
mGPT: A Probabilistic Planner based on Heuristic Search

Blai Bonet
Departamento de Computación

Universidad Simón Boĺıvar
Caracas, Venezuela
bonet@ldc.usb.ve

Héctor Geffner
Departament de Tecnologia
Universitat Pompeu Fabra
Barcelona 08003, España

hector.geffner@tecn.upf.es

Abstract

We describe the version of the GPT planner to be
used in the planning competition. This version,
called mGPT, solves mdps specified in the ppddl

language by extracting and using different classes of
lower bounds, along with various heuristic-search al-
gorithms. The lower bounds are extracted from de-
terministic relaxations of the mdp where alternative
probabilistic effects of an action are mapped into
different, independent, deterministic actions. The
heuristic-search algorithms, on the other hand, use
these lower bounds for focusing the updates and deliv-
ering a consistent value function over all states reach-
able from the initial state with the greedy policy.

Introduction

mGPT is a planner based on heuristic search for
solving mdp models specified in the high-level plan-
ning language ppddl. mGPT captures a fragment
of the functionality of the GPT system that fea-
tures non-determinism and incomplete information, in
both qualitative and probabilistic forms, like pomdps
and Conformant planning (Bonet & Geffner 2001a;
Bonet & Thiébaux 2003).

mGPT supports several algorithms and heuristic
functions (lower bounds) that when combined generate
a wide range of different solvers. The two main algo-
rithms are lrtdp and hdp. Both are heuristic-search
algorithms that make use of a given initial state s0 and
lower bound information. More precisely, they com-
pute a value function V with a residual bounded by a
user-provided threshold over all states reachable from
s0 when using the greedy policy πV (Bonet & Geffner
2003b; 2003a).

The lower bounds are derived by solving relax-
ations of the input problem with an algorithms pro-
vided by mGPT. Since these algorithms are also based
on heuristic search, we have implemented “stackable”
components that are created in sequence for computing
complex heuristic functions from simpler ones.

In this short document, we describe the features
of the mGPT planner. This document is organized
as follows. In the following two sections, we give a

brief description of the most important algorithms and
heuristics functions implemented in mGPT. Then, we
describe how these algorithm and heuristics can com-
bined in order to generate a wide range of different
solvers. We conclude with a short discussion.

Algorithms

We divide the algorithms in two groups of optimal and
suboptimal algorithms.

An optimal algorithm is one that computes an ε-
consistent value function V over all states reachable
from the initial state s0 with the greedy policy with
respect to V , denoted as πV . A value function V is
ε-consistent at state s if it residual at s is less than or
equal to ε. It is known that if V is 0-consistent over all
states reachable from s0 with πV , then πV is optimal,
as well as if V is ε-consistent for a sufficiently small ε.
Here ε is a user-provided parameter.

The suboptimal algorithms, on the other hand, are
provided in order to interleave planning and execution.
In this group, we include algorithms that start selecting
actions with respect to an initial lower bound (heuris-
tic) that is improved over time.

(Although our main interest is towards optimal algo-
rithms, we have included the suboptimal ones in order
to cope with the format of the competition.)

The main optimal algorithms are vi, lrtdp and hdp,
whilst the suboptimal ones are asp and hdp-i. In the
following, we give a brief description and references for
these algorithms.

The Value Iteration algorithm (vi) solves the prob-
lem in two steps. First, it generates the reachable state
space from the initial state and the applicable opera-
tors, and second, uses the Value Iteration algorithm
to obtain an optimal solution for the problem. vi is
included in mGPT as a bottom-line reference.

Labeled Real-Time Dynamic Programming (lrtdp)
is a heuristic-search algorithm that implements a la-
beling scheme on top of the rtdp algorithm (Barto,
Bradtke, & Singh 1995). lrtdp works by performing
simulated trials that start at the initial state and end
at “solved” states by selecting actions with respect to
πV . Initially, V is the input heuristic function, and

the only solved states are the goal states. Then, each
time an action is picked at state s, the value of s is
updated by making its value consistent with the value
of its successor states. At the end of each trial, a label-
ing procedure is called that checks whether new states
can be labeled as solved: a state is solved if its value
and the value of all its descendents are ε-consistent.
The algorithm ends when the initial state is labeled
solved since, at that time, all states reachable from s0

with πV are consistent. As shown in (Bonet & Geffner
2003b), this labeling mechanism adds a crisp termina-
tion condition to rtdp that features faster convergence
time while retaining its good anytime behavior.

Since πV , the policy returned by lrtdp, is only guar-
anteed to be optimal over a subset of states, i.e. s0 and
those reachable from it, then πV is said to be a partial
optimal policy closed with respect to s0.

Heuristic Dynamic Programming (hdp) is also a
heuristic-search algorithm that computes a partial op-
timal policy closed with respect to s0. The hdp al-
gorithm works by performing depth-first searches in
state space looking for ε-inconsistent states, and then
updating their values to make them consistent. The
searches are stopped when no inconsistent states are
found (Bonet & Geffner 2003a).

Action Selection for Planning (asp) is a reactive al-
gorithm that starts by selecting actions with respect
to the input heuristic function. Each time an action
is needed for state s, asp performs multiple depth-
bounded rtdp-like trials starting at s before return-
ing an action for s. These simulations implement a
bounded-lookahead mechanism that improve the ac-
tion selection task. This asp algorithm is a general-
ization of (Bonet, Loerincs, & Geffner 1997) for prob-
abilistic planning.

Approximated Heuristic DP (hdp-i) is a heuristic-
search algorithm that like hdp performs searches and
updates. Unlike hdp, the hdp-i algorithm only en-
forces consistency over all states reachable from s0 with
plausibility no smaller than i. These plausibility lev-
els form a qualitative scale based on kappa rankings
(Spohn 1988; Pearl 1993) that quantify how improb-
able is to make a transition from the initial state to
the given state. The hdp-i algorithm and some of its
properties are described in (Bonet & Geffner 2003a).

Heuristics

The heuristics functions are also divided in two groups
of admissible and non-admissible heuristics. An ad-
missible heuristic is one that never overestimates the
optimal cost, i.e. a lower bound. The main admissible
heuristics are zero, min-min, atom-min-forward and
atom-min-backward, whilst the main non-admissible
heuristic is ff. All these heuristic are computed by
solving deterministic relaxations of the input problem.
In the case of admissible heuristics, these relaxations
must be solved optimally (Pearl 1983).

The most important relaxations are the weak and

strong relaxations. The weak relaxation is computed
by transforming the input problem into a deterministic
problem in which every operator of the form

〈 prec, [p1 : α1, . . . , pn : αn] 〉 , (1)

where prec is the precondition and αi is the i-th effect
with probability pi, is translated into the n determin-
istic and independent operators 〈 prec, αi 〉.

It is not hard to show that the optimal solution for
the weak relaxation is a lower bound one the optimal
solution for the original problem.

The strong relaxation is a strips problem computed
by firstly transforming the input into a problem in
which every operator is of the form

〈 prec, [p1 : (add1, del1), . . . , pn : (addn, deln)] 〉 (2)

where prec, add1, . . . , deln are all conjunctions of lit-
erals and

∑
i
pi = 1. Observe that in order to take

the input problem into the form given by (2), we must
remove disjunctive preconditions, conditional effects,
quantifier symbols, etc. The strong relaxation is then
generated by translating each operator (2) into the n
deterministic and independent strips operators

〈 prec, addi, deli 〉 . (3)

As before, it is not hard to show that the optimal solu-
tion for the strong relaxation is a lower bound on the
optimal solution for the original problem.

In the following, we give a brief description of the
different heuristic and their relation to the relaxations.

The Min-Min (min-min) heuristic is the optimal so-
lution to the deterministic problem given by the weak
relaxation. Two flavors are provided: min-min-lrtdp
that solves the relaxation with a deterministic version
of lrtdp (a.k.a. lrta (Korf 1990)), and min-min-ida*

that solves the relaxation with ida*. Both versions are
lazy in the sense that the values are computed on a
need basis as the planner requires them. See (Bonet
& Geffner 2003b; 2003a) for references. (Since the
min-min heuristic is computed with a heuristic-search
algorithm, another heuristic function is required for its
computation. Below, we describe how to specify these
multiple heuristics.)

Atom-Min Forward (atom-min-forward) is a heuris-
tic function computed in atom space from the strong
relaxation. atom-min-forward computes “costs” of
reaching set of atoms of fixed cardinality from a given
state. The name forward comes from the fact that
the costs are computed by a forward-chaining proce-
dure that begins with the given state and ends when
the goal is generated. This heuristic is a generaliza-
tion of the hmin heuristic in HSP (Bonet & Geffner
2001b). As in min-min, the heuristic values are com-
puted on demand. atom-min-k-forward refers to the
atom-min-forward heuristic for sets of cardinality k.
The atom-min-forward heuristic is from (Haslum &
Geffner 2000).

Atom-Min Backward (atom-min-backward) is a
heuristic similar to atom-min-forward except that it

computes costs of reaching sets of atoms from the goal
state in an inverted version of the strong relaxation.
Thus, before the search starts, all costs for all sets of
atoms of fixed cardinality are computed and stored in a
table that are later used to compute the heuristic func-
tion. The inverted relaxation is described in (Bonet &
Geffner 2001b).

The FF (ff) heuristic implements the heuristic func-
tion used in the FF planner with respect to the strong
relaxation (Hoffmann & Nebel 2001). This heuristic is
informative but non-admissible and can only be used
for non-optimal planning.

Combining Algorithms and Heuristics

The main parameters for mGPT are “-p <planner>”
that specify the algorithm to use for the planner, “-h
<heuristics>” that specify the heuristic function, and
“-e <epsilon>” that specify the threshold ε for the
consistency check.

One typical call looks like

mGPT -p lrtdp \
-h "atom-min-1-forward" \
-e .001 <rest>

which instructs mGPT to use the lrtdp algorithm
with the atom-min-1-forward heuristic and ε = 0.001.
Since the algorithm is optimal and the heuristic is ad-
missible, this call produces an optimal policy. The
atom-min-1-forward heuristic is admissible but very
weak. The following example shows how to use the
min-min-lrtdp heuristic using atom-min-1-forward
as the base heuristic:

mGPT -p lrtdp \
-h "atom-min-1-forward|min-min-lrtdp" \
-e .001 <rest>

Note how the pipe symbol is used to stack the compo-
nents of the heuristic function.

Another possibility is to use mGPT as a reactive
planner in which decisions are taken on-line with re-
spect to a heuristic function that is improved over time.
For example,

mGPT -p asp -h "ff" <rest>

uses the asp algorithm with the ff heuristic, while

mGPT -p asp -h "zero|min-min-ida*" \
-e .001 <rest>

uses the asp algorithm with the min-min-ida* heuris-
tic computed from the constant-zero heuristic. In the
first case, the heuristic being used is non-admissible,
so the planner will deliver a suboptimal policy. In the
latter case, the asp algorithm is seeded with an ad-
missible heuristic so it is guaranteed to converge to a
partial optimal policy as the number of trials increase.

Other combinations of algorithms and heuristics are
possible. mGPT also implements other heuristic func-
tions and parameters to control number of simulation
trials and cutoff length for asp, initial hash size, heuris-
tic weight, dead-end value, verbosity level, etc.

Discussion

At the moment of writing these pages, it is not clear
for us which combination of algorithm and heuristic is
going to be used during the competition. Moreover, we
could enter the competition either with a fixed choice,
or with a more complex planner that picks a choice
upon an analysis of the input problem. In any case, we
plan to evaluate (after the competition) the different
choices separately in order to obtain meaningful data
for future research.

The mGPT planner will be publicly available after
the competition with the default settings correspond-
ing to those actually used.

Acknowledgements We thank the chairs of ipc-4

for making this competition possible. mGPT was built
upon a source code developed by John Asmuth from
CMU and distributed by the organizers.

References

Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning
to act using real-time dynamic programming. Artifi-
cial Intelligence 72:81–138.

Bonet, B., and Geffner, H. 2001a. GPT: a tool for
planning with uncertainty and partial information. In
Proc. IJCAI/Workshop on Planning with Uncertainty
and Partial Information, 82–87.

Bonet, B., and Geffner, H. 2001b. Planning as heuris-
tic search. Artificial Intelligence 129(1–2):5–33.

Bonet, B., and Geffner, H. 2003a. Faster heuristic
search algorithms for planning with uncertainty and
full feedback. In Proc. IJCAI-03, 1233–1238.

Bonet, B., and Geffner, H. 2003b. Labeled RTDP:
Improving the convergence of real-time dynamic pro-
gramming. In Proc. ICAPS-03, 12–21.

Bonet, B., and Thiébaux, S. 2003. GPT meets PSR.
In Proc. ICAPS-03, 102–111.

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A
robust and fast action selection mechanism for plan-
ning. In Proc. AAAI-97, 714–719.

Haslum, P., and Geffner, H. 2000. Admissible heuris-
tic for optimal planning. In Proc. AIPS-2000, 140–
149.

Hoffmann, J., and Nebel, B. 2001. The FF plan-
ning system: Fast plan generation through heuris-
tic search. Journal of Artificial Intelligence Research
14:253–302.

Korf, R. 1990. Real-time heuristic search. Artificial
Intelligence 42(2–3):189–211.

Pearl, J. 1983. Heuristics. Morgan Kaufmann.

Pearl, J. 1993. From conditional oughts to qualitative
decision theory. In Proc. UAI-93, 12–22.

Spohn, W. 1988. A general non-probabilistic theory
of inductive reasoning. In Proc. UAI-88, 149–158.

