of-the-art deep learning approach to classify

Twitter data. In the experiments carried out, the deep learning approach, which is based

on a CNN, outperforms the machine learning approaches achieving comparable results to

the state-of-the-art.

Resum

Avui en dia, davant l’increment del contingut generat per usuaris disponible online en

serveis de micro-blogging com Twitter, la necessitat humana innata de saber què és el

que pensen els alters ha esdevingut un important camp d’estudi. Sentiment Analysis

(anàlisi del sentiment) és un sub-camp del Processament del Llenguatge Natural que

adreça la tasca de detectar el sentiment o opinió que expressa un text. Aquest tipus

d’estudi està essent usat per una gran varietat d’empreses per extreure informació sobre

el que la gent opina del seu producte. L’objectiu d’aquest treball és aplicar Sentiment

Analysis en una escala de tres punts {negatiu, neutral, positiu} sobre un conjunt de tweets

de diverses edicions del BBC Proms, un dels festivals de música clàssica més importants

del món. En el treball es presenta una comparació de mètodes basats en machine learning

i un mètode més vanguardista de deep learning. Els experiments duts a terme mostren

que el mètode basat en deep learning supera els mètodes de machine learning, obtenint

results similars als mètodes més actuals.

Resumen

El actual incremento de contenido generado por usuarios que está disponible online en

servicios de micro-blogging como Twitter, ha provocado que la necesidad innata de los

humanos de saber qué es lo que piensan los demás se haya convertido en un importante

campo de estudio. Sentiment Analysis (análisis del sentimiento) es un sub-campo de

Procesamiento del Lenguaje Natural (PLN) que estudia la tarea de detectar la polaridad

del sentimiento que expresa un texto. Este tipo de estudio está siendo usado por una gran

variedad de empresas para extraer información útil sobre lo que la gente opina de su

producto. El objetivo de este trabajo es aplicar Sentiment Analysis en una escala de tres

puntos {negativo, neutral, positivo} en un conjunto de tweets de varias ediciones del BBC

Proms, uno de los festivales de música clásica más importantes del mundo. En el trabajo

se presenta una comparación de métodos basados en machine learning y un método

vanguardista de deep learning. Los experimentos realizados muestran que el método

basado en deep learning supera los métodos de machine learning, obteniendo resultados

similares a los del estado del arte.

7

8

Contents

ACKNOWLEDGMENTS III

ABSTRACT V

RESUM V

RESUMEN V

LIST OF FIGURES 11

LIST OF TABLES 12

1. INTRODUCTION 13

1.1 MOTIVATION 13

1.2 PROPOSAL 14

1.3 SENTIMENT ANALYSIS 15

1.3.1 Sentiment Analysis on music 16

1.4 STATE OF THE ART 17

1.4.1 Rule-based approaches 17

1.4.2 Machine learning approaches 18

1.4.3 Deep Learning approaches 18

2. METHODOLOGY 21

2.1 IMPLEMENTATION 21

2.2 TRAINING DATA 22

2.2.1 Data gathering 22

2.2.2 Train and validation split 23

2.2.3 Text pre-processing pipeline 23

2.3 HANDLING IMBALANCED DATA 31

2.4 PERFORMANCE METRICS 34

2.5 CNN CLASSIFIER 37

2.5.1 CNN architecture 37

2.5.2 Baseline model 39

2.5.3 Model optimization 40

2.5.4 Adding lexicon features 47

2.6 MACHINE LEARNING CLASSIFIERS 50

2.6.1 Feature extraction 50

2.6.2 Algorithms 51

2.6.3 Results 51

2.7 FINAL CLASSIFIER 55

2.7.1 Benchmark 55

2.7.2 Machine learning and deep learning classifiers comparison 55

3. ANALYSIS OF BBC PROMS TWEETS 57

3.1 DATA SUMMARY 57

9

3.1 DATA CLASSIFICATION 58

3.2 DATA VISUALIZATIONS 60

3.3 ANALYSIS 61

4. CONCLUSIONS 65

4.1 CONCLUSIONS 65

4.3 FUTURE WORK 65

BIBLIOGRAPHY 67

10

List of figures

FIGURE 1.1: NUMBER OF PAPERS PUBLISHED PER YEAR RELATED TO

SENTIMENT ANALYSIS 15

FIGURE 1.2: MODEL ARCHITECTURE OF THE CNN PRESENTED BY KIM 19

FIGURE 2.1: BLOCK DIAGRAM OF THE IMPLEMENTED FRAMEWORK 21

FIGURE 2.2: CUSTOM TEXT-PREPROCESSING PIPELINE 24

FIGURE 2.3: REDUCTION RATE ON THE FEATURE SPACE OF DIFFERENT

STOP-LISTS 29

FIGURE 2.4: EXAMPLE OF A TWEET PASSED THROUGH ALL THE STEPS OF

THE PRE-PROCESSING PIPELINE 30

FIGURE 2.5: BACK TRANSLATION EXAMPLE. INSPIRED IN A FIGURE BY

AMIT CHAUDHARY IN 33

FIGURE 2.6: CONFUSION MATRIX OF THE CLASSIFICATION OF THE

TWEETS 35

FIGURE 2.7: ILLUSTRATION OF THE ARCHITECTURE OF A TWO-CLASS

CLASSIFICATION CNN 39

FIGURE 2.8: EVOLUTION OF THE VALIDATION AND TRAINING LOSS

DURING EPOCHS 41

FIGURE 2.9: CONFUSION MATRICES FOR THE TWO BEST MODELS 46

FIGURE 2.10: TWEET POLARITY COMPUTATION 47

FIGURE 2.11: ARCHITECTURE OF THE CNN WITH THE ADDITION OF THE

LEXICON FEATURES (IN CYAN COLOR) TO THE FEATURE VECTOR 48

FIGURE 2.12: COMPARISON OF DIFFERENT COMBINATION OF N-GRAMS

WITH DIFFERENT NUMBER OF FEATURES 52

FIGURE 2.13: TOP 25 RESULTS FROM SEMEVAL 2017 TASK 4 – SUBTASK A

 55

FIGURE 3.1: SCREENSHOT OF THE SEARCH AREA OF THE GROUP OF

TWEETS FILTERED BY LOCATION 57

FIGURE 3.2: CONFUSION MATRIX OF THE EVALUATION OF THE CNN +

LEXICON MODEL WITH MANUALLY ANNOTATED BBC PROMS 59

FIGURE 3.3: OVERVIEW OF THE DASHBOARD 61

FIGURE 3.4: EVOLUTION OF TWEET POLARITY DURING EACH EDITION 62

FIGURE 3.5: LIST OF THE TOP USERS 62

FIGURE 3.6: LIST OF THE TOP 100 PROPER NOUNS 63

FIGURE 3.7: RESULTS OF ANALYZING THE FIGURE OF DANIEL

BARENBOIM IN THE BBC PROMS 63

FIGURE 3.8: EVOLUTION OF THE SENTIMENT TOWARDS DANIEL

BARENBOIM BETWEEN 2014 AND 2017 EDITIONS 64

file://///Users/davidmitjanacastro/Documents/UPF/TFG/Treball/Final/memoria.docx%23_Toc50938617
file://///Users/davidmitjanacastro/Documents/UPF/TFG/Treball/Final/memoria.docx%23_Toc50938617
file://///Users/davidmitjanacastro/Documents/UPF/TFG/Treball/Final/memoria.docx%23_Toc50938650
file://///Users/davidmitjanacastro/Documents/UPF/TFG/Treball/Final/memoria.docx%23_Toc50938650

11

List of tables

TABLE 1.1: DISTRIBUTION OF TRAINING AND TEST DATA FROM SEMEVAL

2017 TASK 4 - SUBTASK A 22

TABLE 1.2: TRAIN AND VALIDATION DATASETS SPLIT FOR TRAINING AND

FINE-TUNING THE MODELS 23

TABLE 2.3: RESULTS OF DIFFERENT LEARNING RATES 41

TABLE 2.4: RESULTS FOR DIFFERENT FILTER REGION SIZES 42

TABLE 2.5: RESULTS FOR THE DIFFERENT RESAMPLING TECHNIQUES

APPLIED TO THE TRAIN DATASET 43

TABLE 2.6: RESULTS FOR DIFFERENT INPUT WORD VECTORS 43

TABLE 2.7: RESULTS FOR DIFFERENT NUMBER OF FEATURE MAPS 44

TABLE 2.8: RESULTS FOR DIFFERENT NUMBER OF FEATURE MAPS WITH

DROPOUT RATE SET TO 0.7 44

TABLE 2.9: RESULTS FOR DIFFERENT COMBINATIONS OF

HYPERPARAMETERS 45

TABLE 2.10: FINAL HYPERPARAMETER CONFIGURATION 46

TABLE 2.11: RESULTS OF EXPERIMENTS WITH THE CNN + LEXICON

FEATURES 49

TABLE 2.12: HYPERPARAMETER CONFIGURATION OF THE SGDCLASSIFIER

BOTH FOR THE SVM AND THE LINEAR REGRESSION CLASSIFIERS 52

TABLE 2.13: RESULTS WITH TEST SET ON EACH INDIVIDUAL GROUP OF

FEATURES 53

TABLE 2.14:RESULTS FOR THE CLASSIFIERS TRAINED WITH

DOWNSAMPLED DATA 53

TABLE 2.15: RESULTS FOR THE CLASSIFIERS TRAINED WITH UPSAMPLED

DATA 53

TABLE 2.16: RESULTS FOR THE CLASSIFIERS TRAINED WITH AUGMENTED

DATA 54

TABLE 2.17: RESULTS FOR THE BINARY CLASSIFIERS 54

TABLE 2.18: TOP PERFORMANCES ACHIEVED WITH EACH OF THE

EXPLORED CLASSIFIERS 56

TABLE 3.1: NUMBER OF TWEETS FOR EACH GROUP OF TWEETS OF EACH

EDITION. THE LAST COLUMN SHOWS THE NUMBER OF UNIQUE

TWEETS 58

TABLE 3.2: RESULTS OF THE CNN + LEXICON MODEL EVALUATED ON BBC

PROMS MANUALLY ANNOTATED DATA 58

TABLE 3.3: RESULTS OF THE CLASSIFICATION OF THE TWEETS FROM BBC

PROMS 59

12

13

1. INTRODUCTION

1.1 Motivation

In the last few years the field of Natural Language Processing (NLP) has experienced a

“boom” in popularity thanks to the vast amount of accessible data and advances in deep

learning. Many industries and research fields have benefitted from NLP, becoming a

bridge between data science and human language.

One widely used application of NLP is Sentiment Analysis (SA), which consists in

understanding the opinion expressed by a text. First research on document classification

by sentiment appeared in a work by Pang et al. [1], where they explored the performance

of different machine learning methods on the task of SA. Since then, and with the fast

growing amount of user generated data, SA quickly caught the attention and interest of

varied industries and research fields [2]. It provides businesses the ability to apply

automatic text analysis on any type of unstructured text source: survey answers, Facebook

or Twitter comments, user feedback, emails, etc. This provides companies with very

useful insights about their product and enables them to make data-driven decisions.

Social media monitoring is one of the most exploited use cases of SA, since it is

impossible for companies to stay updated with all the incoming data. In platforms like

Twitter, around 6000 tweets are generated every second, which leads to around 500

million tweets per day1. SA allows to keep track of all this data and analyze it to, for

example, get real time insights about customers.

Besides all this, this project has meant to me a starting point into the world of data

analysis, which I have not had the opportunity to deeply explore during these years.

1 https://www.internetlivestats.com/twitter-statistics/

https://www.internetlivestats.com/twitter-statistics/

14

1.2 Proposal

The aim of this work is to perform a three-point scale {negative, neutral, positive} SA on

a group of tweets from the BBC Proms, the world’s greatest classical music festival. There

are three main approaches which have been followed to carry out SA: rule-based

approaches, machine learning approaches and deep learning approaches. All of them have

been deeply explored in the literature, but not a lot of efforts have been put to explore

how they perform on a three point scale polarity score with Twitter data. Hence, this work

focuses on the following points:

 Make a comparison of machine learning and deep learning based Twitter

classifiers, by implementing state-of-the-art methods.

 Compare classifiers results with state-of-the-art systems presented in SemEval

2017 task4: Sentiment Analysis in Twitter, subtask - A [3].

 Use the best classifier to classify BBC Proms tweets and perform Sentiment

Analysis on them. For this task I will use Kibana2 to implement an interface to

visualize and analyze the classified data.

The set of events to be analyzed are the BBC Proms editions from 2014, 2016 and 2017.

Also known as the Henry Wood Promenade Concerts or The Proms, BBC Proms is an

eight week classical music festival held every summer in London since 1895, with the

goal of bringing the best in classical music to the widest possible audience3. It is one of

the biggest and best-known music festivals in the world, hosting around 90 concerts and

with the potential of reaching over fifteen million people4.

But before diving into the implementation of the proposal and the analysis of the BBC

Proms tweets, we first need to have a good understanding of what Sentiment Analysis is

and the different approaches that have been proposed over the last years in the literature.

2 https://www.elastic.co/kibana
3 https://www.bbc.co.uk/programmes/articles/2kSNxH9Cj9PT62ZzTnvWpYZ/the-bbc-proms-whats-it-

all-about
4 https://evanevanstours.com/blog/all-about-the-proms/

https://www.elastic.co/kibana
https://www.bbc.co.uk/programmes/articles/2kSNxH9Cj9PT62ZzTnvWpYZ/the-bbc-proms-whats-it-all-about
https://www.bbc.co.uk/programmes/articles/2kSNxH9Cj9PT62ZzTnvWpYZ/the-bbc-proms-whats-it-all-about
https://evanevanstours.com/blog/all-about-the-proms/

15

1.3 Sentiment Analysis

Sentiment Analysis (SA), also known as opinion mining, can be described as the process

of computationally identifying and categorizing opinions expressed in a piece of text,

especially in order to determine whether the writer’s attitude towards a particular topic or

product is positive, negative or neutral5.

Precedents of attempting to get public opinion can be traced back to the first decades of

the XXth century when the task was focused on quantifying and measuring the opinion

from questionnaires. The first academic studies that tackled the task of identifying public

opinions appeared after WWII, with highly political motivations. Later in the mid-1990s,

the computational linguistics community started to study text subjectivity analysis and

the first computer-based sentiment analysis systems appeared.

But it was not until the burst of subjective texts on the Web in the early 2000s that

computer-based SA took off. A clear fact about this major outbreak is that 99% of the

papers of sentiment analysis have been published after 2004 [4]. The increase of the

number of papers in SA since 2000 can be seen in figure 1.1. Although the term sentiment

analysis first appeared in [5], the research on sentiments appeared earlier [1].

Nowadays the task of SA has a wide range of practical applications. Thanks to the recent

advances of deep learning techniques and the large and increasing amount of user-

generated text in social media platforms, it has become a hot topic of research not only in

the field of Natural Language Processing (NLP) but also in political and social sciences

and many other research fields. It also provides useful business insights for market

predictions, helping companies to develop their strategies, to understand customer's

opinions, the company’s reputation, etc.

5 https://www.lexico.com/definition/sentiment_analysis

Figure 1.1: Number of papers published per year related to Sentiment

Analysis. Picture is taken from [4].

https://www.lexico.com/definition/sentiment_analysis

16

1.3.1 Sentiment Analysis on music

The relationship between music and human emotion is unquestionable, and a lot of

research has been done to study this close connection. Technology advances have

changed the way we listen and interact with music in recent years. This has boosted the

interest in research areas like Music Information Retrieval (MIR) or Music Emotion

Recognition (MER), both experimenting with text and audio features.

Regarding text-based sentiment analysis on music, MIR researchers have taken advantage

of NLP techniques such as Named Entity Recognition (NER) or Information Extraction

(IE) for multiple tasks such as mood classification of lyrics, genre classification,

recommender systems or artist similarity. However, the majority of sentiment analysis

tasks in the music domain have tackled formal texts but not noisy user-generated content,

i.e. social media and microblogging services like Twitter.

First approaches on musical knowledge extraction from user-generated content were

focused on reviews [6] and online forums [7]. Initial approaches for detecting musical

named entities are presented in [8] and [9], and a first Musical Entity Linking (MEL) has

been presented in [10].

Furthermore, a method to recognize classical musical entities in Twitter content generated

by users is presented in [11], which focuses on detecting two kinds of musical entities:

contributor and musical work.

Nonetheless, the task of IE and NER from user-generated content of a specific domain

like music is still challenging due to the highly noisy and informal nature of the texts

generated by users.

17

1.4 State of the art

There are three main sentiment classification levels to be considered:

 document-level: classifies a whole document talking about one topic (e.g. product

review)

 sentence-level: detects whether a sentence expresses a positive or negative

sentiment

 aspect-level: classifies the sentiment with respect to the specific aspects of entities

The scope of this work is SA of Twitter texts, therefore only sentence-level sentiment

polarity classification methods are being considered for the task at hand.

On the topic of sentence-level classification, and more specifically Twitter sentiment

analysis, the International Workshop on Semantic Evaluation (SemEval) has dedicated

part of its efforts to the task since 2013 edition. The most recent edition where they

explored three point scale {negative, neutral, positive} SA of Twitter data was in

SemEval-2017 Task 4: Sentiment Analysis in Twitter [3]. The competition results for

subtask A are used to analyze the state-of-the-art methods of SA in Twitter data and as a

benchmark for the methods presented later in this work.

Since the beginning of 2000 different approaches to SA were explored by researchers.

These approaches can be grouped into three main groups: rule-based approaches,

machine learning approaches, and deep learning approaches.

1.4.1 Rule-based approaches

These methods basically compute an overall sentiment based on a set of manually created

rules. These methods typically include word polarity computation based on lexicons,

which are dictionaries of positive and negative scores for a list of words and can be used

to compute the average sentiment of a tweet. A complete description of a rule-based

method for sentiment analysis and comparison with previous similar methods is presented

in [12]

The advantage of using rule-based methods is that they do not need prior training to

classify a document, therefore they require minimal data preparation, and can be easily

done with libraries like TextBlob6 and VADER7.

6 https://textblob.readthedocs.io/en/dev/quickstart.html
7 https://github.com/cjhutto/vaderSentiment

https://textblob.readthedocs.io/en/dev/quickstart.html
https://github.com/cjhutto/vaderSentiment

18

A drawback of using this type of methods is that they do not have any understanding of

the meaning of the sentence, hence are limited to basic sentiment analysis, and cannot

perform other tasks such as sarcasm detection.

1.4.2 Machine learning approaches

Machine learning methods use huge amount of data to train a model that will be used to

predict the polarity of a text. The most common classification algorithms used in machine

learning based methods are Linear Regression, Support Vector Machines (SVM) and

Naïve Bayes. Initial findings of the benefits of some of these algorithms for text

classification tasks were introduced in [13].

In SemEval 2017 Task 4 – subtask A, three of the top-10 teams used machine learning

approaches. They all used SVM classifiers based on different type of features: lexical

features, semantic features, dense word embeddings, etc.

1.4.3 Deep Learning approaches

In recent years, deep learning techniques have transformed the field of NLP, considerably

outperforming non-deep learning methods in a number of tasks, and improving the

performance with less need of engineered features [14]. However, this is thanks to their

ability to generalize well when trained with large amounts of data. A good example of

the proved effectiveness of deep learning methods is that, in SemEval 2017 task 4 -

subtask A, the top-4 ranked teams all used deep learning or deep learning ensembles. The

most popular deep learning techniques for Sentiment Analysis are Recurrent Neural

Networks (RNNs) and Convolutional Neural Networks (CNNs).

RNNs

RNNs are a type of networks that perform especially well with sequential data, it is, data

that presents continuity in time. That’s why they have become popular in text

classification tasks because their architecture allows the neural network to capture

temporal behavior and sequential data, being a more “natural” approach for textual data

since text is naturally sequential. The most popular and used version of RNNs are Long

Short-Term Memory (LSTM) networks.

CNNs

As for CNNs, they are faster and simpler than RNNs and are well-known for their

applications in computer vision and for the way they simulate the functioning of our brain.

Nonetheless, they have shown remarkable good results in several NLP tasks [15],

19

outperforming previous approaches with simpler and faster methods. One of the first

works that showed impressive results of CNNs for sentiment analysis was introduced in

2014 by Yoon Kim [16]. The method achieved state-of-the-art results in sentence-level

classification problems, with a basic CNN architecture with one-layer convolution layer,

little computational costs and simple classification features using pre-trained word

vectors. Figure 1.2 shows the basic architecture of the CNN presented by Kim.

Figure 1.2: Model architecture of the CNN presented by Kim. Picture taken from [16]

Since the introduction of CNN systems for text classification, many approaches of CNNs

combining other techniques have been explored. In [17] they present a benchmark of

CNN baseline configurations for text-classification tasks following Kim’s model.

The two top ranked systems in SemEval-2017 Task 4 presented ensemble methods of

CNNs and LSTMs networks [18][19]. The fourth ranked system [20] introduced an

ensemble method of ten CNNs to classify a tweet, by using the same word embeddings

as inputs for all the networks but varying the initial weights. The proposed network

architecture is the same as the one presented by Kim in [16], with the addition of a fully

connected layer, and the results of the different networks are combined by selecting the

sentiment given by the majority of them. Lastly, a different approach is presented in [21],

where deep learning techniques are combined with rule-based approaches, introducing a

Lexicon integrated CNN method with attention.

20

21

2. METHODOLOGY

In this section I will explain the process followed to build the final classifier that will be

used to analyze the tweets from BBC Proms. The framework in which it is built is very

similar to the one used in any Sentiment Analysis task, and can be seen in figure 2.1.

Figure 2.1: Block diagram of the implemented framework. (1) data is gathered from a

reliable source; (2) data has to be pre-processed in order to reduce vocabulary size and

prepare it for feature extraction; (3) representative features have to be extracted from

the data; (4) different classifiers are built; (5) the classifier with the best performance

is chosen to classify the BBC Proms tweets.

2.1 Implementation

All the implementation has been done in the Python programming language. In the text

pre-processing I have created custom scripts to process the texts; the machine learning

methods have been developed with the scikit-learn library8, and the CNN model has been

implemented with the open source library PyTorch9.

More details on the implementation are explained in each corresponding section. All the

code can be found in GitHub10.

8 https://scikit-learn.org/stable/
9 https://pytorch.org/
10 https://github.com/mitji/TFG_Twitter-Sentiment-Analysis-on-BBC-Proms

https://scikit-learn.org/stable/
https://pytorch.org/
https://github.com/mitji/TFG_Twitter-Sentiment-Analysis-on-BBC-Proms

22

2.2 Training data

The task at hand is a supervised learning task, and the first common issue in this type of

problems is to find enough labeled data to feed the classifier. If the system is provided

with a decent amount of data, then it will be able to learn specific behaviors and

relationships from the input data and it will classify correctly any given unlabeled input.

2.2.1 Data gathering

The aim of this work is to classify a group of tweets in a three-point scale: {negative,

neutral, positive}, hence a reliable dataset of annotated tweets is needed and it has to be

big enough to train a model. Thankfully, there is a renowned NLP competition called

SemEval where they have explored the topic of three-point scale Twitter Sentiment

Analysis in a number of their recent editions, in which they have provided the participants

with annotated data to train, test and evaluate their models.

SemEval is an ongoing series of computational semantic analysis systems11, where

several teams compete on different NLP tasks. The most recent edition where they have

explored Tweet polarity classification was in 2017, more specifically in Task 4 - Subtask

A [3], which focuses on the overall sentiment of a tweet {negative, neutral, positive}. The

dataset they provided for the task is available and can be downloaded in12. It includes

annotated training and test data from the 2013 to the 2016 edition. I have combined all

this data and I have used it as the training set, with a total of 53484 tweets. All the data is

structured in .txt files with the following format: tweetId<TAB>label<TAB>text, pretty

simple to read and process in the Python scripts. In the website of SemEval 2017 Task

413 they also provide the test data that all the teams used to evaluate their systems, which

makes it suitable to compare my models performance with state-of-the-art methods

presented in SemEval 2017 Task 4 – subtask A by evaluating it with the same metrics.

More details about the training and test dataset are shown in table 1.1.

 negative neutral positive all

training 8498 (15.89%) 24197 (45.24%) 20789 (38.87%) 53484

test 3972 (32.34%) 5937 (48.33%) 2375 (19.33%) 12284

Table 1.1: Distribution of training and test data from SemEval 2017 task 4 - subtask A

11 https://en.wikipedia.org/wiki/SemEval
12

https://www.dropbox.com/s/byzr8yoda6bua1b/2017_English_final.zip?file_subpath=%2F2017_English_f

inal%2FGOLD%2FSubtask_A
13 http://alt.qcri.org/semeval2017/task4/index.php?id=data-and-tools

https://en.wikipedia.org/wiki/SemEval
https://www.dropbox.com/s/byzr8yoda6bua1b/2017_English_final.zip?file_subpath=%2F2017_English_final%2FGOLD%2FSubtask_A
https://www.dropbox.com/s/byzr8yoda6bua1b/2017_English_final.zip?file_subpath=%2F2017_English_final%2FGOLD%2FSubtask_A
http://alt.qcri.org/semeval2017/task4/index.php?id=data-and-tools

23

2.2.2 Train and validation split

The split of training data into train and validation sets is 85% for the train set and 15%

for the validation set. The validation dataset is used to evaluate the model fit on run-time

and make decisions to fine tune the hyper-parameters and apply early stopping if the

model performance does not improve during training.

 negative neutral positive all

train 7229 (15.90%) 20554 (45.21%) 17678 (38.89%) 45461

validation 1269 (15.82%) 3643 (45.40%) 3111 (38.78%) 8023

Table 1.2: Train and validation datasets split for training and fine-tuning the models

2.2.3 Text pre-processing pipeline

To get the data in a clean, standard format for future analysis and to obtain the best

possible results in the classification of the tweets, the data must be in an understandable

format that is easy to read by a machine. Working with Twitter data this can become a

very challenging task due to the amount of slang language, emojis, hashtags, contractions,

misspelled words and noisy data that has little value for sentiment analysis and can have

a negative impact on the classification.

Next I will explain the different techniques I have used to prepare the data for both the

machine learning and the deep learning approaches presented in this work.

I have implemented a custom text pre-processing pipeline in Python inspired by the

pipeline presented in [22] with the following structure:

 Step 1: Pre-processing. Initial data cleaning and processing of the text before

passing it through the Twitter POS tagger and tokenizer.

 Step 2: Tokenization & POS Tagging. Step to identify domain specific tokens

like hashtags, urls or mentios with the POS tagger and tokenize the tweets.

 Step 3: Post-processing. Extra processing step that takes advantage of the

tokenization and POS tagging to correctly remove unwanted data and refine the

POS tags.

Figure 2.2 shows the structure of the text pre-processing pipeline described above.

24

Figure 2.2: Custom text-preprocessing pipeline

Step 1: Pre-processing

Data cleaning

First of all, the raw data downloaded from SemEval has to be read and prepared to be pre-

processed. As mentioned in section 2.1.1, all the training data is structured in .txt files

with the following format: tweetId<TAB>label<TAB>text. Then, for the text pre-

processing, all the training files are combined into one file with the format

sentiment<SPACE>text, ignoring the tweet id since it has no relevance for the sentiment

detection. In addition to this, multiple white spaces are converted into single white spaces

to make it easier to split tweets and generate tokens, double quotes (“) are removed from

beginning and end of tweets, and all remaining double quotes are replaced by single

quotes (‘). All the data is encoded in unicode format, so it must be read and processed

accordingly in the following steps.

Emojis and emoticons to CLDR short name

Emojis and emoticons have to be preserved because they can carry a lot of information

about the sentiment of a short text like a tweet.

Emojis

Taking into account the Unicode encoding and before any further processing, we need

to replace the emojis by words to keep their meaning. For this I have used the python

library emoji14 that does exactly this, converting emojis into a short descriptive name.

For instance, the sentence “Confinement is finally over ” will become

“Confinement is finally over :smiling_face_with_smiling_eyes:”.

14 https://pypi.org/project/emoji/

https://pypi.org/project/emoji/

25

Emoticons

As for emoticons, I have created a large dictionary of 126 emoticons with their

corresponding short name using the same “source of truth” that uses the python emoji

library, using the associated CLDR Short Name15. However, it is difficult to define an

exact equivalence between emojis and emoticons, so a general approach for the emoticons

short names have been followed, trying to find at least one word that can be found in the

short text of similar emoticons or emojis. For example, in my custom dictionary the

emoticons “:), (:, 8), =), xD” are represented as “:grinning_face:”.

After this step, all emojis and emoticons have been replaced by their CLDR short name

with textual meaning. It may happen that some characters of an emoticon are encoded in

a different encoding system, or for some reason a character has not been decoded in the

first step. This is solved in the Emoticon Parser of Step 3.

Contractions removal

Before applying the tokenizer and POS tagger I replace contractions by their full extended

form. The task of extending a contraction can be very hard because it requires contextual

knowledge to replace the contraction with the correct words. As an example, the

contracted form “I’d” can have two expanded forms: “I would” and “I had”.

For this step I use two methods. First, I use the python library pycontractions16 that does

a decent job on this. In the case of the previous example, pycontractions would take

context into account and successfully convert the sentence “I’d love to go” into “I

would love to go”.

Secondly, I use a custom contraction dictionary extracted from17 as a backup in case the

pycontractions library doesn’t work properly.

Step 2: Tokenization & POS Tagging

Tokenization of Twitter data can be tricky because it is difficult to avoid splitting

expressions that should be treated as a single token, and is also challenging to detect

Twitter specific entities like URLs, hashtags, dates or at-mentions.

There are several tokenizer tools from common NLP libraries like nltk or spacy, but they

do not detect specific Twitter entities, and as a result they do not perform well in the

tokenization of specific domain tokens like hashtags, mentions or emoticons. For this task

I have used the Twitter tokenizer and Part-Of-Speech Tagger (POS Tagger) tool from

15 http://www.unicode.org/emoji/charts/full-emoji-list.html
16 https://pypi.org/project/pycontractions/
17

https://github.com/tthustla/yet_another_tiwtter_sentiment_analysis_part1/blob/master/Yet_Another_Twitt

er_Sentiment_Analysis_part1-Copy1.ipynb

http://www.unicode.org/emoji/charts/full-emoji-list.html
https://pypi.org/project/pycontractions/
https://github.com/tthustla/yet_another_tiwtter_sentiment_analysis_part1/blob/master/Yet_Another_Twitter_Sentiment_Analysis_part1-Copy1.ipynb
https://github.com/tthustla/yet_another_tiwtter_sentiment_analysis_part1/blob/master/Yet_Another_Twitter_Sentiment_Analysis_part1-Copy1.ipynb

26

CMU ARK research group [23]. I also considered using TwitIE, a tokenizer and POS

Tagger plugin from GATE, but I ended up choosing the tool from CMU because it was

easier to adapt into my pre-processing pipeline by adapting an available python wrapper18

that allows to run the java library from CMU in python.

At the end of this step, every tweet is represented as an object (or dictionary) with the

fields sentiment, raw_text, cleaned_text and tokens, which is an array of objects where

every object is a token with two fields: token, which is the word itself, and tag, which is

the POS tag.

An example of a tweet structure after the Tokenizer and POS tagger can be seen In the

following code snippet:

Step 3: Post-processing

This final step after tokenization consists in the main part of text processing that prepares

the data for Sentiment Analysis. Taking advantage of the tokens and POS Tags generated

in step 2, I decide which tokens I need to modify, keep and omit. Here is where I perform

hashtag segmentation, spell correction, word normalization with lemmatization, removal

of unwanted tokens like punctuation marks, numbers or mentions, lowercase all the data

and at the end apply vocabulary reduction.

Hashtag segmentation

As explained in the article Working with Twitter Data in Python19, hashtags are usually

created by merging several words together, and splitting them can become handy in

18 https://github.com/ianozsvald/ark-tweet-nlp-python
19 https://medium.com/analytics-vidhya/working-with-twitter-data-b0aa5419532

https://github.com/ianozsvald/ark-tweet-nlp-python
https://medium.com/analytics-vidhya/working-with-twitter-data-b0aa5419532

27

Sentiment Analysis. Apart from this, hashtags are usually used to express some sort of

opinion with regard a specific topic. Thankfully, the POS tagger detects all hashtags

entities. To split the hashtags into actual words, I use the python library Ekphrasis20 [22],

a library developed by the winning team at SemEval 2017 Task 4 - subtask A. The library

implements a word segmentation method that uses the Viterbi algorithm to split the words

based on the statistics provided by a Twitter corpus, and the word segmentation is suitable

for hashtag segmentation. Each new string generated from the hashtag segmentation is

mapped into a new ‘HASHTAG’ token, and the original complete hashtag token is

removed.

Emphasis tokens

Emphasis expressions are usually connected to strong sentiment, positive or negative, so

they are worth detecting. Emphasis expressions like “!”, capitalized words, or words with

more than 2 consecutive vowels are taken into account. No matter the tag a token has

been given, if it is detected as an emphasis token, it will be converted into an emphasis

token.

Remove unwanted tokens

After the POS tagging is easy to remove those tokens that have no relevance to the

sentiment analysis task. In this sub-step I have removed punctuations (those on emoticons

and emphasis tokens have already been converted into different POS tags), mentions,

URL, emails, numbers, discourse markers and unknown tokens classified as ‘OTHERS’ by

the POS tagger.

Spell correction

After testing several libraries (TextBlob21, SymSpell22) that detect and correct misspelled

words, I concluded that they are very time-consuming and do not improve my model’s

performance, so I have decided to apply a basic spell checker. First, I check that each

character is not repeated more than twice in a word. In addition to this, if a word has a

vowel consecutively repeated more than twice, the word is converted into an ‘EMPHASIS’

token. For example, the word “sooooo” that can be found in a sentence like “sooooo

good”, will be converted first into a token with the tag ‘EMPHASIS’ and then the token

itself will be corrected to “soo”.

Lemmatization

In order to normalize the text and reduce the vocabulary size I apply lemmatization, a

technique to find the root form of inflected words, which can be simply described as

words that have been derived from another word to express a different grammatical

category by using a prefix, suffix, infix, or another internal modification such as a vowel

20 https://github.com/cbaziotis/ekphrasis
21 https://textblob.readthedocs.io/en/dev/
22 https://github.com/wolfgarbe/SymSpell

https://github.com/cbaziotis/ekphrasis
https://textblob.readthedocs.io/en/dev/
https://github.com/wolfgarbe/SymSpell

28

change23. For example, the words “are”, “is”, “am” and “were” have the same root

word, which is “be”.

There are two ways to normalize a word to its root form: lemmatization and stemming.

They differ in the way they generate the root forms of words and the root word itself.

Stemming is the process of reducing inflection in words to their root forms such as

mapping a group of words to the same stem even if the stem itself is not a valid word in

the language. Lemmatization, unlike Stemming, reduces the inflected words properly

ensuring that the root word belongs to the language. In Lemmatization the root word is

called Lemma. A lemma is the canonical form, dictionary form, or citation form of a set

of words.

I have chosen lemmatization because it converts each word to a word that belongs to the

language, which can be useful in a later stage of analysis or processing. The only

drawback of using lemmatization is that if what matters is speed, it is slower because it

has to scan a whole corpus to find the lemma. The choice between stemming and

lemmatization really depends on the application you are working on

NLTK library24 provides a lemmatizer that uses the WordNet Database to find the lemma.

In order to find the correct lemma, the lemmatizer needs the context in which you want

to lemmatize the word, that is, it needs the part-of-speech (POS) tag, and this is achieved

by providing the POS tag given by the CMU ARK POS Tagger and Tokenizer.

Second Emoticon to CLDR short name

This is the second emoticon parser of the pre-processing pipeline. It is included because

the POS tagger also detects emoticons, especially those written in strange characters or

with some encoded characters. For those emoticons that for any reason have not been

detected in Step 1, I add this extra emoticon-to-text parser. An example of what I mean

by “strange characters” is the following sentence: “c’mon now >_&;gt”. The POS

tagger decodes “;gt” into “>”, creating the token “>_>” with the tag “EMOTICON”. Then I

check if this emoticon is in my custom dictionary, and I replace “>_>” by “face with

raise eyebrow”. If the emoticon is not found in my emoticons dictionary, the token is

removed.

Lowercase

At the end all tokens are lowercased as another stage of vocabulary reduction.

TF1: Stop-word removal technique

Stop-words, by definition, are meaningless words that have low discrimination power

[24]. In NLP those words are removed from texts, helping to reduce vocabulary size, data

sparsity and the feature space.

23 https://www.datacamp.com/community/tutorials/stemming-lemmatization-python
24 https://www.nltk.org/

https://www.datacamp.com/community/tutorials/stemming-lemmatization-python
https://www.nltk.org/

29

In [25] they study the effect of six different stop-word removal methods on sentiment

polarity classification of Twitter data. They use six different datasets, including the one

from SemEval 2013 edition, which means that the conclusions of this work can be

extrapolated to my scenario with similar training data. In the paper they show that the

classical approach on stop-word removal, which consists in using a pre-compiled list of

stop-words, have a negative impact on the performance of Twitter sentiment

classification problems because it can remove relevant information or modify the context

of a sentence. They show that the most effective technique is TF1, which basically

removes those words that occur only once in the whole dataset. Compared to the other

best-ranked method - Mutual Information (MI) - TF1 gives the best trade-off between

good performance and processing time, hence is the recommended method for Twitter

sentiment analysis tasks. As shown in figure 2.3, TF1 reduces around 65% of feature

space on average.

The effect of TF1 method on my training dataset is noticeable, reducing the vocabulary

size by 56.1%.

Figure 2.3: Reduction rate on the feature space of different stop-lists. Picture taken

from [25]

At the end, all the processed tweets are put together into a .json file where each tweet is

an object with the final structure shown in figure 2.4 (see next page). The figure shows a

detailed example of the evolution of a tweet in every step of the pre-processing pipeline.

30

Figure 2.4: Example of a tweet passed through all the steps of the pre-processing pipeline

31

2.3 Handling imbalanced data

Although the training data is fairly reliable and big, it is highly unbalanced. There is a

clear problem of class imbalance because there are many more instances of neutral and

positive tweets than negative. As it can be seen in table 1.1, from the total of 53484 tweets,

15.89% are negative, 45.24% neutral (three times the amount of negative) and the

remaining 38.87% are positive tweets.

Class imbalance is a common problem in ML and DL, especially in classification

problems, and if it is not handled properly it can lead to a not accurate model performance.

However, there is not a “go to” solution to solve the problem of class imbalance to

improve the performance of a model, but different techniques have to be tried to find the

best-suited method for the dataset at hand.

Next I will present different techniques to solve the class imbalance problem and I will

explain which ones I have chosen, given my training dataset.

Gather more data

First, you can look for more data, but in my case it was difficult to find another source of

representative data, and also makes sense to find a a dataset with a polarity distribution

of Twitter data with more neutral and positive tweets than negative, so this solution of

class imbalance was dismissed.

Change performance metrics

Secondly, you can change the performance metrics and use metrics that give better

insights, but since I am using the same metrics as the ones used in SemEval 2017 task4 -

subtask A, this option was also not considered. More details on the used performance

metrics used can be found in section 2.3.

Use different machine learning algorithms

Thirdly, different machine learning algorithms can be tried, and then see which of them

perform better with the dataset at hand and with imbalanced data. This part is explored in

section section 2.5 and 2.6, where different classifiers are explored.

Resampling

There are also a number of resampling techniques that can be explored. These methods

consist in adding samples to the minority class to match the number of samples of the

majority class, or the opposite, which is removing samples of the majority class or classes

to match the minority class. I have used random undersampling, random upsampling and

data augmentation.

32

 Random downsampling:

This technique consists in randomly removing samples of the majority classes, in my case

the neutral and positive classes.

I use the resample module from scikit-learn25 to remove samples from the neutral class

to get the same number of samples as the negative class (8498).

 Random upsampling:

This technique consists in randomly replicating samples of the minority class. I use again

the resample module from scikit-learn25 to randomly replicate tweets from the negative

class.

 Data augmentation: Back Translation

Data augmentation is a technique typically used in computer vision which consists in

increasing the diversity of the training set by applying random (but realistic)

transformations26 by rotating, translating, scaling or adding noise to the image. This can

also be applied to texts, where the approach can be shuffling the words of a sentence or

replacing some words by their synonyms to create new texts with the same meaning. An

extended list of different approaches to data augmentation for text are introduced in this

article 27, and some implementations of those methods are implemented in this GitHub

repository: https://github.com/kothiyayogesh/medium-article-code.

From the methods proposed in the aforementioned article, I have used Back Translation.

This technique has given top results in several works. In 28 they used this technique for

the Toxic Comment Classification Challenge on Kaggle, in which they ranked 1st. In [26]

they used this method to augment unlabeled text and learn a semi-supervised model with

only 20 labeled samples on the IMDB dataset, outperforming a previous state-of-the-art

model trained with 25000 labeled samples.

The main idea of back translation is simple, it consists in the following steps:

 Translate text from English to another language (e.g. Catalan)

 Translate the translated text back to English

 Check if the new English sentence is different from the original. If it is different,

then we keep the new sentence as the augmented version of the original text.

Since the SemEval dataset has very few negative tweets, each tweet is back translated

twice, and from the resulting list of augmented tweets I randomly take the number of

tweets I want to add to the dataset. That is, if the dataset had 8000 negative samples and

20000 samples would be needed to solve the class imbalance problem, we would need

25

 https://scikit-learn.org/stable/modules/generated/sklearn.utils.resample.html
26 https://www.tensorflow.org/tutorials/images/data_augmentation
27 https://amitness.com/2020/05/data-augmentation-for-nlp/
28 https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/discussion/52557

https://github.com/kothiyayogesh/medium-article-code
https://scikit-learn.org/stable/modules/generated/sklearn.utils.resample.html
https://www.tensorflow.org/tutorials/images/data_augmentation
https://amitness.com/2020/05/data-augmentation-for-nlp/
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/discussion/52557

33

12000 new samples. This would mean that 16000 augmented samples would be generated

(two for each original sample) and 12000 would be randomly taken.

In the article27 they propose the use of the library TextBlob to do the translations, but I

soon reached the limit of api calls that TextBlob makes “under the hood”. I used

googletrans29 library instead, which is a free and unlimited library for Python that

implements the Google Translate API. One positive thing about back translation is that

misspelled words would be fixed or replaced by a word with a different meaning, which

is perfect for the purpose of back translation. For instance, the text its not that I'm a

GSP fan (...) would be back translated into It's not that I'm a GSP fan (...).

Figure 2.5: Back translation example. Inspired in a figure by Amit Chaudhary in 27

Binary classification

Lastly, you can ignore the majority class or merge minority classes and try binary

classification. In my case I discard the majority class, that is, all the neutral tweets that

represent 45.21% of the total data, simplifying the classification problem to 2 classes with

29287 tweets, where 70.98% are positive tweets.

29 https://py-googletrans.readthedocs.io/en/latest/

https://py-googletrans.readthedocs.io/en/latest/

34

2.4 Performance metrics

To assess the performance of the methods proposed in this work, I have applied the same

evaluation measures used in SemEval 2017 task 4 - subtask A [1] to be able to compare

my classifiers performances with the methods presented in SemEval.

The primary metric used to rank the participants’ results is macro-average recall (AvgRec,

see next paragraph for a description of AvgRec). Besides AvgRec, they also show the

results for two secondary measures, macro average 𝐹1
𝑃𝑁 and accuracy, which will also be

explained later in this section. But before describing each measure, we must know what

macro-average means. The macro-average evaluation consists in computing the measure

individually for each class, and then taking the average of all classes giving equal weight

to each class.

Macro average recall (AvgRec)

Briefly, recall is the ratio
𝑡𝑝

𝑡𝑝+ 𝑓𝑛
, where 𝑡𝑝 is the number of true positives and 𝑓𝑛 the

number of false negatives, and it provides insights of the ability of a classifier to find all

the positive samples. That is, given our dataset, it provides an idea of the ability of the

classifier to classify correctly all the negative, neutral and positive samples. With the

single label multi-class task at hand, recall for the positive class is computed as:

𝑅𝑃 =
𝑃𝑃

𝑃𝑃 + 𝑈𝑃 + 𝑁𝑃

Where PP, UP, PN and NP are the cells of the confusion matrix of figure 2.6.

Then, AvgRec is the average recall across the positive (P), negative (N) and neutral (U)

classes, and it is calculated as follows:

𝐴𝑣𝑔𝑅𝑒𝑐 =
1

3
(𝑅𝑃 + 𝑅𝑁 + 𝑅𝑈)

where 𝑅𝑃, 𝑅𝑁and 𝑅𝑈 are the recall of the positive, negative and neutral classes,

respectively, and are calculated analogously to 𝑅𝑃. As mentioned in [1], AvgRec is more

robust to class imbalance compared to 𝐹1
𝑃𝑁 and accuracy. For more details in the

advantages of AvgRec see [27].

35

Figure 2.6: Confusion matrix of the classification of the tweets. Cell XY stands for “the

number of tweets that the classifier labelled X and the gold standard labels as Y”. P, U

and N stand for positive, neutral and negative. Picture taken from table in [28].

Macro average F1

By definition, 𝐹1 score is the harmonic mean of precision and recall30. With the task at

hand, the 𝐹1 score for the positive class, 𝐹1
𝑃, is calculated as follows:

𝐹1
𝑃 = 2 ∗

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛𝑃 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙𝑃

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛𝑃 + 𝑟𝑒𝑐𝑎𝑙𝑙𝑃

Where 𝑟𝑒𝑐𝑎𝑙𝑙𝑃 is the recall of the positive class explained before, and 𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛𝑃 is

computed as follows:

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛𝑃 =
𝑃𝑃

𝑃𝑃 + 𝑃𝑈 + 𝑃𝑁

Where 𝑃𝑃, 𝑃𝑈, 𝑃𝑁 and 𝑁𝑃 are the cells of the confusion matrix of figure 2.6.

In [3] this measure is calculated over the positive and negative classes, excluding the

neutral class. It is calculated as follows:

𝐹1
𝑃𝑁 =

1

2
∗ (𝐹1

𝑃 + 𝐹1
𝑁)

where 𝐹1
𝑃 and 𝐹1

𝑁 refer to the 𝐹1 of the positive and negative classes, respectively, and

𝐹1
𝑁computation is analogous to 𝐹1

𝑃.

Accuracy

This metric indicates the overall percentage of correctly classified negative, neutral and

positive tweets. That is, in our case this is computed as follows:

𝐴𝑐𝑐 =
𝑃𝑃 + 𝑈𝑈 + 𝑁𝑁

𝑃𝑃 + 𝑃𝑈 + 𝑃𝑁 + 𝑈𝑃 + 𝑈𝑈 + 𝑈𝑁 + 𝑁𝑃 + 𝑁𝑈 + 𝑁𝑁

30 https://en.wikipedia.org/wiki/F1_score

https://en.wikipedia.org/wiki/F1_score

36

where 𝑃𝑃 + 𝑃𝑈 + 𝑃𝑁 + 𝑈𝑃 + 𝑈𝑈 + 𝑈𝑁 + 𝑁𝑃 + 𝑁𝑈 + 𝑁𝑁 is basically the total

amount of classified tweets.

37

2.5 CNN classifier

In this section is presented the design and implementation of the tweet polarity classifier

based on the Convolution Neural Network (CNN) presented by Yoon Kim in [16]. The

idea is to build a simple classifier and from there, try to improve its performance by fine-

tuning the hyperparameters following a similar experimental approach as the one

described in [17] to find the optimal configuration for my dataset. Once the optimal

configuration is found, I try to improve the model by adding lexicon features to the feature

vector from the CNN. The implementation of the CNN classifier can be found in

GitHub31.

2.5.1 CNN architecture

The CNN presented by Kim in [16] is a simple CNN with only one layer of convolution

on top of word vectors. Figure 2.7 shows that architecture for a 2-class classification

problem, which is analogous for the classification task at hand. We will note go into many

details of the architecture and the CNN functioning, for more information see [16] and

[17]. Nonetheless, some key aspects and elements of the architecture must be explained

to understand how text is treated by the CNN.

Word embeddings

Word embeddings are vector representations of words that allows words with similar

meaning to have a similar representation [29]. This representation is a vector, hence

similar words would have very similar vectors, and if visualized in the vector space, they

would be very close. Word embeddings have been widely used in NLP because they have

the ability of capturing context of a word within a document, semantic and syntactic

similarity with other words, etc. There are several available pre-trained word vectors like

GloVe32 and word2vec33, and in [16] Kim states pre-trained word vectors perform very

well and can be used as ‘universal’ feature extractors for text classification tasks.

Input of the CNN

The CNN gets as an input a tokenized sentence which is converted into a sentence matrix,

where each row is a word vector representation of each token. This word representations

are the outputs of the aforementioned pre-trained word embeddings. The word vectors

are initialized with the vectors obtained from the pre-trained word vectors. Those words

that are not found in the pre-trained word vectors are randomly initialized.

If we denote the dimensionality of the word vectors by d, and the length of a tweet by s,

then the dimensionality of the sentence matrix is s x d. At this point we have a matrix of

31https://github.com/mitji/TFG_Twitter-Sentiment-Analysis-on-BBC-Proms/tree/master/classifiers
32 https://nlp.stanford.edu/projects/glove/
33 https://code.google.com/archive/p/word2vec/

https://github.com/mitji/TFG_Twitter-Sentiment-Analysis-on-BBC-Proms/tree/master/classifiers
https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/

38

s x d filled with numbers, which can be treated as an image [30], and therefore we can

perform convolutions on it with linear filters.

Linear filter sizes

The linear filters slide over full rows of the matrix, that is, over the words. Thus, filters

width has to be the same as the length of the word vectors, and then different filter heights

(referred as filter size) are explored to detect different n-grams, since in each convolution

the filters will be sliding over combination of n words, where n is the size of the filter.

Hence, the idea of this filters is to detect representative n-grams patterns, and therefore

different combinations of filter sizes must be explored to find the most representative n-

grams for the dataset at hand.

Feature map

Each convolution will generate a feature map, so this will generate a number of feature

maps of different dimensionality, which is given by the sentence length and the filter size.

That is why a max-pooling operation is applied to each feature map so that all have the

same size while they keep the most important information. Here we will be using 1-max

pooling, which keeps the most representative feature from each feature map. Then all the

feature maps are concatenated and passed through a softmax function to generate the final

classification.

Regularization

Two common type of regularization techniques may be applied to prevent overfitting:

dropout and l2 norm constraint.

The values for all these hyperparameters of the CNN are explained in the following

section.

39

Figure 2.7: Illustration of the architecture of a two-class classification CNN, analogous

to the three-class classification task at hand. Picture taken from [17] .

2.5.2 Baseline model

As explained at the beginning of this section, the CNN structure is the same as the one

from Kim [16]. The baseline configuration for that CNN is described in table 2.1. This

baseline model configuration is defined based on the conclusions from [17], and will be

taken as a point of reference to compare the results of the hyperparameters tuning.

The parameters highlighted in grey, activation function and polling strategy, will be kept

static during all experiments, since the chosen values are the values that have shown to

be the best for text-classification tasks [17].

40

Table 2.1: CNN baseline configuration

The baseline model presented above achieves the following results:

 AvgRec 𝑭𝟏
𝑷𝑵 Acc

Baseline model 61.90% 58.40% 62.40%

Table 2.2: Baseline model performance

In the next section we will see the effect of each of the hyperparameters on the

performance of the model, and how they should be set to enhance the performance of the

model.

2.5.3 Model optimization

First, we will try to improve the model performance by changing the learning rate and the

filter sizes. Then we will find which is the best resampling technique to apply to our

dataset in order to solve the class imbalance problem, which can lead to a bad model

performance if it is not addressed properly. Once the optimal dataset is found, we will

carry out several experiments with other different hyperparameter configurations to

improve the baseline model configuration.

The idea is to experiment with each hyperparameter individually while keeping the other

hyperparameters static, and then see how they can improve the baseline model. At the

Hyperparameter Value

Input word vectors GloVe(200d)

Filter region size (1, 1, 1)

Feature maps 100

Learning rate 0.001

Activation function ReLu

Pooling strategy 1-max pooling

Regularization

Dropout rate 0.5

L2 norm constraint 3

41

end, different classifiers with different fine-tuned combinations are built in order to find

the best one.

Effect of learning rate

To find the best learning rate we will experiment with different values and see how the

model learns with each value. Results are shown in table 2.3.

Learning rate AvgRec 𝑭𝟏
𝑷𝑵 Acc

0.001 - baseline 61.90% 58.40% 62.40%

0.0005 62.55% 60.60% 62.91%

0.0001 62.89% 62.66% 62.99%

Table 2.3: Results of different learning rates

In figure 2.8 we can see how the initial learning of 0.001 rate makes the model learning

inconsistent, achieving the lowest validation loss in the first epoch. On the other hand,

setting the learning rate to the half, to 0.0005 improves the model performance by a

0.65%, whereas an even smaller learning rate of 0.0001 improves the performance by a

0.99% if we increase the number of epochs to 10.

With the smallest learning rate, the model learns much slower and then captures more

important information, but with the drawback of taking more time to train the model.

Figure 2.8: Evolution of the validation and training loss during epochs. From left to

right: lr 0.001, lr 0.0005, lr 0.0001

Effect of filter region size

As mentioned in [17], the filter region size can have a large effect on performance,

therefore it must be tuned, and each dataset has its own optimal filter region size. Since

we are dealing with Twitter data, where we generally find short sentences, we will explore

a range of region sizes from 1 to 4. The same approach as in [17] is followed to find the

best filter region size. We first find the optimal single filter region size, and then explore

42

combinations of several filter region sizes close to the optimal single size found before.

The results obtained following this approach are shown in table 2.4.

Filter region size AvgRec 𝑭𝟏
𝑷𝑵 Acc

(1, 1, 1) - baseline 61.90% 58.40% 62.40%

(2, 2, 2) 62.20% 59.57% 62.34%

(3, 3, 3) 61.01% 57.10% 61.56%

(4, 4, 4) 62.94% 60.93% 62.92%

(2, 3, 4) 62.93% 60.36% 62.80%

(1, 2, 3, 4) 61.67% 59.45% 63.80%

(3, 4, 5) 62.48% 60.98% 63.48%

(2, 2, 4, 4) 63.28% 61.08% 62.41%

(2, 2, 4) 61.32% 57.48% 62.03%

(2, 4, 4) 61.51% 59.74% 63.81%

Table 2.4: Results for different filter region sizes

For the SemEval 2017 task 4 training dataset, the best single region size is 4, which

suggests that the n-gram that best describes our data is 4-gram. Then we perform several

experiments of combinations of different filter region sizes close to this single region,

and, to the contrary of what is shown in [17], we do not achieve better results. We perform

some more combination of filter region sizes based on the two best single region sizes,

which are 2 and 4, getting an increase of 1.38% in AvgRec over the baseline model for

the filter region sizes (2, 2, 4, 4).

Effect of resampling techniques

Here are presented the results for different resampled versions of the training dataset

using the methods presented in section 2.3. The results are reported in table 2.5.

It can be seen that the two best resampling techniques are downsampling by 50% and

upsampling by 244.54%, hence both will be considered in the final experiments.

Another thing we can also notice from the results shown in table 2.5 is the excellent

performance of the model in the binary classification when dealing only with positive and

negative samples. This shows the complexity added by the multi-class classification

problem we are tackling in this work.

43

Resampling technique AvgRec 𝑭𝟏
𝑷𝑵 Acc

Original dataset – baseline 61.90% 58.40% 62.40%

Random downsampling

Downsampling 65%

(to fit number of negative samples)
62.38% 53.30% 54.38%

Downsampling 50% 63.43% 60.29% 59.51%

Downsampling 20% 62.60% 63.85% 63.08%

Random upsampling

Upsampling 284.33%

(to fit number of neutral samples)
61.92% 60.07% 61.95%

Upsampling 244.54%

(to fit number of positive samples)
62.99% 61.93% 61.80%

Upsampling 200% 61.90% 60.29% 62.32%

Data augmentation

10499 new negative tweets

(to fit number of positive samples)
62.56% 62.29% 60.55%

5250 new tweets 62.38% 60.64% 62.89%

Binary classification 84.86% 85.88% 83.72%

Table 2.5: Results for the different resampling techniques applied to the train dataset

Effect of input word vectors

In [16] it is shown that pre-trained word vectors can be used across datasets, and using

non-static vectors to fine-tune the word vectors for each specific task gives better results

than static vectors.

Although GloVe vectors have been shown to perform poorly than Word2Vec with

Twitter data [18], I have experimented with both of them to see which one performs better

with my dataset and model architecture. In table 2.6 we can see that in this case using 200

dimensions GloVe vectors perform better than Word2Vec.

Input word vector AvgRec 𝑭𝟏
𝑷𝑵 Acc

GloVe (200d) - baseline 61.90% 58.40% 62.40%

Word2vec 59.85% 56.70% 60.32%

Table 2.6: Results for different input word vectors

44

Besides using pre-trained word vectors such as GloVe or Word2Vec, two other

approaches can be followed to create the word vectors: 1) use word embeddings trained

on our own dataset; 2) use character embeddings instead of word embeddings, i.e.

FastText.

Effect of number of feature maps

The optimal number of feature maps for each filter region size depends on the dataset,

but the recommended range is between 100 and 600 taking into account that increasing

the number of feature maps will increase the training time of the model [17].

Num. of feature maps AvgRec 𝑭𝟏
𝑷𝑵 Acc

100 - baseline 61.90% 58.40% 62.40%

200 62.85% 60.48% 62.93%

300 63.31% 61.63% 62.76%

400 62.42% 60.96% 63.80%

500 61.56% 59.47% 63.12%

600 60.94% 59.36% 63.85%

Table 2.7: Results for different number of feature maps

From the table above we can see that the optimal number of feature maps is 300, with an

increase of 1.41% over the baseline model.

Effect of regularization

Regularization must be taken into account specially when increasing the number of

feature maps, which reduces the model performance due to overfitting. For these cases,

we will see if increasing the dropout rate improves the performance.

As seen in table 2.7, the increase of the number of feature maps improves the model

performance up to a size of 300. From there, the model performance starts dropping. In

table 2.8 we show the results of avoiding that drop of the performance by increasing the

dropout rate to 0.7. The result is an increase of a 1.57% over the baseline model.

Num. of feature maps AvgRec 𝑭𝟏
𝑷𝑵 Acc

400 63.47% 61.93% 62.59%

500 62.23% 60.26% 62.39%

600 62.30% 60.18% 63.23%

Table 2.8: Results for different number of feature maps with dropout rate set to 0.7

45

With all the information about the weight of each hyperparameter on the classifier

performance, we can say that the hyperparameters that the model is more sensitive to are

the filter region size and the number of feature maps. This makes a lot of sense since they

determine the type and the number of features that are being extracted.

We also have seen how manually increasing the size of the train dataset by using different

resampling techniques can improve the model performance.

In table 2.9 are presented the results for the different configurations I have experimented

with combining different values of hyperparameters. It can be seen that the two best

classifiers are achieved with the configuration presented in table 2.10 and with

downsampling and upsampling the dataset. Although the best AvgRec result is achieved

with the downsampling technique, the chosen model is the one with the upsampled

dataset. The reason why this model has been chosen is that although it has a slightly lower

performance on AvgRec, the other two measures obtained are a 3% higher than with the

downsampled dataset. This drop in 𝐹1
𝑃𝑁 and accuracy (Acc) can be understood by looking

to the confusion matrix of this model in figure 2.9. As it can be seen, the model trained

with the downsampled dataset performs remarkably well in classifying positive and

negative samples but fails to classify the neutral samples, classifying 37.11% of them as

negative samples. Thus, the decision on the final CNN classifier is made with a trade-off

on the correctly classification of negative samples, in order to have a more balanced

classifier.

Model configuration AvgRec 𝑭𝟏
𝑷𝑵 Acc

400 filters, 2244, dropout 0.7, lr 0.001 63.00% 62.49% 63.12%

300 filters, 2244, dropout 0.5, lr 0.001 63.36% 61.90% 62.27%

Downsampling 50% 64.16% 59.39% 59.42%

Upsampling 244.54% 64.02% 62.25% 62.58%

300 filters, 2244, no dropout, lr 0.001 63.71% 62.88% 63.29%

300 filters, 222, no dropout, lr 0.0005 60.51% 61.11% 62.81%

300 filters, 222, dropout 0.5, lr 0.0005 62.68% 62.34% 63.18%

Table 2.9: Results for different combinations of hyperparameters

46

Table following table shows the hyperparameter configuration for the final model:

Table 2.10: Final hyperparameter configuration

Figure 2.9: Confusion matrices for the two best models

Hyperparameter Value

Input word vectors GloVe(200d)

Filter region size (2, 2, 4, 4)

Feature maps 300

Learning rate 0.001

Activation function ReLu

Pooling strategy 1-max pooling

Dropout rate 0.5

L2 norm constraint 3

47

2.5.4 Adding lexicon features

Now that we have the best configuration for the architecture of the network, we will see

if adding lexicon features to the feature vector of the CNN can improve the model

performance.

Lexicons are used in rule-based systems to compute the overall sentiment of a tweet, and

a major part of sentiment analysis systems rely on them. Besides this, it has been shown

that sentiment lexicon based features are the most influential features in the improvement

of a logistic regression classifier performance [31]. We will see if this is also true for a

CNN based classifier.

Next I will explain the different lexicons I have used, and which features are extracted

from them.

In this work I have used four automatic generated lexicons, namely: ML-SentiCon [32],

accessible in http://www.lsi.us.es/~fermin/index.php?title=Datasets; SCL-NMA [33];

SCL-OPP [34], [35]; SemEval-2015 English Twitter Lexicon [36]. For more information

about the lexicons check the related papers, and for the former three also see

http://saifmohammad.com/WebPages/lexicons.html.

For each of the automatic constructed lexicon, the same features described in [37] are

added to the feature space of a tweet, which are the following: (1) tweet polarity, (2)

average polarity of the positive terms, (3) the average polarity of the negative terms, (4)

the score of the last positive term, (5) the score of the last negative term, (6) the maximum

positive score and (7) the minimum negative score.

The polarity of a tweet T given a lexicon L is computed as follows:

Figure 2.10: Tweet polarity computation. Picture taken from [37]

Where P and N are the number of positive and negative tokens found in the lexicon,

respectively. If N or P are zero, the divisions are not possible, and then the tweet polarity

is equal to the average polarity of the nonzero polarity tokens. That is, if P > N but N is

0, then polarity = mean of polarity of list of positive tokens

http://www.lsi.us.es/~fermin/index.php?title=Datasets
http://saifmohammad.com/WebPages/lexicons.html

48

The lexicon features are extracted for each input tweet and added to the final feature

vector, as it can be seen in the figure below. For each tweet 28 different features are

extracted, as a result of the seven features extracted with each of the four lexicons.

Figure 2.11: Architecture of the CNN with the addition of the lexicon features (in cyan

color) to the feature vector. The picture is a modification of a picture from [17].

The improvements of the addition of 28 features to the feature vector are reported in table

2.11. The table shows the results of the baseline configuration with both systems, and the

best models achieved with them. It can be seen that the CNN + lexicon method performs

better than the basic CNN. In the case of the CNN + lexicon system the best models is

obtained with the configuration seen in table 2.10 and trained with the dataset with the

49

neutral class downsampled to the 50%, with a gain of 2.48% in AvgRec in relation to the

baseline model of the initial CNN architecture. The improvements in relation to the best

model achieved with the initial CNN architecture are of a 0.22%.

Model configuration AvgRec 𝑭𝟏
𝑷𝑵 Acc

CNN

Baseline 61.90% 58.40% 62.40%

Downsampling 50% 64.16% 59.39% 59.42%

Upsampling 244.54% 64.02% 62.25% 62.58%

CNN + lexicon

Baseline 62.66% 60.69% 64.51%

Downsampling 50% 64.38% 61.27% 60.45%

Upsampling 244.54% 64.10% 63.02% 61.78%

Table 2.11: Results of experiments with the CNN + lexicon features

50

2.6 Machine learning classifiers

2.6.1 Feature extraction

In order to use text in machine learning algorithms, it has to be converted into a numerical

representation so that it can be passed to the algorithm, similarly to how the CNN extracts

features from vector representations of each word.

I have followed a similar approach to the one proposed in [37], which ranked 8th in

SemEval 2017 task 4 - subtask A. They present a representation of tweets using a rich set

of features using a Support Vector Machine to classify the tweets.

In this work I have used three different types of features: basic features, syntactic features

and lexicon features. Next I will describe each group of features.

Basic features

We will compute the presence or absence of contiguous sequences of n-grams of 1, 2, 3

or 4. An n-gram is a contiguous sequence of n words in a text, which can be used in text

classification to extract contextual information from a text, and is one of the most widely

used features.

Syntactical features

These types of features are very useful to distinguish between neutral and non-neutral

tweets. It has been shown that subjective and objective texts have different POS tags [38],

and as stated in [39], non neutral words in Twitter data are more likely to present the

following POS tags: nouns, adjectives, adverbs, abbreviations and interjections.

Hence, the number of occurrences of nouns, adjectives and adverbs are added to the

feature vector.

In addition to this, in the pre-processing I have manually added the POS tag ‘EMPHASIS’

to exclamation marks, capitalized words and words with repeated vowels (see section

2.2.3 - Step 3). Those tokens generally express some sort of subjectivity, therefore the

number of emphasis tokens present in the tweet is added to the feature space.

This result in a total of four syntactical features added to the feature space.

Lexicon features

I use the same lexicon features explained in section 2.5.4.

51

2.6.2 Algorithms

For the implementation of the machine learning classifiers I have used the SGDClassifier

module from scikit learn. This module implements several regularized linear models with

stochastic gradient descent (SGD) learning, and allows a high level hyperparameter

optimization. For more details on the SGDClassifier module, check the documentation

on scikit-learn34.

Two widely used algorithms for classification problems have been used for this task:

Logistic Regression and Support Vector Machine (SVM).

Logistic Regression

Logistic regression is one of the most common classification algorithms for supervised

learning. It is a linear model trained on labelled data, and typically used for binary

classification. It explains the relationship between variables. Given an input variable x,

logistic regression is applied, and the output variable y is a discrete value from 0 to 1.

Still, it can also be used for multi-class classification problems using the One-vs-all or

One-vs-one approaches35. In this work I use the one-vs-all approach, which consists in

training a single classifier for each class that is able to predict whether a sample is from

that class or not.

Support Vector Machine (SVM)

SVM is very similar to logistic regression, and is used for classification and regression

problems, although is mainly used for classification problems. It creates a decision

boundary which separates non-linear data distribution into classes.

2.6.3 Results

N-gram optimization

Some experiments are done to find the combination of n-grams that provide the best

representation of a tweet sentiment. Using 1 to 4 n-grams shows the best results when

tested individually. However, when combined with the other two types of features, the

best results are obtained with representations of 1 to 3 n-grams, so the last is the final

configuration used.

- Number of features:

The n-gram extraction generates hundreds of thousands of features, which can become

difficult to handle for the classifier. In 36 a comparison of n-gram combinations from 1 to

34 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
35 https://en.wikipedia.org/wiki/Multiclass_classification#One-vs.-rest

36 https://towardsdatascience.com/another-twitter-sentiment-analysis-with-python-part-5-50b4e87d9bdd

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://en.wikipedia.org/wiki/Multiclass_classification#One-vs.-rest
https://towardsdatascience.com/another-twitter-sentiment-analysis-with-python-part-5-50b4e87d9bdd

52

3 n-grams with different number of features is presented, and a reasonable number of

features seems to be 100000, as shown in figure 2.12.

Figure 2.12: Comparison of different combination of n-grams with different number of

features. Picture taken from 36

Hyperparameter optimization

Four hyperparameters have been tuned to obtain the best possible results. The other

hyperparameters are kept with their default configuration as they show the best results.

The values of learning_rate and validation_fraction are obtained experimentally, being

the combination shown in table 2.12 the best both for the SVM and the Linear Regression

classifiers.

If early_stopping is set to true, we need to provide the classifier with a validation set to

evaluate the model in each iteration and stop training when validation loss has not

improved after five iterations. This reduces the time of model building and ensures that

the model performs correctly with unseen data. As mentioned at the beginning of section

2, the chosen percentage for the train and validation split is a 15%, which shows to be the

optimal percentage.

Hyperparameter value

learning_rate 0.05

max_iter 300

early_stopping True

validation_fraction 0.15

Table 2.12: Hyperparameter configuration of the SGDClassifier both for the SVM and

the Linear Regression classifiers

53

Experiments for each individual group of features have been done to see which features

are the most representative.

 Syntactical Ngrams Lexicon Combined

 AvgRec 𝐹1
𝑃𝑁 Acc AvgRec 𝐹1

𝑃𝑁 Acc AvgRec 𝐹1
𝑃𝑁 Acc AvgRec 𝐹1

𝑃𝑁 Acc

SVM 37.48% 18.48% 48.21% 56.72% 52.22% 59.72% 46.54% 31.37% 50.93% 58.86% 54.87% 60.43%

LR 35.19% 8.47% 47.75% 57.12% 52.84% 59.61% 48.78% 37.60% 52.58% 59.34% 54.98% 59.82%

Table 2.13: Results with test set on each individual group of features

Comparing the results of table 2.13 with the final CNN results (see table 2.9), the numbers

presented here are very poor. In section 2.3 we have seen that the dataset is highly

imbalanced, and different techniques to solve this problem are presented. Next we will

show the results of the two machine learning classifiers trained with the different

resampling techniques presented in section 2.3.

- Downsampling:

 65% 50% 20%

 AvgRec 𝐹1
𝑃𝑁 Acc AvgRec 𝐹1

𝑃𝑁 Acc AvgRec 𝐹1
𝑃𝑁 Acc

SVM 55.85% 53.37% 46.19% 60.24% 58.39% 57.49% 59.27% 56.31% 59.15%

LR 57.82% 55.54% 49.06% 60.58% 58.50% 55.10% 60.43% 57.43% 58.44%

Table 2.14:Results for the classifiers trained with downsampled data

- Upsampling:

If we upsample the dataset, the number of samples needed for validation have to be

similar to the number of samples used in the previous methods, therefore a lower

validation_fraction split is being used in this case, 0.05, because the validation dataset

used for the CNN is not suitable for the SGDClassifier.

 284.33% 244.54% 200%

 AvgRec 𝐹1
𝑃𝑁 Acc AvgRec 𝐹1

𝑃𝑁 Acc AvgRec 𝐹1
𝑃𝑁 Acc

SVM 59.95% 56.43% 60.11% 60.85% 58.45% 60.97% 59.04% 54.95% 60.05%

LR 61.03% 58.71% 59.70% 60.34% 57.93% 61.30% 60.04% 57.33% 61.50%

Table 2.15: Results for the classifiers trained with upsampled data

54

- Data augmentation:

Working with this resampling technique, the best results are obtained with a value of

validation_fraction of 0.10, since the algorithms are also being trained with a bigger

dataset.

 10499 new neg tweets 5250 new neg tweets

 AvgRec 𝐹1
𝑃𝑁 Acc AvgRec 𝐹1

𝑃𝑁 Acc

SVM 59.54% 58.42% 59.30% 59.40% 58.17% 59.05%

LR 61.13% 59.82% 59.79% 60.09% 58.94% 59.52%

Table 2.16: Results for the classifiers trained with augmented data

- Binary Classification:

 Binary classification

 AvgRec 𝐹1
𝑃𝑁 Acc

SVM 80.43% 78.60% 79.08%

LR 81.43% 79.69% 80.16%

Table 2.17: Results for the binary classifiers

From these results we can conclude that the best classifier is the Logistic Regression

classifier with augmented data, with an AvgRec of 61.13%, what represents an

improvement of a 1.79% from the Logistic Regression model trained with the original

imbalanced dataset.

55

2.7 Final Classifier

2.7.1 Benchmark

As mentioned before in this work, the results of SemEval 2017 task 4 – subtask A are the

benchmark against which I measure my classifiers’ performances, since the same data is

being used for the training and the evaluation of the systems. Figure 2.13 shows the top

25 results of SemEval 2017 task 4 – subtask A competition with their respective

performance metrics. For more details on the results and the task see [3].

2.7.2 Machine learning and deep learning classifiers comparison

As a final step of the implementation of the classifier that we are going to use to classify

the BBC Proms tweets, we will compare the best classifiers achieved with the Machine

Learning and deep learning techniques, and see how good they are comparing it to the

results from SemEval 2017 task 4 – subtask A.

In table 2.18 we can clearly see that the best model is the final CNN + lexicon model,

which obtains an AvgRec of 64.38%. Comparing it with the benchmark results shown in

figure 2.13, we can see it performs very well, being between the top 8 methods. The

Logistic Regression classifier achieves similar results to the 20th ranked classifier.

Figure 2.13: Top 25 results from SemEval 2017 task 4 – subtask A. A

total of 38 teams participated in this subtask. Picture is taken from [3]

56

Therefore, the classifier that we will be using to classify the BBC Proms in next section

is the CNN + lexicon classifier from the CNN implementation.

 AvgRec 𝑭𝟏
𝑷𝑵 Acc

Best CNN (CNN + lexicon) 64.38% 61.27% 60.45%

Best Logistic Regression 61.13% 59.82% 59.79%

Table 2.18: Top performances achieved with each of the explored classifiers

57

3. ANALYSIS OF BBC PROMS TWEETS

Once we have the optimal Twitter classifier, we are ready to classify the tweets from BBC

Proms. The tweets to be analyzed are from the BBC Proms editions from 2014, 2016 and

2017. This data is provided by Horacio Saggion, so if you are interested in accessing this

data, please contact him at horacio.saggion@upf.edu.

Once the tweets are classified, I will build a dashboard with different visualizations of the

classified data with Kibana37. Kibana is a powerful visualization tool that allows you to

visualize data in different ways, and apply filters to analyze specific entities of your data,

filter by date, by topic, keywords, etc. The visualizations will make the analysis on the

classification results much easier and understandable.

3.1 Data summary

For each of the BBC Proms edition, two group of tweets are provided. One group is of

tweets filtered by the location where the set of concerts are held. This location is shown

in figure 3.1. The other group is a set of tweets filtered by hashtags, where the hashtags

used are “bbcproms”, “bsproms” and “bbcprom”, and filtered by the users

@bbcproms38 and @RoyalAlbertHall39. Table 3.1 shows the number of tweets for each

group and each edition. The tweets from both groups of each edition are added together

and the repeated tweets are removed, then all of the tweets from the three editions are put

together into a single file which will be used for the classification and analysis.

Figure 3.1: Screenshot of the search area of the group of tweets filtered by location

37 https://www.elastic.co/kibana
38 https://twitter.com/bbcproms
39 https://twitter.com/royalalberthall

mailto:horacio.saggion@upf.edu
https://www.elastic.co/kibana
https://twitter.com/bbcproms
https://twitter.com/royalalberthall

58

 Location filter Hashtag filter all

2014 181602 51435 149962 (47.21%)

2016 82947 81736 109672 (34.53%)

2017 19999 80434 57985 (18.26%)

 Total 317619

Table 3.1: Number of tweets for each group of tweets of each edition. The last column

shows the number of unique tweets

Having duplicated samples can make the analysis very tough because it adds a lot of

repeated data that can lead to a not accurate analysis. As seen in table 3.1, the last column

shows the total number of tweets once the duplicates are removed, which is much lower

than the sum of location and hashtag without removing duplicated samples. At the end

we obtain a total of 317619 tweets to analyse, from which the 47.21% are from the 2014

edition, 34.53% from 2016, and the remaining 18.26% from 2017 edition.

The differences in the size of the available data for each year is due to two things. First it

may be that less data has been scrapped from each edition. Secondly, when loading the

files, some files had “corrupted” lines that were not able to be read in Python, and these

lines were omitted for the final group of tweets.

3.1 Data classification

Before the actual classification of all the data, we will see how the CNN + lexicon

classifier performs with manually annotated data from the BBC Proms. To do this, I have

manually annotated 110 tweets from the 2014 edition, where there are 73 positive

samples, 16 neutral, and 21 negative samples. The classifier achieves an AvgRec of

73.27%. The results are shown in table 3.2. It is also shown the confusion matrix of the

classification results (see figure 3.2), where we can see that the CNN + lexicon model is

very robust predicting positive and neutral samples, and very decent for the negative

class.

AvgRec 𝑭𝟏
𝑷𝑵 Acc

73.27% 63.16% 78.84%

Table 3.2: Results of the CNN + lexicon model evaluated on BBC Proms manually

annotated data

59

Figure 3.2: Confusion matrix of the evaluation of the CNN + lexicon model with

manually annotated BBC Proms

Finally, the classification results on the BBC Proms tweets are shown in the table below.

 negative neutral positive

2014 25083 49887 66495

2016 6349 47228 47248

2017 4541 21700 31744

Total 35973 118815 145487

Table 3.3: Results of the classification of the tweets from BBC Proms

60

3.2 Data visualizations

After passing the tweets through the pre-processing pipeline and classifying them, all the

tweets are stored in .jsonl format, one of the formats of input data accepted in Kibana.

Each tweet is represented by an object with the following fields: created_at, user,

raw_text, is_retweet, hashtags, user_mentions, tokens, sentiment, proper_nouns,

adjectives. This fields carry a lot of information about a tweet, apart from the polarity

sentiment, and will become useful to perform different visualizations and apply different

filters on Kibana.

For the visualizations, I have built a dashboard where all the visualizations can be seen

and modified by applying filters to them. If you want to take a look to the dashboard, you

can access it in this link*: https://1b29a17d68924f4c8434d9ce1af8e164.eu-west-3.aws.elastic-

cloud.com:9243/app/dashboards#/view/49a719f0-ee25-11ea-b2f9-

2b1fb5a19ff3?_g=(filters%3A!()%2CrefreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%

3A(from%3A'2014-07-08T22%3A00%3A00.000Z'%2Cto%3A'2017-09-

24T18%3A19%3A33.090Z')).

The link will ask for a username and password, which are given below:

 username: demo

 password: demopass

*NOTE: I do not guarantee that the links to the dashboards will be available after 20/09/2020. If

you are interested in consulting the visualizations and the link does not work, please contact me

at d.mitjana@gmail.com.

Next I will introduce the dashboard built with Kibana and I will describe the

visualizations that have been implemented and which type of filtering can be applied.

The first set of visualizations of the dashboard aims to summarize the polarity distribution

of the tweets, see the evolution of the overall sentiment during all of the three editions,

and a list of all the classified tweets. Those visualizations can be seen in figure 3.3.

After this, several visualizations on specific entities of the tweets are made. Those include

the top 50 hashtags, the top 50 mentions of users, the top 100 used keywords, and the top

100 proper nouns and adjectives. These specific entities are extracted thanks to the data

provided by Twitter when scrapping tweets and thanks to the Twitter POS tagger from

CMU Ark. In those visualizations, represented as word clouds, it is easy to find the most

used words in each of them, and we can easily filter by these keywords to see all the

tweets where these words appear. For more detail on those word clouds, see next section.

https://1b29a17d68924f4c8434d9ce1af8e164.eu-west-3.aws.elastic-cloud.com:9243/app/dashboards#/view/49a719f0-ee25-11ea-b2f9-2b1fb5a19ff3?_g=(filters%3A!()%2CrefreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2014-07-08T22%3A00%3A00.000Z'%2Cto%3A'2017-09-24T18%3A19%3A33.090Z'))
https://1b29a17d68924f4c8434d9ce1af8e164.eu-west-3.aws.elastic-cloud.com:9243/app/dashboards#/view/49a719f0-ee25-11ea-b2f9-2b1fb5a19ff3?_g=(filters%3A!()%2CrefreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2014-07-08T22%3A00%3A00.000Z'%2Cto%3A'2017-09-24T18%3A19%3A33.090Z'))
https://1b29a17d68924f4c8434d9ce1af8e164.eu-west-3.aws.elastic-cloud.com:9243/app/dashboards#/view/49a719f0-ee25-11ea-b2f9-2b1fb5a19ff3?_g=(filters%3A!()%2CrefreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2014-07-08T22%3A00%3A00.000Z'%2Cto%3A'2017-09-24T18%3A19%3A33.090Z'))
https://1b29a17d68924f4c8434d9ce1af8e164.eu-west-3.aws.elastic-cloud.com:9243/app/dashboards#/view/49a719f0-ee25-11ea-b2f9-2b1fb5a19ff3?_g=(filters%3A!()%2CrefreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2014-07-08T22%3A00%3A00.000Z'%2Cto%3A'2017-09-24T18%3A19%3A33.090Z'))
https://1b29a17d68924f4c8434d9ce1af8e164.eu-west-3.aws.elastic-cloud.com:9243/app/dashboards#/view/49a719f0-ee25-11ea-b2f9-2b1fb5a19ff3?_g=(filters%3A!()%2CrefreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2014-07-08T22%3A00%3A00.000Z'%2Cto%3A'2017-09-24T18%3A19%3A33.090Z'))
mailto:d.mitjana@gmail.com

61

Figure 3.3: Overview of the dashboard

3.3 Analysis

The first thing we can notice in the evolution of the sentiment polarity through time,

which can be seen in more detail in figure 3.4, is that the first noticeable spike of positive

tweets is found in the first week. This looks logical, since at the beginning everyone might

be excited for The Proms. Another thing we can notice is that the number of negative,

neutral and positive tweets generally follow a similar evolution, which does not give very

useful insights of the overall perception of the BBC Proms.

However, in the same figure we can see that the number of positive tweets is much higher

than the neutral or negative ones. One may think that this is caused by tweets generated

by non-personal accounts. We then remove all the tweets created by official and

informative accounts that can be find in the top of the table shown in figure 3.5, and the

results are still the same. So, in general terms, we can conclude that BBC Proms are very

well perceived by the audience.

62

Figure 3.4: Evolution of tweet polarity during each edition

Figure 3.5: List of the top users. The first 10 are removed to see if the polarity

distribution varies, but it remains the same

One of the best things of Kibana dashboard is that by clicking in one of the words of a

word cloud it automatically changes all the visualizations and filters them to show only

the results for tweets containing that specific word. This is the closer we can get to domain

specific entity recognition, by clicking and filtering manually on entities of interest.

Looking at the word cloud of the top 100 proper nouns shown in figure 3.6, we can detect

some classical music specific entities. “baremboin”, a very famous musician,

“beethoven”, “mozart” and many more entities can be seen.

63

Figure 3.6: List of the top 100 proper nouns. Some classical musical entities can be

detected, like “beethoven”, “symphony”, “mozart”, “barenboim”, “mahler”,

“orchestra”

In the word cloud above, we can click, for example, in “Barenboim” and see the

sentiment distribution of the tweets mentioning Barenboim. Surprisingly, we find a not

very good polarity distribution. This might make us think that he did not perform well in

The Proms, so we go to look into specific tweets, and we find out that in 2017 Barenboim

made some statements on his speech in the Proms that did not like to some people, but

his performance was brilliant, as many tweets mention it. Details on the polarity

distribution and some negative tweets mentioning Barenboim can be seen in figure 3.7.

Figure 3.7: Results of analyzing the figure of Daniel Barenboim in the BBC Proms

64

Another visualization that really shows the perception of Barenboim’s speech and

performances can be seen in figure 3.8. There we can see the evolution of the opinion on

Daniel Barenboim during the three editions of the BBC Proms. As it can be seen, in the

2014 and 2016 editions the number of tweets were low, with a majority of positive tweets.

However, in 2017 appears a big spike, which is associated to his speech and performance

that year. Looking at this visualization, the previous observations become much more

understandable.

Figure 3.8: Evolution of the sentiment towards Daniel Barenboim between 2014 and

2017 editions

65

4. CONCLUSIONS

4.1 Conclusions

In this work it has been presented the implementation of a complete journey to perform

Twitter Sentiment Analysis, from data gathering and data pre-processing to the final

classification and analysis of the tweets.

The results of the classifiers show that a simple CNN model with few hyperparameter

optimization outperforms machine learning algorithms, obtaining comparable results to

the state-of-the-art. It has also been shown that adding lexicon features to the feature

vectors in the CNN improves the performance. This reinforces the well-known ability of

deep learning methods to outperform widely used machine learning algorithms in a

number of tasks.

The low results obtained with the machine learning approaches can be due to a not

accurate feature selection. Those methods rely heavily on the features they use, and in

this work this has not been deeply explored.

Regarding the visualizations and the analysis of the BBC Proms tweets, I have built a

useful visualization tool in Kibana where the data can be explored, filtered and analysed.

The analysis performed on the group of tweets is superficial due to the lack of a domain

specific entity recognition, which would have allowed a much deeper analysis and

powerful visualizations of the classified tweets. However, thanks to the POS tagger used,

I have been able to detect some tokens which have been tokenized as proper nouns, that

later in the analysis have been detected as musical entities and I have been able to perform

some analysis on them.

4.3 Future work

There are several ways that this work can be improved. These can be divided in two type

of enhancements: implementation of the classifier and final analysis.

- Implementation:

o First, more annotated data would possibly improve the model

performance.

o The proposed CNN based method has a very simple design. Hence, future

work can be focused on improving the network architecture, where several

things can be explored: (1) different type of embeddings can be used; for

66

instance FastText40 character embeddings, and would also be interesting

to see how our model performs with word embeddings trained with our

dataset. More complex systems can be explored. (2) The top results

presented in SemEval 2017 task 4 – subtask A presented complex systems

where different combinations of deep learning methods with different set

of features where explored. Therefore, it is obvious that a better classifier

would be obtained with a more complex model, such as a deep learning

ensemble method.

o Finally, as for the machine learning methods, a richer set of features can

be explored. This includes exploiting word embeddings to extract

embedding features or using clusters to map each tweet to a set of clusters.

- Analysis:

o For the final analysis, a domain specific named entity recognition (NER)

would be needed. It will be suitable to use the method presented by

Lorenzo Porcaro and Horacio Saggion in [11]. This would allow deeper

analysis on specific musical entities like composers, specific pieces of

music, conductors, performers, etc.

o Finally, with the built-in Twitter classifier, one can perform Sentiment

Analysis on any domain. Hence, the method proposed in this work can be

exploited to apply Sentiment Analysis in other applications which involve

user-generated text.

40 https://fasttext.cc/

https://fasttext.cc/

67

BIBLIOGRAPHY

[1] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?,” 2002, doi:

10.3115/1118693.1118704.

[2] B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Found. Trends Inf.

Retr., 2008, doi: 10.1561/1500000011.

[3] S. Rosenthal, N. Farra, and P. Nakov, “SemEval-2017 Task 4: Sentiment Analysis

in Twitter,” pp. 502–518, 2018, doi: 10.18653/v1/s17-2088.

[4] M. V. Mäntylä, D. Graziotin, and M. Kuutila, “The evolution of sent iment

analysis—A review of research topics, venues, and top cited papers,” Computer

Science Review. 2018, doi: 10.1016/j.cosrev.2017.10.002.

[5] T. Nasukawa and J. Yi, “Sentiment analysis: Capturing favorability using natural

language processing,” 2003, doi: 10.1145/945645.945658.

[6] B. Whitman and S. Lawrence, “Inferring descriptions and similarity for music

from community metadata,” Proc. 2002 Int. Comput. Music Conf., 2002.

[7] M. Sordo, J. Serrà, and X. Serra, “A Method for Extracting Semantic Informat ion

from on-line Art Music Discussion Forums,” 2012.

[8] X. Zhang, Z. Liu, H. Qiu, and Y. Fu, “A hybrid approach for chinese named entity

recognition in music domain,” 2009, doi: 10.1109/DASC.2009.27.

[9] S. Oramas, L. Espinosa-Anke, M. Sordo, H. Saggion, and X. Serra, “ELMD: An

automatically generated Entity Linking gold standard dataset in the Music

Domain,” 2016.

[10] S. Oramas, A. Ferraro, A. Correya, and X. Serra, “Mel: a Music Entity Linking

System,” 2017.

[11] L. Porcaro and H. Saggion, “Recognizing Musical Entities in User-generated

Content,” Comput. y Sist., 2019, doi: 10.13053/CyS-23-3-3280.

[12] C. S. Yang and H. P. Shih, “A rule-based approach for effective sentiment

analysis,” 2012.

[13] T. Joachims, “Text categorization with support vector machines: Learning with

many relevant features,” 1998, doi: 10.1007/s13928716.

[14] W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative Study of CNN and RNN

for Natural Language Processing,” 2017, [Online]. Available:

http://arxiv.org/abs/1702.01923.

[15] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa,

“Natural language processing (almost) from scratch,” J. Mach. Learn. Res., 2011.

[16] Y. Kim, “Convolutional neural networks for sentence classification,” EMNLP

2014 - 2014 Conf. Empir. Methods Nat. Lang. Process. Proc. Conf., pp. 1746–

1751, 2014, doi: 10.3115/v1/d14-1181.

[17] Y. Zhang and B. Wallace, “A Sensitivity Analysis of (and Practitioners’ Guide to)

Convolutional Neural Networks for Sentence Classification,” 2015, [Online].

Available: http://arxiv.org/abs/1510.03820.

[18] M. Cliche, “BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with

CNNs and LSTMs,” no. 2014, pp. 573–580, 2018, doi: 10.18653/v1/s17-2094.

[19] M. Rouvier, “LIA at SemEval-2017 Task 4: An Ensemble of Neural Networks for

68

Sentiment Classification,” 2018, doi: 10.18653/v1/s17-2128.

[20] H. Hamdan, “Senti17 at SemEval-2017 Task 4: Ten Convolutional Neural

Network Voters for Tweet Polarity Classification,” vol. 6, no. 2014, pp. 700–703,

2018, doi: 10.18653/v1/s17-2116.

[21] B. Shin, T. Lee, and J. D. Choi, “Lexicon Integrated CNN Models with Attention

for Sentiment Analysis,” pp. 149–158, 2018, doi: 10.18653/v1/w17-5220.

[22] C. Baziotis, N. Pelekis, and C. Doulkeridis, “DataStories at SemEval-2017 Task

4: Deep LSTM with Attention for Message-level and Topic-based Sentiment

Analysis,” no. January, pp. 747–754, 2018, doi: 10.18653/v1/s17-2126.

[23] O. Owoputi, B. O’Connor, C. Dyer, K. Gimpel, N. Schneider, and N. A. Smith,

“Improved part-of-speech tagging for online conversational text with word

clusters,” 2013.

[24] R. Tsz-Wai Lo, B. He, and I. Ounis, “Automatically Building a Stopword List for

an Information Retrieval System.”

[25] H. Saif, M. Fernandez, Y. He, and H. Alani, “On stopwords, filtering and data

sparsity for sentiment analysis of twitter,” Proc. 9th Int. Conf. Lang. Resour. Eval.

Lr. 2014, no. i, pp. 810–817, 2014.

[26] Q. Xie, Z. Dai, E. Hovy, M.-T. Luong, and Q. V. Le, “Unsupervised Data

Augmentation,” arXiv, 2019.

[27] F. Sebastiani, “An axiomatically derived measure for the evaluation of

classification algorithms,” 2015, doi: 10.1145/2808194.2809449.

[28] P. Nakov, A. Ritter, S. Rosenthal, F. Sebastiani, and V. Stoyanov, “SemEval-2016

task 4: Sentiment analysis in twitter,” 2016, doi: 10.18653/v1/s16-1001.

[29] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed

representations ofwords and phrases and their compositionality,” 2013.

[30] R. Collobert and J. Weston, “A unified architecture for natural language

processing: Deep neural networks with multitask learning,” 2008.

[31] H. Hamdan, P. Bellot, and F. Bechet, “Lsislif: Feature Extraction and Label

Weighting for Sentiment Analysis in Twitter,” no. SemEval, pp. 568–573, 2015,

doi: 10.18653/v1/s15-2095.

[32] F. L. Cruz, J. A. Troyano, B. Pontes, and F. J. Ortega, “Building layered,

multilingual sentiment lexicons at synset and lemma levels,” Expert Syst. Appl.,

2014, doi: 10.1016/j.eswa.2014.04.005.

[33] S. Kiritchenko and S. Mohammad, “The Effect of Negators, Modals, and Degree

Adverbs on Sentiment Composition,” 2016, doi: 10.18653/v1/w16-0410.

[34] S. Kiritchenko and S. M. Mohammad, “Happy Accident: A sentiment composition

lexicon for opposing polarity phrases,” 2016.

[35] S. Kiritchenko and S. M. Mohammad, “Sentiment composition of words with

opposing polarities,” 2016, doi: 10.18653/v1/n16-1128.

[36] S. Kiritchenko, X. Zhu, and S. M. Mohammad, “Sentiment analysis of short

informal texts,” J. Artif. Intell. Res., 2014, doi: 10.1613/jair.4272.

[37] M. Jabreel and A. Moreno, “SiTAKA at SemEval-2017 Task 4: Sentiment

Analysis in Twitter Based on a Rich Set of Features,” pp. 694–699, 2018, doi:

10.18653/v1/s17-2115.

69

[38] A. Pak and P. Paroubek, “Twitter as a corpus for sentiment analysis and opinion

mining,” 2010, doi: 10.17148/ijarcce.2016.51274.

[39] Z. Zhou, X. Zhang, and M. Sanderson, “Sentiment analysis on twitter through

topic-based lexicon expansion,” 2014, doi: 10.1007/978-3-319-08608-8_9.

	GRAU EN ENGINYERIA EN SISTEMES AUDIOVISUALS
	Curs 2019-2020
	GRAU EN ENGINYERIA EN xxxxxxxxxxxx
	Acknowledgments
	Abstract
	Resum
	Resumen
	Contents
	List of figures
	List of tables
	1. INTRODUCTION
	2. METHODOLOGY
	3. ANALYSIS OF BBC PROMS TWEETS
	4. CONCLUSIONS
	BIBLIOGRAPHY

