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Abstract 

 

Nowadays, with the increasing amount of user-generated data available online in micro-

blogging services like Twitter, the human behavior of wondering what other people think 

has become an important field of study. Sentiment Analysis is a sub-field of Natural 

Language Processing (NLP) that tackles the issue of detecting the sentiment polarity of a 

piece of text, and is being used by a broad type of different businesses to extract insights 

of what people think about a product. The goal of this work is to perform a three-point 

scale {negative, neutral, positive} Sentiment Analysis on tweets from several editions of 

the BBC Proms, one of the biggest classical music festivals. We present a comparison of 

machine learning approaches and a state-of-the-art deep learning approach to classify 

Twitter data. In the experiments carried out, the deep learning approach, which is based 

on a CNN, outperforms the machine learning approaches achieving comparable results to 

the state-of-the-art. 

 

 

Resum 

 

Avui en dia, davant l’increment del contingut generat per usuaris disponible online en 

serveis de micro-blogging com Twitter, la necessitat humana innata de saber què és el 

que pensen els alters ha esdevingut un important camp d’estudi. Sentiment Analysis 

(anàlisi del sentiment) és un sub-camp del Processament del Llenguatge Natural que 

adreça la tasca de detectar el sentiment o opinió que expressa un text. Aquest tipus 

d’estudi està essent usat per una gran varietat d’empreses per extreure informació sobre 

el que la gent opina del seu producte. L’objectiu d’aquest treball és aplicar Sentiment 

Analysis en una escala de tres punts {negatiu, neutral, positiu} sobre un conjunt de tweets 

de diverses edicions del BBC Proms, un dels festivals de música clàssica més importants 

del món. En el treball es presenta una comparació de mètodes basats en machine learning 

i un mètode més vanguardista de deep learning. Els experiments duts a terme mostren 

que el mètode basat en deep learning supera els mètodes de machine learning, obtenint 

results similars als mètodes més actuals. 

 

 

Resumen 

 

El actual incremento de contenido generado por usuarios que está disponible online en 

servicios de micro-blogging como Twitter, ha provocado que la necesidad innata de los 

humanos de saber qué es lo que piensan los demás se haya convertido en un importante 

campo de estudio. Sentiment Analysis (análisis del sentimiento) es un sub-campo de 

Procesamiento del Lenguaje Natural (PLN) que estudia la tarea de detectar la polaridad 

del sentimiento que expresa un texto. Este tipo de estudio está siendo usado por una gran 

variedad de empresas para extraer información útil sobre lo que la gente opina de su 

producto. El objetivo de este trabajo es aplicar Sentiment Analysis en una escala de tres 



 

puntos {negativo, neutral, positivo} en un conjunto de tweets de varias ediciones del BBC 

Proms, uno de los festivales de música clásica más importantes del mundo. En el trabajo 

se presenta una comparación de métodos basados en machine learning y un método 

vanguardista de deep learning. Los experimentos realizados muestran que el método 

basado en deep learning supera los métodos de machine learning, obteniendo resultados 

similares a los del estado del arte. 
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1. INTRODUCTION  

 

1.1 Motivation 

In the last few years the field of Natural Language Processing (NLP) has experienced a 

“boom” in popularity thanks to the vast amount of accessible data and advances in deep 

learning. Many industries and research fields have benefitted from NLP, becoming a 

bridge between data science and human language. 

 

One widely used application of NLP is Sentiment Analysis (SA), which consists in 

understanding the opinion expressed by a text. First research on document classification 

by sentiment appeared in a work by Pang et al. [1], where they explored the performance 

of different machine learning methods on the task of SA. Since then, and with the fast 

growing amount of user generated data, SA quickly caught the attention and interest of 

varied industries and research fields [2]. It provides businesses the ability to apply 

automatic text analysis on any type of unstructured text source: survey answers, Facebook 

or Twitter comments, user feedback, emails, etc. This provides companies with very 

useful insights about their product and enables them to make data-driven decisions. 

 

Social media monitoring is one of the most exploited use cases of SA, since it is 

impossible for companies to stay updated with all the incoming data. In platforms like 

Twitter, around 6000 tweets are generated every second, which leads to around 500 

million tweets per day1. SA allows to keep track of all this data and analyze it to, for 

example, get real time insights about customers. 

 

Besides all this, this project has meant to me a starting point into the world of data 

analysis, which I have not had the opportunity to deeply explore during these years. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
1 https://www.internetlivestats.com/twitter-statistics/ 

https://www.internetlivestats.com/twitter-statistics/
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1.2 Proposal 

The aim of this work is to perform a three-point scale {negative, neutral, positive} SA on 

a group of tweets from the BBC Proms, the world’s greatest classical music festival. There 

are three main approaches which have been followed to carry out SA: rule-based 

approaches, machine learning approaches and deep learning approaches. All of them have 

been deeply explored in the literature, but not a lot of efforts have been put to explore 

how they perform on a three point scale polarity score with Twitter data. Hence, this work 

focuses on the following points: 

 

 Make a comparison of machine learning and deep learning based Twitter 

classifiers, by implementing state-of-the-art methods. 

 Compare classifiers results with state-of-the-art systems presented in SemEval 

2017 task4: Sentiment Analysis in Twitter, subtask - A [3]. 

 Use the best classifier to classify BBC Proms tweets and perform Sentiment 

Analysis on them. For this task I will use Kibana2 to implement an interface to 

visualize and analyze the classified data. 

 

The set of events to be analyzed are the BBC Proms editions from 2014, 2016 and 2017. 

Also known as the Henry Wood Promenade Concerts or The Proms, BBC Proms is an 

eight week classical music festival held every summer in London since 1895, with the 

goal of bringing the best in classical music to the widest possible audience3. It is one of 

the biggest and best-known music festivals in the world, hosting around 90 concerts and 

with the potential of reaching over fifteen million people4. 

 

But before diving into the implementation of the proposal and the analysis of the BBC 

Proms tweets, we first need to have a good understanding of what Sentiment Analysis is 

and the different approaches that have been proposed over the last years in the literature. 

 

 

 

 

 

 

                                                
2 https://www.elastic.co/kibana 
3 https://www.bbc.co.uk/programmes/articles/2kSNxH9Cj9PT62ZzTnvWpYZ/the-bbc-proms-whats-it-

all-about 
4 https://evanevanstours.com/blog/all-about-the-proms/ 

https://www.elastic.co/kibana
https://www.bbc.co.uk/programmes/articles/2kSNxH9Cj9PT62ZzTnvWpYZ/the-bbc-proms-whats-it-all-about
https://www.bbc.co.uk/programmes/articles/2kSNxH9Cj9PT62ZzTnvWpYZ/the-bbc-proms-whats-it-all-about
https://evanevanstours.com/blog/all-about-the-proms/
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1.3 Sentiment Analysis 

Sentiment Analysis (SA), also known as opinion mining, can be described as the process 

of computationally identifying and categorizing opinions expressed in a piece of text, 

especially in order to determine whether the writer’s attitude towards a particular topic or 

product is positive, negative or neutral5. 

 

Precedents of attempting to get public opinion can be traced back to the first decades of 

the XXth century when the task was focused on quantifying and measuring the opinion 

from questionnaires. The first academic studies that tackled the task of identifying public 

opinions appeared after WWII, with highly political motivations. Later in the mid-1990s, 

the computational linguistics community started to study text subjectivity analysis and 

the first computer-based sentiment analysis systems appeared.  

 

But it was not until the burst of subjective texts on the Web in the early 2000s that 

computer-based SA took off. A clear fact about this major outbreak is that 99% of the 

papers of sentiment analysis have been published after 2004 [4]. The increase of the 

number of papers in SA since 2000 can be seen in figure 1.1. Although the term sentiment 

analysis first appeared in [5], the research on sentiments appeared earlier [1]. 

 

Nowadays the task of SA has a wide range of practical applications. Thanks to the recent 

advances of deep learning techniques and the large and increasing amount of user-

generated text in social media platforms, it has become a hot topic of research not only in 

the field of Natural Language Processing (NLP) but also in political and social sciences 

and many other research fields. It also provides useful business insights for market 

predictions, helping companies to develop their strategies, to understand customer's 

opinions, the company’s reputation, etc. 

 

                                                
5 https://www.lexico.com/definition/sentiment_analysis 

Figure 1.1: Number of papers published per year related to Sentiment 

Analysis. Picture is taken from [4]. 

https://www.lexico.com/definition/sentiment_analysis
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1.3.1 Sentiment Analysis on music 

The relationship between music and human emotion is unquestionable, and a lot of 

research has been done to study this close connection. Technology advances have 

changed the way we listen and interact with music in recent years. This has boosted the 

interest in research areas like Music Information Retrieval (MIR) or Music Emotion 

Recognition (MER), both experimenting with text and audio features.  

 

Regarding text-based sentiment analysis on music, MIR researchers have taken advantage 

of NLP techniques such as Named Entity Recognition (NER) or Information Extraction 

(IE) for multiple tasks such as mood classification of lyrics, genre classification, 

recommender systems or artist similarity. However, the majority of sentiment analysis 

tasks in the music domain have tackled formal texts but not noisy user-generated content, 

i.e. social media and microblogging services like Twitter. 

 

First approaches on musical knowledge extraction from user-generated content were 

focused on reviews [6] and online forums [7]. Initial approaches for detecting musical 

named entities are presented in [8] and [9], and a first Musical Entity Linking (MEL) has 

been presented in [10]. 

Furthermore, a method to recognize classical musical entities in Twitter content generated 

by users is presented in [11], which focuses on detecting two kinds of musical entities: 

contributor and musical work.  

 

Nonetheless, the task of IE and NER from user-generated content of a specific domain 

like music is still challenging due to the highly noisy and informal nature of the texts 

generated by users. 
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1.4 State of the art 

There are three main sentiment classification levels to be considered:  

 

 document-level: classifies a whole document talking about one topic (e.g. product 

review) 

 sentence-level: detects whether a sentence expresses a positive or negative 

sentiment 

 aspect-level: classifies the sentiment with respect to the specific aspects of entities 

 

The scope of this work is SA of Twitter texts, therefore only sentence-level sentiment 

polarity classification methods are being considered for the task at hand. 

 

On the topic of sentence-level classification, and more specifically Twitter sentiment 

analysis, the International Workshop on Semantic Evaluation (SemEval) has dedicated 

part of its efforts to the task since 2013 edition. The most recent edition where they 

explored three point scale {negative, neutral, positive} SA of Twitter data was in 

SemEval-2017 Task 4: Sentiment Analysis in Twitter [3]. The competition results for 

subtask A are used to analyze the state-of-the-art methods of SA in Twitter data and as a 

benchmark for the methods presented later in this work. 

 

Since the beginning of 2000 different approaches to SA were explored by researchers. 

These approaches can be grouped into three main groups: rule-based approaches, 

machine learning approaches, and deep learning approaches. 

1.4.1 Rule-based approaches 

These methods basically compute an overall sentiment based on a set of manually created 

rules. These methods typically include word polarity computation based on lexicons, 

which are dictionaries of positive and negative scores for a list of words and can be used 

to compute the average sentiment of a tweet. A complete description of a rule-based 

method for sentiment analysis and comparison with previous similar methods is presented 

in [12] 

 

The advantage of using rule-based methods is that they do not need prior training to 

classify a document, therefore they require minimal data preparation, and can be easily 

done with libraries like TextBlob6 and VADER7. 

 

                                                
6 https://textblob.readthedocs.io/en/dev/quickstart.html 
7 https://github.com/cjhutto/vaderSentiment 

 

https://textblob.readthedocs.io/en/dev/quickstart.html
https://github.com/cjhutto/vaderSentiment
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A drawback of using this type of methods is that they do not have any understanding of 

the meaning of the sentence, hence are limited to basic sentiment analysis, and cannot 

perform other tasks such as sarcasm detection. 

1.4.2 Machine learning approaches 

Machine learning methods use huge amount of data to train a model that will be used to 

predict the polarity of a text. The most common classification algorithms used in machine 

learning based methods are Linear Regression, Support Vector Machines (SVM) and 

Naïve Bayes. Initial findings of the benefits of some of these algorithms for text 

classification tasks were introduced in [13]. 

 

In SemEval 2017 Task 4 – subtask A, three of the top-10 teams used machine learning 

approaches. They all used SVM classifiers based on different type of features: lexical 

features, semantic features, dense word embeddings, etc. 

1.4.3 Deep Learning approaches 

In recent years, deep learning techniques have transformed the field of NLP, considerably 

outperforming non-deep learning methods in a number of tasks, and improving the 

performance with less need of engineered features [14]. However, this is thanks to their 

ability to generalize well when trained with large amounts of data. A good example of 

the proved effectiveness of deep learning methods is that, in SemEval 2017 task 4 - 

subtask A, the top-4 ranked teams all used deep learning or deep learning ensembles. The 

most popular deep learning techniques for Sentiment Analysis are Recurrent Neural 

Networks (RNNs) and Convolutional Neural Networks (CNNs). 

 

RNNs 

 

RNNs are a type of networks that perform especially well with sequential data, it is, data 

that presents continuity in time. That’s why they have become popular in text 

classification tasks because their architecture allows the neural network to capture 

temporal behavior and sequential data, being a more “natural” approach for textual data 

since text is naturally sequential. The most popular and used version of RNNs are Long 

Short-Term Memory (LSTM) networks. 

 

CNNs 

 

As for CNNs, they are faster and simpler than RNNs and are well-known for their 

applications in computer vision and for the way they simulate the functioning of our brain. 

Nonetheless, they have shown remarkable good results in several NLP tasks [15], 
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outperforming previous approaches with simpler and faster methods. One of the first 

works that showed impressive results of CNNs for sentiment analysis was introduced in 

2014 by Yoon Kim [16]. The method achieved state-of-the-art results in sentence-level 

classification problems, with a basic CNN architecture with one-layer convolution layer, 

little computational costs and simple classification features using pre-trained word 

vectors. Figure 1.2 shows the basic architecture of the CNN presented by Kim. 

Figure 1.2: Model architecture of the CNN presented by Kim. Picture taken from [16] 

 

Since the introduction of CNN systems for text classification, many approaches of CNNs 

combining other techniques have been explored. In [17] they present a benchmark of 

CNN baseline configurations for text-classification tasks following Kim’s model. 

 

The two top ranked systems in SemEval-2017 Task 4 presented ensemble methods of 

CNNs and LSTMs networks [18][19]. The fourth ranked system [20] introduced an 

ensemble method of ten CNNs to classify a tweet, by using the same word embeddings 

as inputs for all the networks but varying the initial weights. The proposed network 

architecture is the same as the one presented by Kim in [16], with the addition of a fully 

connected layer, and the results of the different networks are combined by selecting the 

sentiment given by the majority of them. Lastly, a different approach is presented in [21], 

where deep learning techniques are combined with rule-based approaches, introducing a 

Lexicon integrated CNN method with attention. 
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2. METHODOLOGY 

In this section I will explain the process followed to build the final classifier that will be 

used to analyze the tweets from BBC Proms. The framework in which it is built is very 

similar to the one used in any Sentiment Analysis task, and can be seen in figure 2.1.  

 

Figure 2.1: Block diagram of the implemented framework. (1) data is gathered from a 

reliable source; (2) data has to be pre-processed in order to reduce vocabulary size and 

prepare it for feature extraction; (3) representative features have to be extracted from 

the data; (4)  different classifiers are built; (5) the classifier with the best performance 

is chosen to classify the BBC Proms tweets. 

2.1 Implementation 

All the implementation has been done in the Python programming language. In the text 

pre-processing I have created custom scripts to process the texts; the machine learning 

methods have been developed with the scikit-learn library8, and the CNN model has been 

implemented with the open source library PyTorch9. 

 

More details on the implementation are explained in each corresponding section. All the 

code can be found in GitHub10. 

                                                
8 https://scikit-learn.org/stable/ 
9 https://pytorch.org/ 
10 https://github.com/mitji/TFG_Twitter-Sentiment-Analysis-on-BBC-Proms  

https://scikit-learn.org/stable/
https://pytorch.org/
https://github.com/mitji/TFG_Twitter-Sentiment-Analysis-on-BBC-Proms
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2.2 Training data 

The task at hand is a supervised learning task, and the first common issue in this type of 

problems is to find enough labeled data to feed the classifier. If the system is provided 

with a decent amount of data, then it will be able to learn specific behaviors and 

relationships from the input data and it will classify correctly any given unlabeled input. 

2.2.1 Data gathering 

The aim of this work is to classify a group of tweets in a three-point scale: {negative, 

neutral, positive}, hence a reliable dataset of annotated tweets is needed and it has to be 

big enough to train a model. Thankfully, there is a renowned NLP competition called 

SemEval where they have explored the topic of three-point scale Twitter Sentiment 

Analysis in a number of their recent editions, in which they have provided the participants 

with annotated data to train, test and evaluate their models. 

 

SemEval is an ongoing series of computational semantic analysis systems11, where 

several teams compete on different NLP tasks. The most recent edition where they have 

explored Tweet polarity classification was in 2017, more specifically in Task 4 - Subtask 

A [3], which focuses on the overall sentiment of a tweet {negative, neutral, positive}. The 

dataset they provided for the task is available and can be downloaded in12. It includes 

annotated training and test data from the 2013 to the 2016 edition. I have combined all 

this data and I have used it as the training set, with a total of 53484 tweets. All the data is 

structured in .txt files with the following format: tweetId<TAB>label<TAB>text, pretty 

simple to read and process in the Python scripts. In the website of SemEval 2017 Task 

413 they also provide the test data that all the teams used to evaluate their systems, which 

makes it suitable to compare my models performance with state-of-the-art methods 

presented in SemEval 2017 Task 4 – subtask A by evaluating it with the same metrics. 

More details about the training and test dataset are shown in table 1.1. 

 

 negative neutral positive all 

training 8498 (15.89%) 24197 (45.24%) 20789 (38.87%) 53484 

test 3972 (32.34%) 5937 (48.33%) 2375 (19.33%) 12284 

Table 1.1: Distribution of training and test data from SemEval 2017 task 4 - subtask A 

                                                
11 https://en.wikipedia.org/wiki/SemEval 
12 

https://www.dropbox.com/s/byzr8yoda6bua1b/2017_English_final.zip?file_subpath=%2F2017_English_f

inal%2FGOLD%2FSubtask_A 
13 http://alt.qcri.org/semeval2017/task4/index.php?id=data-and-tools 

https://en.wikipedia.org/wiki/SemEval
https://www.dropbox.com/s/byzr8yoda6bua1b/2017_English_final.zip?file_subpath=%2F2017_English_final%2FGOLD%2FSubtask_A
https://www.dropbox.com/s/byzr8yoda6bua1b/2017_English_final.zip?file_subpath=%2F2017_English_final%2FGOLD%2FSubtask_A
http://alt.qcri.org/semeval2017/task4/index.php?id=data-and-tools
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2.2.2 Train and validation split 

The split of training data into train and validation sets is 85% for the train set and 15% 

for the validation set. The validation dataset is used to evaluate the model fit on run-time 

and make decisions to fine tune the hyper-parameters and apply early stopping if the 

model performance does not improve during training. 

 

 negative neutral positive all 

train 7229 (15.90%) 20554 (45.21%) 17678 (38.89%) 45461 

validation 1269 (15.82%) 3643 (45.40%) 3111 (38.78%) 8023 

Table 1.2: Train and validation datasets split for training and fine-tuning the models 

2.2.3 Text pre-processing pipeline 

To get the data in a clean, standard format for future analysis and to obtain the best 

possible results in the classification of the tweets, the data must be in an understandable 

format that is easy to read by a machine. Working with Twitter data this can become a 

very challenging task due to the amount of slang language, emojis, hashtags, contractions, 

misspelled words and noisy data that has little value for sentiment analysis and can have 

a negative impact on the classification. 

 

Next I will explain the different techniques I have used to prepare the data for both the 

machine learning and the deep learning approaches presented in this work.  

 

I have implemented a custom text pre-processing pipeline in Python inspired by the 

pipeline presented in [22] with the following structure: 

 

 Step 1: Pre-processing. Initial data cleaning and processing of the text before 

passing it through the Twitter POS tagger and tokenizer. 

 Step 2: Tokenization & POS Tagging. Step to identify domain specific tokens 

like hashtags, urls or mentios with the POS tagger and tokenize the tweets. 

 Step 3: Post-processing. Extra processing step that takes advantage of the 

tokenization and POS tagging to correctly remove unwanted data and refine the 

POS tags. 

 

Figure 2.2 shows the structure of the text pre-processing pipeline described above. 
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Figure 2.2: Custom text-preprocessing pipeline 

 

Step 1: Pre-processing 

 

Data cleaning 

First of all, the raw data downloaded from SemEval has to be read and prepared to be pre-

processed. As mentioned in section 2.1.1, all the training data is structured in .txt files 

with the following format: tweetId<TAB>label<TAB>text. Then, for the text pre-

processing, all the training files are combined into one file with the format 

sentiment<SPACE>text, ignoring the tweet id since it has no relevance for the sentiment 

detection. In addition to this, multiple white spaces are converted into single white spaces 

to make it easier to split tweets and generate tokens, double quotes (“) are removed from 

beginning and end of tweets, and all remaining double quotes are replaced by single 

quotes (‘). All the data is encoded in unicode format, so it must be read and processed 

accordingly in the following steps. 

 

Emojis and emoticons to CLDR short name 

Emojis and emoticons have to be preserved because they can carry a lot of information 

about the sentiment of a short text like a tweet.  

 

Emojis 

Taking into account the Unicode encoding and before any further processing, we need 

to replace the emojis by words to keep their meaning. For this I have used the python 

library emoji14 that does exactly this, converting emojis into a short descriptive name. 

For instance, the sentence “Confinement is finally over      ” will become 

“Confinement is finally over :smiling_face_with_smiling_eyes:”.  

 

 

                                                
14 https://pypi.org/project/emoji/ 

https://pypi.org/project/emoji/
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Emoticons 

As for emoticons, I have created a large dictionary of 126 emoticons with their 

corresponding short name using the same “source of truth” that uses the python emoji 

library, using the associated CLDR Short Name15. However, it is difficult to define an 

exact equivalence between emojis and emoticons, so a general approach for the emoticons 

short names have been followed, trying to find at least one word that can be found in the 

short text of similar emoticons or emojis. For example, in my custom dictionary the 

emoticons “:), (:, 8), =), xD” are represented as “:grinning_face:”. 

 

After this step, all emojis and emoticons have been replaced by their CLDR short name 

with textual meaning. It may happen that some characters of an emoticon are encoded in 

a different encoding system, or for some reason a character has not been decoded in the 

first step. This is solved in the Emoticon Parser of Step 3. 

 

Contractions removal 

Before applying the tokenizer and POS tagger I replace contractions by their full extended 

form. The task of extending a contraction can be very hard because it requires contextual 

knowledge to replace the contraction with the correct words. As an example, the 

contracted form “I’d” can have two expanded forms: “I would” and “I had”. 

 

For this step I use two methods. First, I use the python library pycontractions16 that does 

a decent job on this. In the case of the previous example, pycontractions would take 

context into account and successfully convert the sentence “I’d love to go” into “I 

would love to go”. 

 

Secondly, I use a custom contraction dictionary extracted from17 as a backup in case the 

pycontractions library doesn’t work properly. 

 

 

Step 2: Tokenization & POS Tagging 

 

Tokenization of Twitter data can be tricky because it is difficult to avoid splitting 

expressions that should be treated as a single token, and is also challenging to detect 

Twitter specific entities like URLs, hashtags, dates or at-mentions. 

 

There are several tokenizer tools from common NLP libraries like nltk or spacy, but they 

do not detect specific Twitter entities, and as a result they do not perform well in the 

tokenization of specific domain tokens like hashtags, mentions or emoticons. For this task 

I have used the Twitter tokenizer and Part-Of-Speech Tagger (POS Tagger) tool from 

                                                
15 http://www.unicode.org/emoji/charts/full-emoji-list.html 
16 https://pypi.org/project/pycontractions/ 
17 

https://github.com/tthustla/yet_another_tiwtter_sentiment_analysis_part1/blob/master/Yet_Another_Twitt

er_Sentiment_Analysis_part1-Copy1.ipynb 

http://www.unicode.org/emoji/charts/full-emoji-list.html
https://pypi.org/project/pycontractions/
https://github.com/tthustla/yet_another_tiwtter_sentiment_analysis_part1/blob/master/Yet_Another_Twitter_Sentiment_Analysis_part1-Copy1.ipynb
https://github.com/tthustla/yet_another_tiwtter_sentiment_analysis_part1/blob/master/Yet_Another_Twitter_Sentiment_Analysis_part1-Copy1.ipynb
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CMU ARK research group [23]. I also considered using TwitIE, a tokenizer and POS 

Tagger plugin from GATE, but I ended up choosing the tool from CMU because it was 

easier to adapt into my pre-processing pipeline by adapting an available python wrapper18 

that allows to run the java library from CMU in python. 

 

At the end of this step, every tweet is represented as an object (or dictionary) with the 

fields sentiment, raw_text, cleaned_text and tokens, which is an array of objects where 

every object is a token with two fields: token, which is the word itself, and tag, which is 

the POS tag.  

 

An example of a tweet structure after the Tokenizer and POS tagger can be seen In the 

following code snippet: 

 

 
 

 

Step 3: Post-processing 

 

This final step after tokenization consists in the main part of text processing that prepares 

the data for Sentiment Analysis. Taking advantage of the tokens and POS Tags generated 

in step 2, I decide which tokens I need to modify, keep and omit. Here is where I perform 

hashtag segmentation, spell correction, word normalization with lemmatization, removal 

of unwanted tokens like punctuation marks, numbers or mentions, lowercase all the data 

and at the end apply vocabulary reduction. 

 

Hashtag segmentation 

As explained in the article Working with Twitter Data in Python19, hashtags are usually 

created by merging several words together, and splitting them can become handy in 

                                                
18 https://github.com/ianozsvald/ark-tweet-nlp-python 
19 https://medium.com/analytics-vidhya/working-with-twitter-data-b0aa5419532 

https://github.com/ianozsvald/ark-tweet-nlp-python
https://medium.com/analytics-vidhya/working-with-twitter-data-b0aa5419532
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Sentiment Analysis. Apart from this, hashtags are usually used to express some sort of 

opinion with regard a specific topic. Thankfully, the POS tagger detects all hashtags 

entities. To split the hashtags into actual words, I use the python library Ekphrasis20 [22], 

a library developed by the winning team at SemEval 2017 Task 4 - subtask A. The library 

implements a word segmentation method that uses the Viterbi algorithm to split the words 

based on the statistics provided by a Twitter corpus, and the word segmentation is suitable 

for hashtag segmentation. Each new string generated from the hashtag segmentation is 

mapped into a new ‘HASHTAG’ token, and the original complete hashtag token is 

removed. 

 

Emphasis tokens 

Emphasis expressions are usually connected to strong sentiment, positive or negative, so 

they are worth detecting. Emphasis expressions like “!”, capitalized words, or words with 

more than 2 consecutive vowels are taken into account. No matter the tag a token has 

been given, if it is detected as an emphasis token, it will be converted into an emphasis 

token. 

 

Remove unwanted tokens 

After the POS tagging is easy to remove those tokens that have no relevance to the 

sentiment analysis task. In this sub-step I have removed punctuations (those on emoticons 

and emphasis tokens have already been converted into different POS tags), mentions, 

URL, emails, numbers, discourse markers and unknown tokens classified as ‘OTHERS’ by 

the POS tagger. 

 

Spell correction 

After testing several libraries (TextBlob21, SymSpell22) that detect and correct misspelled 

words, I concluded that they are very time-consuming and do not improve my model’s 

performance, so I have decided to apply a basic spell checker. First, I check that each 

character is not repeated more than twice in a word. In addition to this, if a word has a 

vowel consecutively repeated more than twice, the word is converted into an ‘EMPHASIS’ 

token. For example, the word “sooooo” that can be found in a sentence like “sooooo 

good”, will be converted first into a token with the tag ‘EMPHASIS’ and then the token 

itself will be corrected to “soo”. 

 

Lemmatization 

In order to normalize the text and reduce the vocabulary size I apply lemmatization, a 

technique to find the root form of inflected words, which can be simply described as 

words that have been derived from another word to express a different grammatical 

category by using a prefix, suffix, infix, or another internal modification such as a vowel 

                                                
20 https://github.com/cbaziotis/ekphrasis 
21 https://textblob.readthedocs.io/en/dev/ 
22 https://github.com/wolfgarbe/SymSpell 

https://github.com/cbaziotis/ekphrasis
https://textblob.readthedocs.io/en/dev/
https://github.com/wolfgarbe/SymSpell
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change23. For example, the words “are”, “is”, “am” and “were” have the same root 

word, which is “be”. 

 

There are two ways to normalize a word to its root form: lemmatization and stemming. 

They differ in the way they generate the root forms of words and the root word itself.  

Stemming is the process of reducing inflection in words to their root forms such as 

mapping a group of words to the same stem even if the stem itself is not a valid word in 

the language. Lemmatization, unlike Stemming, reduces the inflected words properly 

ensuring that the root word belongs to the language. In Lemmatization the root word is 

called Lemma. A lemma is the canonical form, dictionary form, or citation form of a set 

of words. 

 

I have chosen lemmatization because it converts each word to a word that belongs to the 

language, which can be useful in a later stage of analysis or processing. The only 

drawback of using lemmatization is that if what matters is speed, it is slower because it 

has to scan a whole corpus to find the lemma. The choice between stemming and 

lemmatization really depends on the application you are working on 

 

NLTK library24 provides a lemmatizer that uses the WordNet Database to find the lemma. 

In order to find the correct lemma, the lemmatizer needs the context in which you want 

to lemmatize the word, that is, it needs the part-of-speech (POS) tag, and this is achieved 

by providing the POS tag given by the CMU ARK POS Tagger and Tokenizer. 

 

Second Emoticon to CLDR short name 

This is the second emoticon parser of the pre-processing pipeline. It is included because 

the POS tagger also detects emoticons, especially those written in strange characters or 

with some encoded characters. For those emoticons that for any reason have not been 

detected in Step 1, I add this extra emoticon-to-text parser. An example of what I mean 

by “strange characters” is the following sentence: “c’mon now &gt;_&;gt”. The POS 

tagger decodes “;gt” into “>”, creating the token “>_>” with the tag “EMOTICON”. Then I 

check if this emoticon is in my custom dictionary, and I replace “>_>” by “face with 

raise eyebrow”. If the emoticon is not found in my emoticons dictionary, the token is 

removed. 

 

Lowercase 

At the end all tokens are lowercased as another stage of vocabulary reduction. 

 

TF1: Stop-word removal technique 

Stop-words, by definition, are meaningless words that have low discrimination power 

[24]. In NLP those words are removed from texts, helping to reduce vocabulary size, data 

sparsity and the feature space.  

                                                
23 https://www.datacamp.com/community/tutorials/stemming-lemmatization-python 
24 https://www.nltk.org/ 

https://www.datacamp.com/community/tutorials/stemming-lemmatization-python
https://www.nltk.org/
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In [25] they study the effect of six different stop-word removal methods on sentiment 

polarity classification of Twitter data. They use six different datasets, including the one 

from SemEval 2013 edition, which means that the conclusions of this work can be 

extrapolated to my scenario with similar training data. In the paper they show that the 

classical approach on stop-word removal, which consists in using a pre-compiled list of 

stop-words, have a negative impact on the performance of Twitter sentiment 

classification problems because it can remove relevant information or modify the context 

of a sentence. They show that the most effective technique is TF1, which basically 

removes those words that occur only once in the whole dataset. Compared to the other 

best-ranked method - Mutual Information (MI) - TF1 gives the best trade-off between 

good performance and processing time, hence is the recommended method for Twitter 

sentiment analysis tasks. As shown in figure 2.3, TF1 reduces around 65% of feature 

space on average. 

 

The effect of TF1 method on my training dataset is noticeable, reducing the vocabulary 

size by 56.1%. 

Figure 2.3: Reduction rate on the feature space of different stop-lists. Picture taken 

from [25] 

 

At the end, all the processed tweets are put together into a .json file where each tweet is 

an object with the final structure shown in figure 2.4 (see next page). The figure shows a 

detailed example of the evolution of a tweet in every step of the pre-processing pipeline.  
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Figure 2.4: Example of a tweet passed through all the steps of the pre-processing pipeline 
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2.3 Handling imbalanced data 

Although the training data is fairly reliable and big, it is highly unbalanced. There is a 

clear problem of class imbalance because there are many more instances of neutral and 

positive tweets than negative. As it can be seen in table 1.1, from the total of 53484 tweets, 

15.89% are negative, 45.24% neutral (three times the amount of negative) and the 

remaining 38.87% are positive tweets. 

 

Class imbalance is a common problem in ML and DL, especially in classification 

problems, and if it is not handled properly it can lead to a not accurate model performance. 

However, there is not a “go to” solution to solve the problem of class imbalance to 

improve the performance of a model, but different techniques have to be tried to find the 

best-suited method for the dataset at hand. 

 

Next I will present different techniques to solve the class imbalance problem and I will 

explain which ones I have chosen, given my training dataset. 

 

 

Gather more data 

First, you can look for more data, but in my case it was difficult to find another source of 

representative data, and also makes sense to find a a dataset with a polarity distribution 

of Twitter data with more neutral and positive tweets than negative, so this solution of 

class imbalance was dismissed. 

 

Change performance metrics 

Secondly, you can change the performance metrics and use metrics that give better 

insights, but since I am using the same metrics as the ones used in SemEval 2017 task4 - 

subtask A, this option was also not considered. More details on the used performance 

metrics used can be found in section 2.3. 

 

Use different machine learning algorithms 

Thirdly, different machine learning algorithms can be tried, and then see which of them 

perform better with the dataset at hand and with imbalanced data. This part is explored in 

section section 2.5 and 2.6, where different classifiers are explored. 

 

Resampling 

There are also a number of resampling techniques that can be explored. These methods 

consist in adding samples to the minority class to match the number of samples of the 

majority class, or the opposite, which is removing samples of the majority class or classes 

to match the minority class. I have used random undersampling, random upsampling and 

data augmentation. 

 

 



 

32 

 Random downsampling: 

This technique consists in randomly removing samples of the majority classes, in my case 

the neutral and positive classes. 

I use the resample module from scikit-learn25 to remove samples from the neutral class 

to get the same number of samples as the negative class (8498). 

 

 Random upsampling: 

This technique consists in randomly replicating samples of the minority class. I use again 

the resample module from scikit-learn25 to randomly replicate tweets from the negative 

class.  

  

 Data augmentation: Back Translation 

Data augmentation is a technique typically used in computer vision which consists in 

increasing the diversity of the training set by applying random (but realistic) 

transformations26 by rotating, translating, scaling or adding noise to the image. This can 

also be applied to texts, where the approach can be shuffling the words of a sentence or 

replacing some words by their synonyms to create new texts with the same meaning. An 

extended list of different approaches to data augmentation for text are introduced in this 

article 27, and some implementations of those methods are implemented in this GitHub 

repository: https://github.com/kothiyayogesh/medium-article-code. 

 

From the methods proposed in the aforementioned article, I have used Back Translation. 

This technique has given top results in several works. In 28 they used this technique for 

the Toxic Comment Classification Challenge on Kaggle, in which they ranked 1st. In [26] 

they used this method to augment unlabeled text and learn a semi-supervised model with 

only 20 labeled samples on the IMDB dataset, outperforming a previous state-of-the-art 

model trained with 25000 labeled samples. 

 

The main idea of back translation is simple, it consists in the following steps: 

 Translate text from English to another language (e.g. Catalan) 

 Translate the translated text back to English 

 Check if the new English sentence is different from the original. If it is different, 

then we keep the new sentence as the augmented version of the original text. 

 

Since the SemEval dataset has very few negative tweets, each tweet is back translated 

twice, and from the resulting list of augmented tweets I randomly take the number of 

tweets I want to add to the dataset. That is, if the dataset had 8000 negative samples and 

20000 samples would be needed to solve the class imbalance problem, we would need 

                                                
25

 https://scikit-learn.org/stable/modules/generated/sklearn.utils.resample.html 
26 https://www.tensorflow.org/tutorials/images/data_augmentation 
27 https://amitness.com/2020/05/data-augmentation-for-nlp/ 
28 https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/discussion/52557 

 

https://github.com/kothiyayogesh/medium-article-code
https://scikit-learn.org/stable/modules/generated/sklearn.utils.resample.html
https://www.tensorflow.org/tutorials/images/data_augmentation
https://amitness.com/2020/05/data-augmentation-for-nlp/
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/discussion/52557


 

33 

12000 new samples. This would mean that 16000 augmented samples would be generated 

(two for each original sample) and 12000 would be randomly taken. 

 

In the article27 they propose the use of the library TextBlob to do the translations, but I 

soon reached the limit of api calls that TextBlob makes “under the hood”. I used 

googletrans29 library instead, which is a free and unlimited library for Python that 

implements the Google Translate API. One positive thing about back translation is that 

misspelled words would be fixed or replaced by a word with a different meaning, which 

is perfect for the purpose of back translation. For instance, the text  its not that I'm a 

GSP fan (...)  would be back translated into  It's not that I'm a GSP fan (...). 

 

Figure 2.5: Back translation example. Inspired in a figure by Amit Chaudhary in 27 

 

Binary classification 

Lastly, you can ignore the majority class or merge minority classes and try binary 

classification. In my case I discard the majority class, that is, all the neutral tweets that 

represent 45.21% of the total data, simplifying the classification problem to 2 classes with 

29287 tweets, where 70.98% are positive tweets. 

 

 

 

 

 

 

                                                
29 https://py-googletrans.readthedocs.io/en/latest/ 

https://py-googletrans.readthedocs.io/en/latest/
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2.4 Performance metrics 

To assess the performance of the methods proposed in this work, I have applied the same 

evaluation measures used in SemEval 2017 task 4 - subtask A [1] to be able to compare 

my classifiers performances with the methods presented in SemEval. 

 

The primary metric used to rank the participants’ results is macro-average recall (AvgRec, 

see next paragraph for a description of AvgRec). Besides AvgRec, they also show the 

results for two secondary measures, macro average 𝐹1
𝑃𝑁 and accuracy, which will also be 

explained later in this section. But before describing each measure, we must know what 

macro-average means. The macro-average evaluation consists in computing the measure 

individually for each class, and then taking the average of all classes giving equal weight 

to each class. 

 

 

Macro average recall (AvgRec) 

Briefly, recall is the ratio 
𝑡𝑝

𝑡𝑝+ 𝑓𝑛
, where 𝑡𝑝 is the number of true positives and 𝑓𝑛 the 

number of false negatives, and it provides insights of the ability of a classifier to find all 

the positive samples. That is, given our dataset, it provides an idea of the ability of the 

classifier to classify correctly all the negative, neutral and positive samples. With the 

single label multi-class task at hand, recall for the positive class is computed as: 

 

𝑅𝑃 =  
𝑃𝑃

𝑃𝑃 + 𝑈𝑃 + 𝑁𝑃
 

 

Where PP, UP, PN and NP are the cells of the confusion matrix of figure 2.6.  

 

Then, AvgRec is the average recall across the positive (P), negative (N) and neutral (U) 

classes, and it is calculated as follows: 

 

𝐴𝑣𝑔𝑅𝑒𝑐 =
1

3
(𝑅𝑃 +  𝑅𝑁 +  𝑅𝑈) 

 

where 𝑅𝑃, 𝑅𝑁and 𝑅𝑈 are the recall of the positive, negative and neutral classes, 

respectively, and are calculated analogously to 𝑅𝑃. As mentioned in [1], AvgRec is more 

robust to class imbalance compared to 𝐹1
𝑃𝑁 and accuracy. For more details in the 

advantages of AvgRec see [27]. 
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Figure 2.6: Confusion matrix of the classification of the tweets. Cell XY stands for “the 

number of tweets that the classifier labelled X and the gold standard labels as Y”. P, U 

and N stand for positive, neutral and negative. Picture taken from table in [28]. 

 

Macro average F1 

By definition, 𝐹1 score is the harmonic mean of precision and recall30. With the task at 

hand, the 𝐹1 score for the positive class, 𝐹1
𝑃, is calculated as follows: 

 

𝐹1
𝑃 = 2 ∗

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛𝑃 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙𝑃

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛𝑃 +  𝑟𝑒𝑐𝑎𝑙𝑙𝑃
 

 

Where 𝑟𝑒𝑐𝑎𝑙𝑙𝑃 is the recall of the positive class explained before, and 𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛𝑃 is 

computed as follows:  

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛𝑃 =
𝑃𝑃

𝑃𝑃 + 𝑃𝑈 + 𝑃𝑁
 

 

Where 𝑃𝑃, 𝑃𝑈, 𝑃𝑁 and 𝑁𝑃 are the cells of the confusion matrix of figure 2.6. 

 

In [3] this measure is calculated over the positive and negative classes, excluding the 

neutral class. It is calculated as follows: 

 

𝐹1
𝑃𝑁 =

1

2
∗ (𝐹1

𝑃 + 𝐹1
𝑁) 

 

where 𝐹1
𝑃 and 𝐹1

𝑁 refer to the 𝐹1 of the positive and negative classes, respectively, and 

𝐹1
𝑁computation is analogous to 𝐹1

𝑃. 

 

Accuracy 

This metric indicates the overall percentage of correctly classified negative, neutral and 

positive tweets. That is, in our case this is computed as follows: 

 

𝐴𝑐𝑐 =
𝑃𝑃 + 𝑈𝑈 + 𝑁𝑁

𝑃𝑃 + 𝑃𝑈 + 𝑃𝑁 + 𝑈𝑃 + 𝑈𝑈 + 𝑈𝑁 + 𝑁𝑃 + 𝑁𝑈 + 𝑁𝑁
 

 

                                                
30 https://en.wikipedia.org/wiki/F1_score 

https://en.wikipedia.org/wiki/F1_score
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where 𝑃𝑃 + 𝑃𝑈 + 𝑃𝑁 + 𝑈𝑃 + 𝑈𝑈 + 𝑈𝑁 + 𝑁𝑃 + 𝑁𝑈 + 𝑁𝑁 is basically the total 

amount of classified tweets. 
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2.5 CNN classifier 

In this section is presented the design and implementation of the tweet polarity classifier 

based on the Convolution Neural Network (CNN) presented by Yoon Kim in [16]. The 

idea is to build a simple classifier and from there, try to improve its performance by fine-

tuning the hyperparameters following a similar experimental approach as the one 

described in [17] to find the optimal configuration for my dataset. Once the optimal 

configuration is found, I try to improve the model by adding lexicon features to the feature 

vector from the CNN. The implementation of the CNN classifier can be found in 

GitHub31. 

2.5.1 CNN architecture 

The CNN presented by Kim in [16] is a simple CNN with only one layer of convolution 

on top of word vectors. Figure 2.7 shows that architecture for a 2-class classification 

problem, which is analogous for the classification task at hand. We will note go into many 

details of the architecture and the CNN functioning, for more information see [16] and 

[17]. Nonetheless, some key aspects and elements of the architecture must be explained 

to understand how text is treated by the CNN. 

 

Word embeddings 

Word embeddings are vector representations of words that allows words with similar 

meaning to have a similar representation [29]. This representation is a vector, hence 

similar words would have very similar vectors, and if visualized in the vector space, they 

would be very close. Word embeddings have been widely used in NLP because they have 

the ability of capturing context of a word within a document, semantic and syntactic 

similarity with other words, etc. There are several available pre-trained word vectors like 

GloVe32 and word2vec33, and in [16] Kim states pre-trained word vectors perform very 

well and can be used as ‘universal’ feature extractors for text classification tasks. 

 

Input of the CNN 

The CNN gets as an input a tokenized sentence which is converted into a sentence matrix, 

where each row is a word vector representation of each token. This word representations 

are the outputs of the aforementioned pre-trained word embeddings. The word vectors 

are initialized with the vectors obtained from the pre-trained word vectors. Those words 

that are not found in the pre-trained word vectors are randomly initialized. 

If we denote the dimensionality of the word vectors by d, and the length of a tweet by s, 

then the dimensionality of the sentence matrix is s x d. At this point we have a matrix of 

                                                
31https://github.com/mitji/TFG_Twitter-Sentiment-Analysis-on-BBC-Proms/tree/master/classifiers   
32 https://nlp.stanford.edu/projects/glove/ 
33 https://code.google.com/archive/p/word2vec/ 

 

https://github.com/mitji/TFG_Twitter-Sentiment-Analysis-on-BBC-Proms/tree/master/classifiers
https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
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s x d filled with numbers, which can be treated as an image [30], and therefore we can 

perform convolutions on it with linear filters. 

 

Linear filter sizes 

The linear filters slide over full rows of the matrix, that is, over the words. Thus, filters 

width has to be the same as the length of the word vectors, and then different filter heights 

(referred as filter size) are explored to detect different n-grams, since in each convolution 

the filters will be sliding over combination of n words, where n is the size of the filter. 

Hence, the idea of this filters is to detect representative n-grams patterns, and therefore 

different combinations of filter sizes must be explored to find the most representative n-

grams for the dataset at hand. 

 

Feature map 

Each convolution will generate a feature map, so this will generate a number of feature 

maps of different dimensionality, which is given by the sentence length and the filter size. 

That is why a max-pooling operation is applied to each feature map so that all have the 

same size while they keep the most important information. Here we will be using 1-max 

pooling, which keeps the most representative feature from each feature map. Then all the 

feature maps are concatenated and passed through a softmax function to generate the final 

classification. 

 

Regularization 

Two common type of regularization techniques may be applied to prevent overfitting: 

dropout and l2 norm constraint. 

 

The values for all these hyperparameters of the CNN are explained in the following 

section. 
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Figure 2.7: Illustration of the architecture of a two-class classification CNN, analogous 

to the three-class classification task at hand. Picture taken from [17] . 

2.5.2 Baseline model 

As explained at the beginning of this section, the CNN structure is the same as the one 

from Kim [16]. The baseline configuration for that CNN is described in table 2.1. This 

baseline model configuration is defined based on the conclusions from [17], and will be 

taken as a point of reference to compare the results of the hyperparameters tuning. 

 

The parameters highlighted in grey, activation function and polling strategy, will be kept 

static during all experiments, since the chosen values are the values that have shown to 

be the best for text-classification tasks [17]. 
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Table 2.1: CNN baseline configuration 

The baseline model presented above achieves the following results: 

 

 AvgRec 𝑭𝟏
𝑷𝑵 Acc 

Baseline model 61.90% 58.40% 62.40% 

Table 2.2: Baseline model performance 

 

In the next section we will see the effect of each of the hyperparameters on the 

performance of the model, and how they should be set to enhance the performance of the 

model. 

 

2.5.3 Model optimization 

First, we will try to improve the model performance by changing the learning rate and the 

filter sizes. Then we will find which is the best resampling technique to apply to our 

dataset in order to solve the class imbalance problem, which can lead to a bad model 

performance if it is not addressed properly. Once the optimal dataset is found, we will 

carry out several experiments with other different hyperparameter configurations to 

improve the baseline model configuration.  

 

The idea is to experiment with each hyperparameter individually while keeping the other 

hyperparameters static, and then see how they can improve the baseline model. At the 

Hyperparameter Value 

Input word vectors GloVe(200d) 

Filter region size (1, 1, 1) 

Feature maps 100 

Learning rate 0.001 

Activation function ReLu 

Pooling strategy 1-max pooling 

Regularization 

Dropout rate 0.5 

L2 norm constraint 3 
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end, different classifiers with different fine-tuned combinations are built in order to find 

the best one. 

 

Effect of learning rate 

To find the best learning rate we will experiment with different values and see how the 

model learns with each value. Results are shown in table 2.3. 

 

Learning rate AvgRec 𝑭𝟏
𝑷𝑵 Acc 

0.001 - baseline 61.90% 58.40% 62.40% 

0.0005 62.55% 60.60% 62.91% 

0.0001 62.89% 62.66% 62.99% 

Table 2.3: Results of different learning rates 

 

In figure 2.8 we can see how the initial learning of 0.001 rate makes the model learning 

inconsistent, achieving the lowest validation loss in the first epoch. On the other hand, 

setting the learning rate to the half, to 0.0005 improves the model performance by a 

0.65%, whereas an even smaller learning rate of 0.0001 improves the performance by a 

0.99% if we increase the number of epochs to 10.  

 

With the smallest learning rate, the model learns much slower and then captures more 

important information, but with the drawback of taking more time to train the model. 

 

Figure 2.8: Evolution of the validation and training loss during epochs. From left to 

right: lr 0.001, lr 0.0005, lr 0.0001  

 

Effect of filter region size 

As mentioned in [17], the filter region size can have a large effect on performance, 

therefore it must be tuned, and each dataset has its own optimal filter region size. Since 

we are dealing with Twitter data, where we generally find short sentences, we will explore 

a range of region sizes from 1 to 4. The same approach as in [17]  is followed to find the 

best filter region size. We first find the optimal single filter region size, and then explore 



 

42 

combinations of several filter region sizes close to the optimal single size found before. 

The results obtained following this approach are shown in table 2.4. 

 

Filter region size AvgRec 𝑭𝟏
𝑷𝑵 Acc 

(1, 1, 1) - baseline 61.90% 58.40% 62.40% 

(2, 2, 2) 62.20% 59.57% 62.34% 

(3, 3, 3) 61.01% 57.10% 61.56% 

(4, 4, 4) 62.94% 60.93% 62.92% 

(2, 3, 4) 62.93% 60.36% 62.80% 

(1, 2, 3, 4) 61.67% 59.45% 63.80% 

(3, 4, 5) 62.48% 60.98% 63.48% 

(2, 2, 4, 4) 63.28% 61.08% 62.41% 

(2, 2, 4) 61.32% 57.48% 62.03% 

(2, 4, 4) 61.51% 59.74% 63.81% 

Table 2.4: Results for different filter region sizes 

 

For the SemEval 2017 task 4 training dataset, the best single region size is 4, which 

suggests that the n-gram that best describes our data is 4-gram. Then we perform several 

experiments of combinations of different filter region sizes close to this single region, 

and, to the contrary of what is shown in [17], we do not achieve better results. We perform 

some more combination of filter region sizes based on the two best single region sizes, 

which are 2 and 4, getting an increase of 1.38% in AvgRec over the baseline model for 

the filter region sizes (2, 2, 4, 4). 

 

Effect of resampling techniques 

Here are presented the results for different resampled versions of the training dataset 

using the methods presented in section 2.3. The results are reported in table 2.5. 

 

It can be seen that the two best resampling techniques are downsampling by 50% and 

upsampling by 244.54%, hence both will be considered in the final experiments.  

 

Another thing we can also notice from the results shown in table 2.5 is the excellent 

performance of the model in the binary classification when dealing only with positive and 

negative samples. This shows the complexity added by the multi-class classification 

problem we are tackling in this work. 
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Resampling technique AvgRec 𝑭𝟏
𝑷𝑵 Acc 

Original dataset – baseline 61.90% 58.40% 62.40% 

Random downsampling 

Downsampling 65% 

(to fit number of negative samples) 
62.38% 53.30% 54.38% 

Downsampling 50% 63.43% 60.29% 59.51% 

Downsampling 20% 62.60% 63.85% 63.08% 

Random upsampling 

Upsampling 284.33% 

(to fit number of neutral samples) 
61.92% 60.07% 61.95% 

Upsampling 244.54%  

(to fit number of positive samples) 
62.99% 61.93% 61.80% 

Upsampling 200% 61.90% 60.29% 62.32% 

Data augmentation 

10499 new negative tweets  

(to fit number of positive samples) 
62.56% 62.29% 60.55% 

5250 new tweets 62.38% 60.64% 62.89% 

Binary classification 84.86% 85.88% 83.72% 

Table 2.5: Results for the different resampling techniques applied to the train dataset 

 

Effect of input word vectors 

In [16] it is shown that pre-trained word vectors can be used across datasets, and using 

non-static vectors to fine-tune the word vectors for each specific task gives better results 

than static vectors.  

 

Although GloVe vectors have been shown to perform poorly than Word2Vec with 

Twitter data [18], I have experimented with both of them to see which one performs better 

with my dataset and model architecture. In table 2.6 we can see that in this case using 200 

dimensions GloVe vectors perform better than Word2Vec. 

 

Input word vector AvgRec 𝑭𝟏
𝑷𝑵 Acc 

GloVe (200d) - baseline 61.90% 58.40% 62.40% 

Word2vec 59.85% 56.70% 60.32% 

Table 2.6: Results for different input word vectors 
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Besides using pre-trained word vectors such as GloVe or Word2Vec, two other 

approaches can be followed to create the word vectors: 1) use word embeddings trained 

on our own dataset; 2) use character embeddings instead of word embeddings, i.e. 

FastText. 

 

Effect of number of feature maps 

The optimal number of feature maps for each filter region size depends on the dataset, 

but the recommended range is between 100 and 600 taking into account that increasing 

the number of feature maps will increase the training time of the model [17]. 

 

Num. of feature maps AvgRec 𝑭𝟏
𝑷𝑵 Acc 

100 - baseline 61.90% 58.40% 62.40% 

200 62.85% 60.48% 62.93% 

300 63.31% 61.63% 62.76% 

400 62.42% 60.96% 63.80% 

500 61.56% 59.47% 63.12% 

600 60.94% 59.36% 63.85% 

Table 2.7: Results for different number of feature maps 

From the table above we can see that the optimal number of feature maps is 300, with an 

increase of 1.41% over the baseline model. 

 

Effect of regularization 

Regularization must be taken into account specially when increasing the number of 

feature maps, which reduces the model performance due to overfitting. For these cases, 

we will see if increasing the dropout rate improves the performance. 

 

As seen in table 2.7, the increase of the number of feature maps improves the model 

performance up to a size of 300. From there, the model performance starts dropping. In 

table 2.8 we show the results of avoiding that drop of the performance by increasing the 

dropout rate to 0.7. The result is an increase of a 1.57% over the baseline model. 

 

Num. of feature maps AvgRec 𝑭𝟏
𝑷𝑵 Acc 

400 63.47% 61.93% 62.59% 

500 62.23% 60.26% 62.39% 

600 62.30% 60.18% 63.23% 

Table 2.8: Results for different number of feature maps with dropout rate set to 0.7 
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With all the information about the weight of each hyperparameter on the classifier 

performance, we can say that the hyperparameters that the model is more sensitive to are 

the filter region size and the number of feature maps. This makes a lot of sense since they 

determine the type and the number of features that are being extracted.  

 

We also have seen how manually increasing the size of the train dataset by using different 

resampling techniques can improve the model performance.  

 

In table 2.9 are presented the results for the different configurations I have experimented 

with combining different values of hyperparameters. It can be seen that the two best 

classifiers are achieved with the configuration presented in table 2.10 and with 

downsampling and upsampling the dataset. Although the best AvgRec result is achieved 

with the downsampling technique, the chosen model is the one with the upsampled 

dataset. The reason why this model has been chosen is that although it has a slightly lower 

performance on AvgRec, the other two measures obtained are a 3% higher than with the 

downsampled dataset. This drop in  𝐹1
𝑃𝑁 and accuracy (Acc) can be understood by looking 

to the confusion matrix of this model in figure 2.9. As it can be seen, the model trained 

with the downsampled dataset performs remarkably well in classifying positive and 

negative samples but fails to classify the neutral samples, classifying 37.11% of them as 

negative samples. Thus, the decision on the final CNN classifier is made with a trade-off 

on the correctly classification of negative samples, in order to have a more balanced 

classifier. 

 

 

 

Model configuration AvgRec 𝑭𝟏
𝑷𝑵 Acc 

400 filters, 2244, dropout 0.7, lr 0.001 63.00% 62.49% 63.12% 

300 filters, 2244, dropout 0.5, lr 0.001 63.36% 61.90% 62.27% 

Downsampling 50% 64.16% 59.39% 59.42% 

Upsampling 244.54% 64.02% 62.25% 62.58% 

300 filters, 2244, no dropout, lr 0.001 63.71% 62.88% 63.29% 

300 filters, 222, no dropout, lr 0.0005 60.51% 61.11% 62.81% 

300 filters, 222, dropout 0.5, lr 0.0005 62.68% 62.34% 63.18% 

Table 2.9: Results for different combinations of hyperparameters 
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Table following table shows the hyperparameter configuration for the final model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.10: Final hyperparameter configuration 

 

 

Figure 2.9: Confusion matrices for the two best models 

 

 

 

Hyperparameter Value 

Input word vectors GloVe(200d) 

Filter region size (2, 2, 4, 4) 

Feature maps 300 

Learning rate 0.001 

Activation function ReLu 

Pooling strategy 1-max pooling 

Dropout rate 0.5 

L2 norm constraint 3 
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2.5.4 Adding lexicon features 

Now that we have the best configuration for the architecture of the network, we will see 

if adding lexicon features to the feature vector of the CNN can improve the model 

performance. 

 

Lexicons are used in rule-based systems to compute the overall sentiment of a tweet, and 

a major part of sentiment analysis systems rely on them. Besides this, it has been shown 

that sentiment lexicon based features are the most influential features in the improvement 

of a logistic regression classifier performance [31]. We will see if this is also true for a 

CNN based classifier. 

 

Next I will explain the different lexicons I have used, and which features are extracted 

from them. 

 

In this work I have used four automatic generated lexicons, namely: ML-SentiCon [32], 

accessible in http://www.lsi.us.es/~fermin/index.php?title=Datasets; SCL-NMA [33]; 

SCL-OPP [34], [35]; SemEval-2015 English Twitter Lexicon [36]. For more information 

about the lexicons check the related papers, and for the former three also see 

http://saifmohammad.com/WebPages/lexicons.html. 

 

For each of the automatic constructed lexicon, the same features described in [37] are 

added to the feature space of a tweet, which are the following: (1) tweet polarity, (2) 

average polarity of the positive terms, (3) the average polarity of the negative terms, (4) 

the score of the last positive term, (5) the score of the last negative term, (6) the maximum 

positive score and (7) the minimum negative score. 

 

The polarity of a tweet T given a lexicon L is computed as follows: 

 

Figure 2.10: Tweet polarity computation. Picture taken from [37] 

 

Where P and N are the number of positive and negative tokens found in the lexicon, 

respectively. If N or P are zero, the divisions are not possible, and then the tweet polarity 

is equal to the average polarity of the nonzero polarity tokens. That is, if P > N but N is 

0, then polarity = mean of polarity of list of positive tokens 

http://www.lsi.us.es/~fermin/index.php?title=Datasets
http://saifmohammad.com/WebPages/lexicons.html
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The lexicon features are extracted for each input tweet and added to the final feature 

vector, as it can be seen in the figure below. For each tweet 28 different features are 

extracted, as a result of the seven features extracted with each of the four lexicons. 

 

Figure 2.11: Architecture of the CNN with the addition of the lexicon features (in cyan 

color) to the feature vector. The picture is a modification of a picture from [17]. 

 

The improvements of the addition of 28 features to the feature vector are reported in table 

2.11. The table shows the results of the baseline configuration with both systems, and the 

best models achieved with them. It can be seen that the CNN + lexicon method performs 

better than the basic CNN. In the case of the CNN + lexicon system the best models is 

obtained with the configuration seen in table 2.10 and trained with the dataset with the 
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neutral class downsampled to the 50%, with a gain of 2.48% in AvgRec in relation to the 

baseline model of the initial CNN architecture. The improvements in relation to the best 

model achieved with the initial CNN architecture are of a 0.22%. 

 

Model configuration AvgRec 𝑭𝟏
𝑷𝑵 Acc 

CNN 

Baseline 61.90% 58.40% 62.40% 

Downsampling 50% 64.16% 59.39% 59.42% 

Upsampling 244.54% 64.02% 62.25% 62.58% 

CNN + lexicon 

Baseline 62.66% 60.69% 64.51% 

Downsampling 50% 64.38% 61.27% 60.45% 

Upsampling 244.54% 64.10% 63.02% 61.78% 

Table 2.11: Results of experiments with the CNN + lexicon features 
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2.6 Machine learning classifiers 

2.6.1 Feature extraction 

In order to use text in machine learning algorithms, it has to be converted into a numerical 

representation so that it can be passed to the algorithm, similarly to how the CNN extracts 

features from vector representations of each word.  

 

I have followed a similar approach to the one proposed in [37], which ranked 8th in 

SemEval 2017 task 4 - subtask A. They present a representation of tweets using a rich set 

of features using a Support Vector Machine to classify the tweets. 

 

In this work I have used three different types of features: basic features, syntactic features 

and lexicon features. Next I will describe each group of features. 

 

Basic features 

We will compute the presence or absence of contiguous sequences of n-grams of 1, 2, 3 

or 4. An n-gram is a contiguous sequence of n words in a text, which can be used in text 

classification to extract contextual information from a text, and is one of the most widely 

used features. 

 

Syntactical features 

These types of features are very useful to distinguish between neutral and non-neutral 

tweets. It has been shown that subjective and objective texts have different POS tags [38], 

and as stated in [39], non neutral words in Twitter data are more likely to present the 

following POS tags: nouns, adjectives, adverbs, abbreviations and interjections.  

Hence, the number of occurrences of nouns, adjectives and adverbs are added to the 

feature vector. 

 

In addition to this, in the pre-processing I have manually added the POS tag ‘EMPHASIS’ 

to exclamation marks, capitalized words and words with repeated vowels (see section 

2.2.3 - Step 3). Those tokens generally express some sort of subjectivity, therefore the 

number of emphasis tokens present in the tweet is added to the feature space. 

 

This result in a total of four syntactical features added to the feature space. 

 

Lexicon features 

I use the same lexicon features explained in section 2.5.4. 
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2.6.2 Algorithms 

For the implementation of the machine learning classifiers I have used the SGDClassifier 

module from scikit learn. This module implements several regularized linear models with 

stochastic gradient descent (SGD) learning, and allows a high level hyperparameter 

optimization. For more details on the SGDClassifier module, check the documentation 

on scikit-learn34.  

 

Two widely used algorithms for classification problems have been used for this task: 

Logistic Regression and Support Vector Machine (SVM). 

 

Logistic Regression 

Logistic regression is one of the most common classification algorithms for supervised 

learning. It is a linear model trained on labelled data, and typically used for binary 

classification. It explains the relationship between variables. Given an input variable x, 

logistic regression is applied, and the output variable y is a discrete value from 0 to 1. 

Still, it can also be used for multi-class classification problems using the One-vs-all or 

One-vs-one approaches35. In this work I use the one-vs-all approach, which consists in 

training a single classifier for each class that is able to predict whether a sample is from 

that class or not. 

 

Support Vector Machine (SVM) 

SVM is very similar to logistic regression, and is used for classification and regression 

problems, although is mainly used for classification problems. It creates a decision 

boundary which separates non-linear data distribution into classes. 

2.6.3 Results 

N-gram optimization 

Some experiments are done to find the combination of n-grams that provide the best 

representation of a tweet sentiment. Using 1 to 4 n-grams shows the best results when 

tested individually. However, when combined with the other two types of features, the 

best results are obtained with representations of 1 to 3 n-grams, so the last is the final 

configuration used. 

 

- Number of features: 

The n-gram extraction generates hundreds of thousands of features, which can become 

difficult to handle for the classifier. In 36 a comparison of n-gram combinations from 1 to 

                                                
34 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html 
35 https://en.wikipedia.org/wiki/Multiclass_classification#One-vs.-rest 

 
36 https://towardsdatascience.com/another-twitter-sentiment-analysis-with-python-part-5-50b4e87d9bdd 

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://en.wikipedia.org/wiki/Multiclass_classification#One-vs.-rest
https://towardsdatascience.com/another-twitter-sentiment-analysis-with-python-part-5-50b4e87d9bdd
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3 n-grams with different number of features is presented, and a reasonable number of 

features seems to be 100000, as shown in figure 2.12. 

 

Figure 2.12: Comparison of different combination of n-grams with different number of 

features. Picture taken from 36  

 

Hyperparameter optimization 

Four hyperparameters have been tuned to obtain the best possible results. The other 

hyperparameters are kept with their default configuration as they show the best results. 

The values of learning_rate and validation_fraction are obtained experimentally, being 

the combination shown in table 2.12 the best both for the SVM and the Linear Regression 

classifiers. 

 

If early_stopping is set to true, we need to provide the classifier with a validation set to 

evaluate the model in each iteration and stop training when validation loss has not 

improved after five iterations. This reduces the time of model building and ensures that 

the model performs correctly with unseen data. As mentioned at the beginning of section 

2, the chosen percentage for the train and validation split is a 15%, which shows to be the 

optimal percentage. 

 

Hyperparameter value 

learning_rate 0.05 

max_iter 300 

early_stopping True 

validation_fraction 0.15 

Table 2.12: Hyperparameter configuration of the SGDClassifier both for the SVM and 

the Linear Regression classifiers 
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Experiments for each individual group of features have been done to see which features 

are the most representative.  

 

 Syntactical Ngrams Lexicon Combined 

 AvgRec 𝐹1
𝑃𝑁 Acc AvgRec 𝐹1

𝑃𝑁 Acc AvgRec 𝐹1
𝑃𝑁 Acc AvgRec 𝐹1

𝑃𝑁 Acc 

SVM 37.48% 18.48% 48.21% 56.72% 52.22% 59.72% 46.54% 31.37% 50.93% 58.86% 54.87% 60.43% 

LR 35.19% 8.47% 47.75% 57.12% 52.84% 59.61% 48.78% 37.60% 52.58% 59.34% 54.98% 59.82% 

Table 2.13: Results with test set on each individual group of features 

 

Comparing the results of table 2.13 with the final CNN results (see table 2.9), the numbers 

presented here are very poor. In section 2.3 we have seen that the dataset is highly 

imbalanced, and different techniques to solve this problem are presented. Next we will 

show the results of the two machine learning classifiers trained with the different 

resampling techniques presented in section 2.3. 

 

 

- Downsampling: 

 

 65% 50% 20% 

 AvgRec 𝐹1
𝑃𝑁 Acc AvgRec 𝐹1

𝑃𝑁 Acc AvgRec 𝐹1
𝑃𝑁 Acc 

SVM 55.85% 53.37% 46.19% 60.24% 58.39% 57.49% 59.27% 56.31% 59.15% 

LR 57.82% 55.54% 49.06% 60.58% 58.50% 55.10% 60.43% 57.43% 58.44% 

Table 2.14:Results for the classifiers trained with downsampled data 

- Upsampling: 

 

If we upsample the dataset, the number of samples needed for validation have to be 

similar to the number of samples used in the previous methods, therefore a lower 

validation_fraction split is being used in this case, 0.05, because the validation dataset 

used for the CNN is not suitable for the SGDClassifier. 

 

 284.33% 244.54% 200% 

 AvgRec 𝐹1
𝑃𝑁 Acc AvgRec 𝐹1

𝑃𝑁 Acc AvgRec 𝐹1
𝑃𝑁 Acc 

SVM 59.95% 56.43% 60.11% 60.85% 58.45% 60.97% 59.04% 54.95% 60.05% 

LR 61.03% 58.71% 59.70% 60.34% 57.93% 61.30% 60.04% 57.33% 61.50% 

Table 2.15: Results for the classifiers trained with upsampled data 
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- Data augmentation: 

 

Working with this resampling technique, the best results are obtained with a value of 

validation_fraction of 0.10, since the algorithms are also being trained with a bigger 

dataset. 

 

 10499 new neg tweets 5250 new neg tweets 

 AvgRec 𝐹1
𝑃𝑁 Acc AvgRec 𝐹1

𝑃𝑁 Acc 

SVM 59.54% 58.42% 59.30% 59.40% 58.17% 59.05% 

LR 61.13% 59.82% 59.79% 60.09% 58.94% 59.52% 

Table 2.16: Results for the classifiers trained with augmented data 

 

- Binary Classification: 

 

 Binary classification 

 AvgRec 𝐹1
𝑃𝑁 Acc 

SVM 80.43% 78.60% 79.08% 

LR 81.43% 79.69% 80.16% 

Table 2.17: Results for the binary classifiers 

 

From these results we can conclude that the best classifier is the Logistic Regression 

classifier with augmented data, with an AvgRec of 61.13%, what represents an 

improvement of a 1.79% from the Logistic Regression model trained with the original 

imbalanced dataset.   
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2.7 Final Classifier 

2.7.1 Benchmark 

As mentioned before in this work, the results of SemEval 2017 task 4 – subtask A are the 

benchmark against which I measure my classifiers’ performances, since the same data is 

being used for the training and the evaluation of the systems. Figure 2.13 shows the top 

25 results of SemEval 2017 task 4 – subtask A competition with their respective 

performance metrics. For more details on the results and the task see [3]. 

 

2.7.2 Machine learning and deep learning classifiers comparison 

As a final step of the implementation of the classifier that we are going to use to classify 

the BBC Proms tweets, we will compare the best classifiers achieved with the Machine 

Learning and deep learning techniques, and see how good they are comparing it to the 

results from SemEval 2017 task 4 – subtask A. 

 

In table 2.18 we can clearly see that the best model is the final CNN + lexicon model, 

which obtains an AvgRec of 64.38%. Comparing it with the benchmark results shown in 

figure 2.13, we can see it performs very well, being between the top 8 methods. The 

Logistic Regression classifier achieves similar results to the 20th ranked classifier. 

 

Figure 2.13: Top 25 results from SemEval 2017 task 4 – subtask A. A 

total of 38 teams participated in this subtask. Picture is taken from [3] 
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Therefore, the classifier that we will be using to classify the BBC Proms in next section 

is the CNN + lexicon classifier from the CNN implementation. 

 

 AvgRec 𝑭𝟏
𝑷𝑵 Acc 

Best CNN (CNN + lexicon) 64.38% 61.27% 60.45% 

Best Logistic Regression 61.13% 59.82% 59.79% 

Table 2.18: Top performances achieved with each of the explored classifiers 
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3. ANALYSIS OF BBC PROMS TWEETS 

 

Once we have the optimal Twitter classifier, we are ready to classify the tweets from BBC 

Proms. The tweets to be analyzed are from the BBC Proms editions from 2014, 2016 and 

2017. This data is provided by Horacio Saggion, so if you are interested in accessing this 

data, please contact him at horacio.saggion@upf.edu. 

 

Once the tweets are classified, I will build a dashboard with different visualizations of the 

classified data with Kibana37. Kibana is a powerful visualization tool that allows you to 

visualize data in different ways, and apply filters to analyze specific entities of your data, 

filter by date, by topic, keywords, etc. The visualizations will make the analysis on the 

classification results much easier and understandable. 

3.1 Data summary 

For each of the BBC Proms edition, two group of tweets are provided. One group is of 

tweets filtered by the location where the set of concerts are held. This location is shown 

in figure 3.1. The other group is a set of tweets filtered by hashtags, where the hashtags 

used are “bbcproms”, “bsproms” and “bbcprom”, and filtered by the users 

@bbcproms38 and @RoyalAlbertHall39. Table 3.1 shows the number of tweets for each 

group and each edition. The tweets from both groups of each edition are added together 

and the repeated tweets are removed, then all of the tweets from the three editions are put 

together into a single file which will be used for the classification and analysis. 

Figure 3.1: Screenshot of the search area of the group of tweets filtered by location 

                                                
37 https://www.elastic.co/kibana 
38 https://twitter.com/bbcproms 
39 https://twitter.com/royalalberthall 

mailto:horacio.saggion@upf.edu
https://www.elastic.co/kibana
https://twitter.com/bbcproms
https://twitter.com/royalalberthall
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 Location filter Hashtag filter all 

2014 181602 51435 149962 (47.21%) 

2016 82947 81736 109672 (34.53%) 

2017 19999 80434 57985 (18.26%) 

  Total 317619 

Table 3.1: Number of tweets for each group of tweets of each edition. The last column 

shows the number of unique tweets 

 

Having duplicated samples can make the analysis very tough because it adds a lot of 

repeated data that can lead to a not accurate analysis. As seen in table 3.1, the last column 

shows the total number of tweets once the duplicates are removed, which is much lower 

than the sum of location and hashtag without removing duplicated samples. At the end 

we obtain a total of 317619 tweets to analyse, from which the 47.21% are from the 2014 

edition, 34.53% from 2016, and the remaining 18.26% from 2017 edition. 

 

The differences in the size of the available data for each year is due to two things. First it 

may be that less data has been scrapped from each edition. Secondly, when loading the 

files, some files had “corrupted” lines that were not able to be read in Python, and these 

lines were omitted for the final group of tweets. 

3.1 Data classification 

Before the actual classification of all the data, we will see how the CNN + lexicon 

classifier performs with manually annotated data from the BBC Proms. To do this, I have 

manually annotated 110 tweets from the 2014 edition, where there are 73 positive 

samples, 16 neutral, and 21 negative samples. The classifier achieves an AvgRec of 

73.27%. The results are shown in table 3.2. It is also shown the confusion matrix of the 

classification results (see figure 3.2), where we can see that the CNN + lexicon model is 

very robust predicting positive and neutral samples, and very decent for the negative 

class. 

 

AvgRec 𝑭𝟏
𝑷𝑵 Acc 

73.27% 63.16% 78.84% 

Table 3.2: Results of the CNN + lexicon model evaluated on BBC Proms manually 

annotated data 
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Figure 3.2: Confusion matrix of the evaluation of the CNN + lexicon model with 

manually annotated BBC Proms 

 

Finally, the classification results on the BBC Proms tweets are shown in the table below. 

 

 

 negative neutral positive 

2014 25083 49887 66495 

2016 6349 47228 47248 

2017 4541 21700 31744 

Total 35973 118815 145487 

Table 3.3: Results of the classification of the tweets from BBC Proms 
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3.2 Data visualizations 

After passing the tweets through the pre-processing pipeline and classifying them, all the 

tweets are stored in .jsonl format, one of the formats of input data accepted in Kibana. 

Each tweet is represented by an object with the following fields: created_at, user, 

raw_text, is_retweet, hashtags, user_mentions, tokens, sentiment, proper_nouns, 

adjectives. This fields carry a lot of information about a tweet, apart from the polarity 

sentiment, and will become useful to perform different visualizations and apply different 

filters on Kibana. 

 

For the visualizations, I have built a dashboard where all the visualizations can be seen 

and modified by applying filters to them. If you want to take a look to the dashboard, you 

can access it in this link*: https://1b29a17d68924f4c8434d9ce1af8e164.eu-west-3.aws.elastic-

cloud.com:9243/app/dashboards#/view/49a719f0-ee25-11ea-b2f9-

2b1fb5a19ff3?_g=(filters%3A!()%2CrefreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%

3A(from%3A'2014-07-08T22%3A00%3A00.000Z'%2Cto%3A'2017-09-

24T18%3A19%3A33.090Z')).  

 

The link will ask for a username and password, which are given below: 

 username: demo 

 password: demopass 

 

*NOTE: I do not guarantee that the links to the dashboards will be available after 20/09/2020. If 

you are interested in consulting the visualizations and the link does not work, please contact me 

at d.mitjana@gmail.com. 

 

Next I will introduce the dashboard built with Kibana and I will describe the 

visualizations that have been implemented and which type of filtering can be applied. 

 

The first set of visualizations of the dashboard aims to summarize the polarity distribution 

of the tweets, see the evolution of the overall sentiment during all of the three editions, 

and a list of all the classified tweets. Those visualizations can be seen in figure 3.3. 

 

After this, several visualizations on specific entities of the tweets are made. Those include 

the top 50 hashtags, the top 50 mentions of users, the top 100 used keywords, and the top 

100 proper nouns and adjectives. These specific entities are extracted thanks to the data 

provided by Twitter when scrapping tweets and thanks to the Twitter POS tagger from 

CMU Ark. In those visualizations, represented as word clouds, it is easy to find the most 

used words in each of them, and we can easily filter by these keywords to see all the 

tweets where these words appear. For more detail on those word clouds, see next section. 

 

 

 

 

https://1b29a17d68924f4c8434d9ce1af8e164.eu-west-3.aws.elastic-cloud.com:9243/app/dashboards#/view/49a719f0-ee25-11ea-b2f9-2b1fb5a19ff3?_g=(filters%3A!()%2CrefreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2014-07-08T22%3A00%3A00.000Z'%2Cto%3A'2017-09-24T18%3A19%3A33.090Z'))
https://1b29a17d68924f4c8434d9ce1af8e164.eu-west-3.aws.elastic-cloud.com:9243/app/dashboards#/view/49a719f0-ee25-11ea-b2f9-2b1fb5a19ff3?_g=(filters%3A!()%2CrefreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2014-07-08T22%3A00%3A00.000Z'%2Cto%3A'2017-09-24T18%3A19%3A33.090Z'))
https://1b29a17d68924f4c8434d9ce1af8e164.eu-west-3.aws.elastic-cloud.com:9243/app/dashboards#/view/49a719f0-ee25-11ea-b2f9-2b1fb5a19ff3?_g=(filters%3A!()%2CrefreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2014-07-08T22%3A00%3A00.000Z'%2Cto%3A'2017-09-24T18%3A19%3A33.090Z'))
https://1b29a17d68924f4c8434d9ce1af8e164.eu-west-3.aws.elastic-cloud.com:9243/app/dashboards#/view/49a719f0-ee25-11ea-b2f9-2b1fb5a19ff3?_g=(filters%3A!()%2CrefreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2014-07-08T22%3A00%3A00.000Z'%2Cto%3A'2017-09-24T18%3A19%3A33.090Z'))
https://1b29a17d68924f4c8434d9ce1af8e164.eu-west-3.aws.elastic-cloud.com:9243/app/dashboards#/view/49a719f0-ee25-11ea-b2f9-2b1fb5a19ff3?_g=(filters%3A!()%2CrefreshInterval%3A(pause%3A!t%2Cvalue%3A0)%2Ctime%3A(from%3A'2014-07-08T22%3A00%3A00.000Z'%2Cto%3A'2017-09-24T18%3A19%3A33.090Z'))
mailto:d.mitjana@gmail.com
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Figure 3.3: Overview of the dashboard 

3.3 Analysis 

The first thing we can notice in the evolution of the sentiment polarity through time, 

which can be seen in more detail in figure 3.4, is that the first noticeable spike of positive 

tweets is found in the first week. This looks logical, since at the beginning everyone might 

be excited for The Proms. Another thing we can notice is that the number of negative, 

neutral and positive tweets generally follow a similar evolution, which does not give very 

useful insights of the overall perception of the BBC Proms. 

 

However, in the same figure we can see that the number of positive tweets is much higher 

than the neutral or negative ones. One may think that this is caused by tweets generated 

by non-personal accounts. We then remove all the tweets created by official and 

informative accounts that can be find in the top of the table shown in figure 3.5, and the 

results are still the same. So, in general terms, we can conclude that BBC Proms are very 

well perceived by the audience.  
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Figure 3.4: Evolution of tweet polarity during each edition 

 

Figure 3.5: List of the top users. The first 10 are removed to see if the polarity 

distribution varies, but it remains the same 

 

 

One of the best things of Kibana dashboard is that by clicking in one of the words of a 

word cloud it automatically changes all the visualizations and filters them to show only 

the results for tweets containing that specific word. This is the closer we can get to domain 

specific entity recognition, by clicking and filtering manually on entities of interest. 

 

Looking at the word cloud of the top 100 proper nouns shown in figure 3.6, we can detect 

some classical music specific entities. “baremboin”, a very famous musician, 

“beethoven”, “mozart” and many more entities can be seen.  
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Figure 3.6: List of the top 100 proper nouns. Some classical musical entities can be 

detected, like “beethoven”, “symphony”, “mozart”, “barenboim”, “mahler”, 

“orchestra” 

 

In the word cloud above, we can click, for example, in “Barenboim” and see the 

sentiment distribution of the tweets mentioning Barenboim. Surprisingly, we find a not 

very good polarity distribution. This might make us think that he did not perform well in 

The Proms, so we go to look into specific tweets, and we find out that in 2017 Barenboim 

made some statements on his speech in the Proms that did not like to some people, but 

his performance was brilliant, as many tweets mention it. Details on the polarity 

distribution and some negative tweets mentioning Barenboim can be seen in figure 3.7. 

 

Figure 3.7: Results of analyzing the figure of Daniel Barenboim in the BBC Proms 
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Another visualization that really shows the perception of Barenboim’s speech and 

performances can be seen in figure 3.8. There we can see the evolution of the opinion on 

Daniel Barenboim during the three editions of the BBC Proms. As it can be seen, in the 

2014 and 2016 editions the number of tweets were low, with a majority of positive tweets. 

However, in 2017 appears a big spike, which is associated to his speech and performance 

that year. Looking at this visualization, the previous observations become much more 

understandable. 

 

Figure 3.8: Evolution of the sentiment towards Daniel Barenboim between 2014 and 

2017 editions 
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4. CONCLUSIONS 

4.1 Conclusions 

In this work it has been presented the implementation of a complete journey to perform 

Twitter Sentiment Analysis, from data gathering and data pre-processing to the final 

classification and analysis of the tweets.  

 

The results of the classifiers show that a simple CNN model with few hyperparameter 

optimization outperforms machine learning algorithms, obtaining comparable results to 

the state-of-the-art. It has also been shown that adding lexicon features to the feature 

vectors in the CNN improves the performance. This reinforces the well-known ability of 

deep learning methods to outperform widely used machine learning algorithms in a 

number of tasks. 

 

The low results obtained with the machine learning approaches can be due to a not 

accurate feature selection. Those methods rely heavily on the features they use, and in 

this work this has not been deeply explored. 

 

Regarding the visualizations and the analysis of the BBC Proms tweets, I have built a 

useful visualization tool in Kibana where the data can be explored, filtered and analysed. 

The analysis performed on the group of tweets is superficial due to the lack of a domain 

specific entity recognition, which would have allowed a much deeper analysis and 

powerful visualizations of the classified tweets. However, thanks to the POS tagger used, 

I have been able to detect some tokens which have been tokenized as proper nouns, that 

later in the analysis have been detected as musical entities and I have been able to perform 

some analysis on them. 

4.3 Future work 

There are several ways that this work can be improved. These can be divided in two type 

of enhancements: implementation of the classifier and final analysis. 

 

- Implementation: 

o First, more annotated data would possibly improve the model 

performance. 

o The proposed CNN based method has a very simple design. Hence, future 

work can be focused on improving the network architecture, where several 

things can be explored: (1) different type of embeddings can be used; for 
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instance FastText40 character embeddings, and would also be interesting 

to see how our model performs with word embeddings trained with our 

dataset. More complex systems can be explored. (2) The top results 

presented in SemEval 2017 task 4 – subtask A presented complex systems 

where different combinations of deep learning methods with different set 

of features where explored. Therefore, it is obvious that a better classifier 

would be obtained with a more complex model, such as a deep learning 

ensemble method. 

o Finally, as for the machine learning methods, a richer set of features can 

be explored. This includes exploiting word embeddings to extract 

embedding features or using clusters to map each tweet to a set of clusters. 

 

- Analysis: 

o For the final analysis, a domain specific named entity recognition (NER) 

would be needed. It will be suitable to use the method presented by 

Lorenzo Porcaro and Horacio Saggion in [11]. This would allow deeper 

analysis on specific musical entities like composers, specific pieces of 

music, conductors, performers, etc. 

o Finally, with the built-in Twitter classifier, one can perform Sentiment 

Analysis on any domain. Hence, the method proposed in this work can be 

exploited to apply Sentiment Analysis in other applications which involve 

user-generated text. 

  

                                                
40 https://fasttext.cc/ 

https://fasttext.cc/
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