

SEVENTH FRAMEWORK PROGRAMME

THEME 3
Information and communication Technologies

PANACEA Project
Grant Agreement no.: 248064

Platform for Automatic, Normalized Annotation and

Cost-Effective Acquisition
of Language Resources for Human Language Technologies

D6.4
Lexical Merger

Related PANACEA Deliverables:
D6.1 Technologies and Tools for Lexical Acquisition
D6.3 Monolingual Lexicon for Spanish, Italian and Greek of 100.000 words for a

particular domain
D7.4 Third evaluation report

Dissemination Level: Public
Delivery Date: 05/11/12

Status – Version: Final
Author(s) and Affiliation: Riccardo Del Gratta, Monica Monachini (CNR-ILC),

Maurizio Tesconi, Matteo Abrate, Angelica Lo Duca
(CNR-IIT), Laura Rimell (UCAM), Núria Bel, Muntsa
Padró (UPF).

 D6.4 Lexical Merger

This document is part of technical documentation generated in the PANACEA Project, Platform
for Automatic, Normalized Annotation and Cost-Effective Acquisition (Grant Agreement no.
248064).

This documented is licensed under a Creative Commons Attribution 3.0 Spain License. To view
a copy of this license, visit http://creativecommons.org/licenses/by/3.0/es/.

Please send feedback and questions on this document to: iulatrl@upf.edu

TRL Group (Tecnologies dels Recursos Lingüístics), Institut Universitari de Lingüística
Aplicada, Universitat Pompeu Fabra (IULA-UPF)

D6.4 – Lexical Merger

Table of Contents

1 Introduction ... 4

2 Development of Tools and Technologies: Merging of dictionaries .. 4

2.1 Merging of Subcategorization Frames ... 4

2.1.1 Merging for increased precision ... 4

2.1.1.1 Gold standard ... 5

2.1.2 Generic/Customisable mapping based on LMF .. 5

2.1.2.1 Software ... 6

2.1.3 Merger at work .. 8

2.1.3.1 Directive feature_mapper .. 8

2.1.3.2 Directive mapper.properties .. 9

2.1.3.3 Directives directives.txt and ignored.txt .. 10

2.1.3.4 Software flow ... 10

2.1.3.5 PANACEA Experiment ... 10

2.2 Multi-level Merging ... 11

2.2.1 General aspects ... 11

2.2.2 Implemented LMF Structures ... 11

2.2.2.1 Lexical Resource From DTD ... 12

2.2.2.2 Lexical Resource as Java Object ... 12

2.2.2.3 Global Information From DTD and Java ... 12

2.2.2.4 Lexicon From DTD ... 12

2.2.2.5 Lexicon as Java Object .. 13

2.2.2.6 Lexical Entry From DTD ... 13

2.2.2.7 Lexical Entry as Java Object ... 13

2.2.2.8 Lemma From DTD .. 14

2.2.2.9 Lemma as Java Object ... 14

2.2.2.10 Wordform From DTD .. 15

2.2.2.11 Wordform as Java Object ... 15

2.2.2.12 relatedform From DTD ... 16

2.2.2.13 RelatedForm as Java Object ... 16

2.2.2.14 ListofComponent and Components From DTD ... 16

D6.4: Lexical Merger

3

2.2.2.15 Components as Java Object .. 17

2.2.2.16 SyntacticBehaviour From DTD .. 17

2.2.2.17 SyntacticBehaviour as Java Object ... 17

2.2.2.18 SubcategorizationFrame From DTD .. 18

2.2.2.19 SubcategorizationFrame as Java Object ... 18

2.2.2.20 LexemeProperty From DTD ... 18

2.2.2.21 LexemeProperty as Java Object.. 19

2.2.2.22 SyntacticArgument From DTD .. 19

2.2.2.23 SyntacticArgument as Java Object ... 19

2.2.2.24 Sense From DTD .. 20

2.2.2.25 Sense as Java Object ... 20

2.2.3 Multilevel Merging two Morphosyntactic lexicons .. 20

2.2.3.1 When are two object equivalent? ... 21

2.2.3.2 The equivalence rule directive ... 22

2.2.3.3 The equivalence rule by example .. 22

2.2.4 Merger WorkFlow .. 27

2.2.4.1 Detailed workflow ... 27

2.2.5 Differences between the two mergers ... 29

2.2.6 To do List .. 30

3 Lexical Merger Web Services ... 32

3.1 lmf_merger ... 32

3.2 merge_lmf_files ... 33

3.3 merge_list_of_lmf_files ... 33

3.4 lmf_ml_merger ... 33

4 Workflows ... 35

4.1 Classification of nouns found in crawled data into lexical classes .. 35

4.2 Classification of nouns in PoS tagged data for English and 7 available classes 35

4.3 Classification of nouns in PoS tagged data for Spanish and 9 available classes 35

4.4 Merging of two SCF LMF Lexicon ... 35

4.5 Merging of two Morpho-syntactic LMF lexicons .. 35

5 LREC 2012 Workshop .. 36

6 Documentation and Scientific articles ... 36

7 References ... 37

D6.4 – Lexical Merger

1 Introduction

This document describes the experiments on the merging of lexical resources performed during the project
and the development of two merging components for LMF lexicons.

The challenge of lexical merger in PANACEA was two-fold. One goal is to be able to integrate the lexical
resources produced by the PANACEA components into a single multi-level lexicon, the second is to merge
acquired lexical resources into an existing one. For the latter goal, we focused on the merging of syntactic
(Subcategorization), for the latter we focused on the integration of the level of linguistic descriptions of
resources produced by the components integrated in the platform, i.e. SCF, MWE, and Lexical Classes
lexicons.

The work on merging performed within the project was driven by the attempt to experiment with and devise
different merging methodologies that could be as general as possible in order to reduce manual intervention.

As the LMF ISO standard was chosen as the Traveling Object (TO) for lexicons, the multi-level merger was
designed to deal with LMF and its structure and format is tied to the TO (which specifies the format for
Subcategorization Frames -SCFs-, Multiword -MWEs- and lexical Classes, -LCs-)1.

2 Development of Tools and Technologies: Merging of dictionaries

2.1 Merging of Subcategorization Frames
Within this task, three main approaches have been experimented with. Two of them resulted in services
integrated into the platform.

2.1.1 Merging for increased precision

UCAM work focused on the experimentation of a new method for merging of Subcategorization information
automatically acquired using two different parsers with the goal of acquiring a higher precision SCF
resource, i.e. where only the information that the two resources agree on is retained.

Differently from previous works, e.g. (Crouch and King, 2005; Molinero et al., 2009), here the focus is on
merging the intersection between two resources. Treating language resource merging as (roughly) a union
operation seems appropriate for manually developed resources, or in general when coverage is a priority.
However, when working with automatically acquired resources, it may be worthwhile to adopt the approach
of merger by intersection.

UCAM tried to reduce the noise that the taggers and parsers add to the automatic SCF acquisition, by
combining two lexicons built with different parsers.

For the experiment – performed on English data – the parsers used are the RASP parser and the unlexicalized
Stanford parser. SCF are acquired from both outputs by an adapted version of the SCF acquisition system of
(Preiss et al., 2007), which is a rule-based classifier that matches the Grammatical Relations (GRs) for each
verb instance with a corresponding SCF. Since the classifier is based on the GR scheme adopted for RASP
and the scheme of the Stanford parser is different, a new version of the classifier has been developed for the

1 Note that SPs are not included in the TO at this time; since state-of-the-art SP models specify probabilistic relations
between any verb-argument pair, they are not easily represented in a flat lexicon format. As anticipated in D6.1,
inclusion of SPs is left for future work.

D6.4: Lexical Merger

5

Stanford output. In fact, Despite commonalities between the GR scheme of (Briscoe et al., 2006) and the SD
scheme, the realization of a particular SCF exhibits a number of differences across schemes.

Next a parser combination step is performed, creating a new set of classified verb instances by retaining only
instances for which the two classifiers agreed on the SCF. Here the classifier output is merged on a sentence-
by-sentence basis and not on a verb-by-verb basis to reduce errors of both parsers to pass through the
pipeline.

Finally, a lexicon building step has the task to amalgamate the SCFs hypothesized by the classifier for each
verb lemma. SCFs left underspecified by the classifier are also treated at this stage.

2.1.1.1 Gold standard

For testing and evaluation purposed, the gold standard of (Korhonen et al., 2006b) has been used, which
consists of SCFs and relative frequencies for 183 general-language verbs, based on approximately 250
manually annotated sentences per verb. The verbs were selected randomly, subject to the restriction that they
take multiple SCFs. The gold standard includes 116 SCFs.

Details of the method and the experiment are given in Rimell, Poibeau and Korhonen (2012).

2.1.2 Generic/Customisable mapping based on LMF

CNR-ILC has developed a merger of LMF lexicons and performed experiments on the merging of
Subcategorization frame information, as described in Del Gratta et al. (2012). ILC decided to use the Lexical
Mark-up Framework (Francopoulo et al., 2008) since it defines an abstract meta-model for the
construction/description of computational lexicons. LMF is organized in several different packages: each
package is enriched by specific data categories used to adorn both the core model and its extensions.

Data categories can be seen as the linguistic descriptors that are used to instantiate each entry and play a
crucial role in the merging of two SCFs lexicons.

This merger focuses on the LMF syntax extension where the Syntactic Behaviour represents the basic
building block and encodes one of the possible behaviours of a Lexical Entry. A detailed description of the
syntactic behaviour of a lexical entry is further defined by the Subcategorization Frame object, which is the
“heart” of the syntax module.

SubCategorization Frame is used to represent one syntactic configuration, in terms of Syntactic Arguments
and may be shared by different lexical entries. In other words SubCategorization Frames are verb
independent and can be linked by Syntactic Behaviours of different verbs sharing the same argument
structure. In addition to the argument structure represented by the SCF, the Syntactic Behaviour (SB) also
encodes other syntactic properties of the entry: the auxiliary.

D6.4 – Lexical Merger

Figure 1 below shows the components of the LMF modelled to merge two SCFs lexicons.

Moving from model to software, a generic lexicon (L) can be modelled as a combination of lexical objects
and their relations:

L = Lmorpho + Lsyn + Lsem +.... = Lmorpho + Link(Lsyn, Lmorpho) + Lsem +...

where the role of the link between the syntactic and morphologic extensions is played by the Syntactic
Behaviour.

2.1.2.1 Software

ILC built a prototype which presents the architecture described in Figure 2.

Figure 1: LMF core and syntax extension

D6.4: Lexical Merger

7

Figure 2: Basic architecture

This prototype takes two LMF lexicons, A and B, and a set of directives in input and outputs one lexicon
which contains common information between the two lexicons.

The prototype consists in two main modules:

• Mapper: The Mapper component takes two lexicons (A and B) and a set of Directive Files; the
Mapper produces a report document which lists all entries of lexicon A that have a potential match
with entries of lexicon B according to given directives. The report is potentially meant both as output
for the end-user and as input for the Builder component;

• Builder: The Builder component merges objects, SCFs and SBs, from the two lexicons. It takes the
report both lexicon (A and B), and a set of directive files in input; it is responsible for producing the
merged lexicon;

• Mapper and Builder Directives: these directives are used at different levels. They define a sort of
(basic) files define semantic interoperability for specific features, for example that what is called
realization in lexicon A is called syntacticConstituent in lexicon B;

• A rule to apply for defining equivalence among syntactic arguments (SAs). The software checks if
some features, for example function, introducer, realization (but also others) are the same in the
syntactic arguments structure in both lexicons. If two SCFs share the same SAs structure are defined
as equivalent;

• A rule for managing auxiliaries in SBs: SBs which point to equivalent SCFs are defined equivalent if
they have the same auxiliary;

• Thresholds for Cosine Similarity. The software is able to calculate the similarity between two SCFs
from their SAs structure: the more two SAs have common features, the more two SCFs are similar.

• Directives make Mapper and Builder very flexible. They allow users to set the “constraints” under
which entries from different lexicons can be “merged”. The constraints can be more or less strict on
the basis of the desired outcome.

D6.4 – Lexical Merger

2.1.3 Merger at work

As previously exposed, the software reads some directives before taking some decisions. Directives are
simple files which can be totally defined by the users which can define their scenarios. In this chapter the
format and the values of the directive files are described.

2.1.3.1 Directive feature_mapper

This directive defines which features of the syntactic arguments must be checked. It plays two distinct roles:
the first is to list such features; the second is to map the same features between the two lexicons. The format
is value_lexicon_A (tab) value_lexicon_B and it is coherent with the two input lexicons, A and B:

format lexA (tab) lexB

Lexicon A Lexicon B

Function function

syntacticConsti
tuent

realization

Introducer introducer

Table 1: mapping among features

This directives maps the features of the SAs in lexicon A on those of lexicon B. The software uses this
directive to:

• count the features in SAs structure

• substitute the values in B with A's

The directive is used to establish equivalence among syntactic arguments such the following:

Lexicon A Lexicon B Equivalent

<Syn.... >
<feat att="function" val="subj"/>
<feat att="syntacticCostituent"
val="np"/>
<feat att="introducer" val="to"/>
</Syn....>

<Syn.... >
<feat att="function" val="subj"/>
<feat att="realization " val="np"/>
<feat att="introducer" val="to"/>
</Syn....>

YES. Both arguments have
three features with the same
attributes and values. Please
note the bold which reflects the
mapping.

<Syn.... >
<feat att="function" val="subj"/>
<feat att="syntacticCostituent"
val="np"/>
<feat att="introducer" val="to"/>
</Syn....>

<Syn.... >
<feat att="function" val="subj"/>
<feat att="realization " val="np"/>
</Syn....>

NO. Different number of SAs

<Syn.... >
<feat att="function" val="subj"/>
<feat att="syntacticCostituent"
val="np"/>
<feat att="introducer" val="to"/>
</Syn....>

<Syn.... >
<feat att="function" val="subj"/>
<feat att="realization " val="pp"/>
<feat att="introducer" val="to"/>
</Syn....>

NO. Both arguments have three
features with the same
attributes but different values.
Please note the bold which
reflects the mapping but also
the bold italic which shows
different values.

Table 2: Equivalence between two syntactic arguments according to features_mapper directive

D6.4: Lexical Merger

9

2.1.3.2 Directive mapper.properties

This directive contains instructions for both the mapper and builder components as well as for the report
definition. Essentially, those instructions tell the mapper how many features two SAs must share to be
defined equivalent and which is the strategy to consider equivalent two features; they tell the builder which
attribute of the Syntactic Behaviour should be considered in addition to the equivalence of the SCF they
point to; tell the report to include those SCFs which are in a predefined interval of similarity. The format is
key=value (tab) comment

#key=value (tab) comment

Mapper Comment

threshold
threshold_min = 2
threshold_max = 3

SAs must share at least two features to be considered
equivalent

features_equal_by = "same_att_and_val"
or "same_att"
features_equal_by = same_att_and_val

Features are equivalent if they have the either the
same atribute or the same combination
attribute+value

Table 3: Mapper specific directives

Builder Comment

auxiliaries
true || false
check_auxiliaries = true

SBs which point to equivalent SCFs must have the
same auxiliary

features_equal_by = "same_att_and_val"
or "same_att"
features_equal_by = same_att_and_val

Features are equivalent if they have the either the
same attribute or the same combination attribute +
value

Table 4: Builder specific directives

Report Comment

similarity
sim_min = 0.5
sim_max = 1

The report contains SCFs whose similarity lies
between the specified interval.
The report is read by users which can manually
change the similarity among SCFs.

Table 5: Report specific directives

Using these directives the results reported in table 2 can change accordingly:

Lexicon A Lexicon B Equivalent

…. …. …..

<Syn.... >
<feat att="function" val="subj"/>
<feat att="syntacticCostituent"
val="np"/>
<feat att="introducer" val="to"/>
</Syn....>

<Syn.... >
<feat att="function" val="subj"/>
<feat att="realization " val="np"/>
</Syn....>

YES. Different number of
SAs but two features are
equivalent, so the
threshold_min = 2
 parameter is met.

…. ….. …...
Table 6: Equivalence between two syntactic arguments according to features_mapper and mapper.properties directives

D6.4 – Lexical Merger

2.1.3.3 Directives directives.txt and ignored.txt

These two directives tell the software the full mapping among values of the features attributes and which
features must be ignored when two objects are compared respectively. The latter directive, usually, is used
by the software to skip features: for example if the subject is always absent from one lexicon it should be
skipped when two arguments are compared. The former contains the mapping among the values of features
from input lexicons.

The format is value_lexicon_A (tab) value_lexicon_B and it is coherent with the two input lexicons, A and
B:

#lexA (tab) lexB

Lexicon A Lexicon B

aclauscomp
adverbial
aprepcomp
clauscomp

complement

indirectobject indirect_object

ncomp complement
Table 7: mapping among values from different lexicons

We can see that the mapping is not limited to a 1 to 1 mapping, but also a N to M mapping is possible. The
software checks all possible mapping before comparing objects.

2.1.3.4 Software flow

In this section we provide a brief outline of the mapping algorithm, for more information please see (R. Del
Gratta et al., 2012). The algorithm consists of the following steps:

(Mapping) Reading and extracting the common verbs: Lexicons A and B are
parsed; then a list of common verbs is created;

(Mapping) Extracting SCFs and SBs: For each common verb the tool extracts
syntactic behaviours and connected SubCategorization Frames;

(Mapping) Comparing syntactic arguments: For each pair of SCFs, all
Syntactic Arguments extracted and compared according to the directives in
section 2.3.

(Mapping) Creating a report: the report ranks SCFs according to their
similarity. In principle an user can edit this report and change the
similarity among SCFs;

(Building) Reading and extracting the correct SBs: Lexicons A and B are
parsed, the report is read and only those SCFs fully equivalent
(similarity is 1) are extracted. From this list, the pointing SBs (from
both lexicons) are compared using the directives in section 2.3

2.1.3.5 PANACEA Experiment

The experiment of merging two Italian SCFs lexicons has been carried out at ILC using the described
software. The first lexicon is a subset of the PAROLE lexicon, (Ruimy et al., 1998), (a manually built
lexicon); the second is a lexicon of SCFs automatically induced from a corpus.

The experiments has been replicated with two different set of parameters, see table 8. But only the second
run of the experiment has been completed using also the building components.

D6.4: Lexical Merger

11

run #1 run #2

th_min = 3

th_max = 3

sim min = 0.33

sim max = 1

th_min = 3

th_max = 3

sim_min = 1

sim_max = 1

Table 8: Directive parameters

The validation of the merger for this experiment is reported in D7.4 (Section 4.2.5) and in Del Gratta et al.
(2012).

2.2 Multi-level Merging
In this section the multilevel merger created in the PANACEA project is described. With respect to the first
one described in section 2.1, this version of the merger leaks the basic semantic interoperability, at least for
the version released, but it embraces a full merging of main objects from the core and the morpho-syntax
extension of LMF.

The code models a slightly revised DTD version 16 of the LMF2 model and adds some constraints: the main
one is that all the ID attributes which in the DTD are defined IMPLIED are now defined REQUIRED. The
original DTD is unchanged, but the tool creates the IDs when needed.

The reason behind this choice is that, in this way, the LMF structure resulting from the parsing of the LMF
file, can be easily serialized into a database, IDs playing the role of primary and foreign keys.

The software is developed in Java and it is available as part of this deliverable.

2.2.1 General aspects

The merger manages two input lexical resources and returns a merged lexical resource. The ones in input, in
principle, contain N and M lexicons respectively. The merger addresses this situation extracting all common
lexical entries from the N+M input lexicons and generates the 1 lexicon with all common objects. The
merger manages the N and M lexicons purging them of common objects, that's to say defining their
complements.

2.2.2 Implemented LMF Structures

This chapter describes how DTD has been transformed into software objects and how these objects slightly
modify the DTD itself.

2 See http://www.tagmatica.fr/lmf/iso_tc37_sc4_n453_rev16_FDIS_24613_LMF.pdf

D6.4 – Lexical Merger

2.2.2.1 Lexical Resource From DTD

Orginal DTD (core) Revised DTD (core)

<!ELEMENT LexicalResource (feat*,
GlobalInformation, Lexicon+, SenseAxis*,
TransferAxis*, ContextAxis*)>
<!ATTLIST LexicalResource
 dtdVersion CDATA #FIXED "16">

<!ELEMENT LexicalResource (feat*,
GlobalInformation, Lexicon+)>
<!ATTLIST LexicalResource
 dtdVersion CDATA #FIXED "16">

Table 9: The DTD for Lexical resource

The current version of the software does not manage all original objects connected to the Lexical Resource
class as defined in the LMF model.

2.2.2.2 Lexical Resource as Java Object

Full constructor with mandatory attributes subelements Interfaces implemented

public LexicalResource(String dtdVersion,
 GlobalInformation globalInformation, List<Lexicon> lexicons,
 String name) {
……
addFeature(LMFAtts.__NAME__, name);
}

IHasName
Classes that implement this interface MUST
have a feature whose attribute is name.

Table 10: The Java constructor for Lexical resource

The Lexical Resource is forced to have a human name because users can have an idea of what the lexical
resource is about from its name.

The name attribute is used also for defining the lexical resource as a valid one. By default a lexical resource
is valid if it contains one global information, one or more lexicons and the name. The attribute isvalid is
crucial for the software since the procedures stops whether an input lexical resource is not valid.

2.2.2.3 Global Information From DTD and Java

The global information from DTD is a collections of features which contain various information. The Java
object plainly reflects the DTD.

2.2.2.4 Lexicon From DTD

Orginal DTD (core) Revised DTD (core)

<!ELEMENT Lexicon (feat*, LexicalEntry+,
SubcategorizationFrame*, SubcategorizationFrameSet*,
SemanticPredicate*,Synset*,SynSemCorrespondence*,
MorphologicalPattern*, MWEPattern*, ConstraintSet*)>

<!ELEMENT Lexicon (feat*, LexicalEntry+,
SubcategorizationFrame*,)>

Table 11: The DTD for Lexicon

The current version of the software does not manage all original objects connected to the Lexicon

D6.4: Lexical Merger

13

2.2.2.5 Lexicon as Java Object

Full constructor with mandatory attributes and
subelements

Interfaces implemented

public Lexicon(String id, String lang) {
....
addFeature(LMFAtts.__LANGUAGE__, lang);
}

IHasIdentifier, IHasLanguageIdentifier
Classes that implement these interfaces MUST have a
feature whose attribute is language and which contains
the iso code of the language the lexicon is about and an
attribute which is the ID. If the ID is not in the original
file (as usually is) then is created. The ID is necessary
since one Lexical Resource can contain more than one
lexicon.
These interfaces are useful for serialization of the
Lexicon into a database, the name of the Lexical
resource and the IDs of the lexicons play the role of the
natural key.

Table 12: The Java constructor for Lexicon

By default a lexicon is valid if it contains a not empty identifier and language. So far there is no control over
the ISO-CODES of the languages3. The attribute isvalid is crucial for the software since the procedures stops
whether a parsed lexicon is not valid.

2.2.2.6 Lexical Entry From DTD

The Lexical entry, from DTD, embraces various objects; since we have started from the Morphosyntax, only
the corresponding objects have been implemented.

Orginal DTD (core) Revised DTD (core)

<!ELEMENT LexicalEntry (feat*, Lemma,
WordForm*, Stem*, ListOfComponents?,RelatedForm*,
TransformCategory*, Sense*, SyntacticBehaviour*)>
<!ATTLIST LexicalEntry
 id ID #IMPLIED
 morphologicalPatterns IDREFS #IMPLIED
 mwePattern IDREF #IMPLIED>

<!ELEMENT LexicalEntry (feat*, Lemma, WordForm*,
ListOfComponents?, RelatedForm*, Sense*,
SyntacticBehaviour*)>
<!ATTLIST LexicalEntry
id ID #IMPLIED

Table 13: The DTD for Lexical Entry

2.2.2.7 Lexical Entry as Java Object

The Lexical Entry as Java object needs the part of speech as mandatory feature. This is in line with the
current encoding of LMF lexicons

3 The software interface IHasLanguageIdentifier contains method signatures responsible for checking whether a
supplied language cose is a valid ISO_369_3 code. Methods must be implemented in implementing classes. The current
implementation returns always true.

D6.4 – Lexical Merger

Full constructor with mandatory attributes and
subelements

Interfaces implemented

public LexicalEntry(String pos, String id) {
this.pos = pos;

Id = id;
addFeature(LMFAtts.__POS__, pos);

}

IHasIdentifier, IHasPos
Classes that implement these interfaces MUST have a
feature whose attribute is partofspeech and which
contains the actual part of speech of the lexical entry
and an attribute which is the ID. If the ID is not in the
original file (as it could be) then is created. The ID is
necessary since one Lexicon contain more than one
lexical entry.
These interfaces are useful for serialization of the
Lexical entry into a database, the ID of the Lexicon
and the IDs of the lexical entries play the role of the
natural key.

Table 14: The Java constructor for Lexical Entry

By default a lexical entry is valid if it contains a not empty identifier and part of speech. The attribute isvalid
is crucial for the software since the procedures skips non valid lexical entries.

2.2.2.8 Lemma From DTD

The Lemma is needed by the LMF model. In the tool it is used to connect the writtenform to the lexical
entry. The lemma is also the first object of the morphological extension.

Orginal DTD (morpho) Revised DTD (morpho)

<!ELEMENT Lemma (feat*, FormRepresentation*)> <!ELEMENT Lemma (feat*)>

Table 15: The DTD for Lemma

The formrepresentation is an LMF object used to host the ways of writing entries. We had skipped this
object and encoded the writtenform as a specific feature.

2.2.2.9 Lemma as Java Object

The Lemma as Java object needs the writtenform as mandatory feature.4. This is in line with the current
encoding of LMF lexicons.

Full constructor with mandatory attributes and subelements Interfaces implemented

public Lemma(String id, String writtenForm) {
Id = id;
this.writtenForm = writtenForm;
}

IHasIdentifier, IHasWrittenForm,
IHasGrammaticalFeatures
Classes that implement these interfaces MUST have a
feature whose attribute is writtenform and which contains
the canonical form of the lexical entry and an attribute which
is the ID. If the ID is not in the original file (as it could be)
then is created. The ID is necessary for serialization into
database. There is a 1:1 relationship between lexical entries
and lemmas: ID is also needed to establish this relation in a
formal way.
The Lemma, from the model, extends the Form which is a
empty abstract object. This object implements interfaces
which encode specific morphological features such the
grammatical features. Lemma inherits this implementation
and needs the grammatical features as well. However they
are not mandatory

4 In reality, the software as it is looks for writtenform in both lemma and lexical entry.

D6.4: Lexical Merger

15

Full constructor with mandatory attributes and subelements Interfaces implemented

These interfaces are useful for serialization of the Lexicon
into a database, the ID of the Lemma and the ID of the
lexical entry play the role of the natural key.

Table 16: The Java constructor for Lemma

By default a lemma is valid if it contains a not empty identifier and a valid (not empty) writtenform. The
attribute isvalid is crucial for the software since the procedures skips non valid lemmas

2.2.2.10 Wordform From DTD

Orginal DTD (morpho) Revised DTD (morpho)

<!ELEMENT WordForm (feat*, FormRepresentation*)> <!ELEMENT WordForm (feat*)>

Table 17: The DTD for Wordform

The formrepresentation is an LMF object used to host the ways of writing entries. We had skipped this
object and encoded the writtenform as a specific feature of WordForms.

2.2.2.11 Wordform as Java Object

The WordForm as Java object needs writtenform as mandatory feature, check the note for lemma. This is in
line with the current encoding of LMF lexicons.

Full constructor with mandatory attributes and
subelements

Interfaces implemented

public WordForm(String id, String writtenForm) {
Id = id;
this.writtenForm = writtenForm;
addFeature(LMFAtts.__WRITTENFORM__,
writtenForm);
}

IHasIdentifier, IHasWrittenForm,
IHasGrammaticalFeatures
Classes that implement these interfaces MUST have a
feature whose attribute is writtenform and which
contains the canonical form of the lexical entry and an
attribute which is the ID. If the ID is not in the original
file (as it could be) then is created. The ID is necessary
for serialization into database.
The WordForm, from the model, extends the Form
which is a empty abstract object. This object
implements interfaces which encode specific
morphological features such the grammatical features.
Wordform inherits this implementation and defines the
following: grammaticalNumber, grammaticalGender,
grammaticalTense, person. However they are not
mandatory
These interfaces are useful for serialization of the
Lexicon into a database, the ID of the Lexical entry
and the IDs of the word forms play the role of the
natural key.

Table 18: The Java constructor for Wordform

By default a Wordform is valid if it contains a not empty identifier and a valid (not empty) writtenform. The
attribute isvalid is crucial for the software since the procedures skips non valid WordForms.

D6.4 – Lexical Merger

2.2.2.12 relatedform From DTD

Orginal DTD (morpho) Revised DTD (morpho)

<!ELEMENT RelatedForm (feat*,
FormRepresentation*)>
<!ATTLIST RelatedForm
targets IDREFS #IMPLIED>

<!ELEMENT RelatedForm (feat*,
FormRepresentation*)>
<!ATTLIST RelatedForm
targets IDREFS #IMPLIED>

Table 19: The DTD for RelatedForm

We did not add any changes to the DTD.

2.2.2.13 RelatedForm as Java Object

The RelatedForm as Java object needs written form as mandatory feature, check the note for lemma. This is
in line with the current encoding of LMF lexicons.

Full constructor with mandatory attributes and
subelements

Interfaces implemented

public RelatedForm(String id, String targets) {
Id = id;
this.targets = targets;
}

IHasIdentifier, IHasWrittenForm,
IHasGrammaticalFeatures
Classes that implement these interfaces MUST have a
feature whose attribute is writtenform and which
contains the canonical form of the lexical entry and an
attribute which is the ID. If the ID is not in the original
file (as it could be) then is created. The ID is necessary
for serialization into database.
The Relatedform, from the model, extends the Form
which is a empty abstract object. This object
implements interfaces which encode specific
morphological features such the grammatical features.
RelatedForm inherits this implementation and needs
the grammatical feaatures as well. However they are
not mandatory.
These interfaces are useful for serialization of the
Lexicon into a database, the ID of the Lexical entry
and the IDs of the related forms play the role of the
natural key.

Table 20: The Java constructor for Relatedform

By default, a RelatedForm is valid if it contains a not empty identifier and a valid (not empty) writtenform.
The attribute isvalid is crucial for the software since the procedures skips non valid relatedforms.

The software looks for possible “orphan” relatedforms, that's to say related forms whose targets attribute
points to a not existent lexical entries.

2.2.2.14 ListofComponent and Components From DTD

Orginal DTD (multiword) Revised DTD (multiword)

<!ELEMENT ListOfComponents (feat*, Component+)>
<!ELEMENT Component (feat*)>
<!ATTLIST Component
entry IDREF #REQUIRED>

<!ELEMENT ListOfComponents (feat*, Component+)>
<!ELEMENT Component (feat*)>
<!ATTLIST Component
entry IDREF #REQUIRED>

Table 21: The DTD for Component

We did not add any changes to the DTD.

D6.4: Lexical Merger

17

2.2.2.15 Components5 as Java Object

The Component as Java object needs a valid pointed entry: a lexical entry which is in the lexicon.

Full constructor with mandatory attributes and
subelements

Interfaces implemented

public Component() {
}

No interfaces.

Table 22: The Java constructor for Component

Component only have the basic constructor, since the referenced target lexical entry has to be fixed once the
lexical resource has been fully parsed. We have planned the partofspeech as a possible feature but not
mandatory. Reasons behind are related to the multiword patterns that we have not been coded yet.

The software looks for “orphan” components, that's to say components that point to a nonexistent lexical
entry in the lexicon.

2.2.2.16 SyntacticBehaviour From DTD

Orginal DTD (syntax) Revised DTD (syntax)

<!ELEMENT SyntacticBehaviour (feat*)>
<!ATTLIST SyntacticBehaviour
id ID #IMPLIED
senses IDREFS #IMPLIED
subcategorizationFrames IDREFS #IMPLIED
subcategorizationFrameSets IDREFS #IMPLIED>

<!ELEMENT SyntacticBehaviour (feat*)>
<!ATTLIST SyntacticBehaviour
id ID #IMPLIED
subcategorizationFrames IDREFS #IMPLIED
>

Table 23: The DTD for SyntacticBehaviour

We did not implement the relation between syntactic behaviours and senses, which is implemented at lexical
entry level, instead.

2.2.2.17 SyntacticBehaviour as Java Object

The Syntactic Behaviour as Java object needs a valid pointed entry: a subcategorization frame which is in the
lexicon.

Full constructor with mandatory attributes and
subelements

Interfaces implemented

public SyntacticBehaviour(String id, String idSCF, String
aux, String corpusLabel) {
 Id = id;
 IdSCF = idSCF;
…....
 }

IHasIdentifier
Classes that implement this interface MUST have an
attribute which is the ID. If the ID is not in the original
file (as it could be) then is created. The ID is necessary
since one LexicalEntry contains more than one
syntactic behaviour.
The interface is useful for serialization of the syntactic
behaviour into a database, the ID of the LexicalEntry
and the IDs of the syntactic behaviours play the role of
the natural key.

Table 24: The Java constructor for SyntacticBehaviour

5 The listofcomponents object is not so interesting since it is just a list of components plus additional features.

D6.4 – Lexical Merger

The constructor of the SyntacticBehaviour contains two additional features, namely the auxiliary and the
corpusLabel. The auxiliary is a property of the realization of the verb which differentiates verbs with the
same subcategorization frame, for example in Italian “sono (ho) dovuto restare”. The corpusLabel is used for
the specific PANACEA merging scenario. The software looks for “orphan” syntactic behaviors, that's to say
syntactic behaviors that point to a non-existent subcategorization frame in the lexicon.

2.2.2.18 SubcategorizationFrame From DTD

Orginal DTD (syntax) Revised DTD (syntax)

<!ELEMENT SubcategorizationFrame (feat*,
LexemeProperty?, SyntacticArgument*)>
<!ATTLIST SubcategorizationFrame
 id ID #IMPLIED
 inherit IDREFS #IMPLIED>

<!ELEMENT SubcategorizationFrame (feat*,
LexemeProperty?, SyntacticArgument*)>
<!ATTLIST SubcategorizationFrame
 id ID #IMPLIED>

Table 25: The DTD for SubcategorizationFrame

We did not implement the frameset object.

2.2.2.19 SubcategorizationFrame as Java Object

The SubcategorizationFrame, as Java object needs a valid pointing entry: a syntactic behavior which points
to this SCF.

Full constructor with mandatory attributes and
subelements

Interfaces implemented

public SubCategorizationFrame(String id) {
this.id=id;
}

IHasIdentifier
Classes that implement this interface MUST have an
attribute which is the ID. If the ID is not in the original
file (as it could be) then is created. The ID is necessary
since one Lexicon contains more than one
subcategorization frame
The interface is useful for serialization of the syntactic
behaviour into a database, the ID of the LexicalEntry
and the IDs of the syntactic behaviours play the role of
the natural key.

Table 26: The Java constructor for SubcategorizationFrame

The constructor of the Subcategorization frame needs the identifier of the subcategorization frame. This is
used by the software for looking for “unused” subcategorization frames, that's to say SCFs which are never
used by syntactic behaviours.

2.2.2.20 LexemeProperty From DTD

Orginal DTD (syntax) Revised DTD (syntax)

<!ELEMENT LexemeProperty (feat*)> <!ELEMENT LexemeProperty (feat*)>

Table 27: The DTD for LexemeProperty

We did not add changes to the lexemeproperty object.

D6.4: Lexical Merger

19

2.2.2.21 LexemeProperty as Java Object

The Lexemeproperty as Java object is a simple collection of features.

Full constructor with mandatory attributes and
subelements

Interfaces implemented

public Lexemeproperty() {
}

IHasIdentifier
Classes that implement this interface MUST have an
attribute which is the ID. If the ID is not in the original
file (as it could be) then is created.
The interface is useful for serialization of the lexeme
property into a database, the ID of the Subcatframe and
the ID of the lexeme property play the role of the
natural key.

Table 28: The Java constructor for LexemeProperty

The constructor of the Lexemeproperty is void.

2.2.2.22 SyntacticArgument From DTD

Orginal DTD (syntax) Revised DTD (syntax)

<!ELEMENT SyntacticArgument (feat*)>
<!ATTLIST SyntacticArgument
 id ID #IMPLIED
 target IDREF #IMPLIED>

<!ELEMENT SyntacticArgument (feat*)>
<!ATTLIST SyntacticArgument
 id ID #IMPLIED>

Table 29: The DTD for SyntacticArgument

We did not implement the target, that's mean the Syntactic Arguments never point to Subcategorization
frames (as it could be possible according to the rev. 16 model).

2.2.2.23 SyntacticArgument as Java Object

The SyntacticArgument as Java object is a simple collection of features which implement the syntactic
properties of the specific argument.

Full constructor with mandatory attributes and subelements Interfaces implemented

public SyntacticArgument(String id) {
this.id=id;
}

IHasIdentifier
Classes that implement this interface MUST have an attribute which
is the ID. If the ID is not in the original file (as it could be) then it is
created.
The interface is useful for serialization of the syntactic arguments into
a database, the ID of the Subcatframe and the IDs of the syntactic
arguments play the role of the natural key.

Table 30: The Java constructor for SyntacticArgument

The constructor of the Syntactic Argument takes only the id.

D6.4 – Lexical Merger

2.2.2.24 Sense From DTD

Orginal DTD (semantic) Revised DTD (semantic)

<!ELEMENT Sense (feat*, Sense*, Equivalent*,
Context*, SubjectField*, PredicativeRepresentation*,
SenseExample*,
 Definition*, SenseRelation*,
MonolingualExternalRef*)>
<!ATTLIST Sense
 id ID #IMPLIED
 synset IDREF #IMPLIED>

<!ELEMENT Sense (feat*)>
<!ATTLIST Sense
 id ID #IMPLIED
>

Table 31: The DTD for Sense

We did not implement the synset neither the self relation among senses.

2.2.2.25 Sense as Java Object

The Sense as Java object is under development. So far a simple collection of features is implemented. Future
versions of the merger will address semantic-related merging procedures, so that the sense will be expanded
to cover sub elements as described in the DTD rev. 16.

Full constructor with mandatory attributes and
subelements

Interfaces implemented

public Sense(String id) {
this.id=id;
}

IHasIdentifier
Classes that implement this interface MUST have an
attribute which is the ID. If the ID is not in the original
file (as it could be) then it is created.
The interface is useful for serialization of the Sense
into a database, the ID of the Lexical Entry and the IDs
of the senses play the role of the natural key.

Table 32: The Java constructor for Sense

The constructor of the Sense takes only the id.

2.2.3 Multilevel Merging two Morphosyntactic lexicons

This chapter describes how the software deals with the merging of two lexicons. The released version of the
software merges the following objects:

• Features

• Lexical Resource

• Global Information

• Lexicons

• Lexical entries

• WordForms

• RelatedForms

• Components

• Syntactic Behaviours

D6.4: Lexical Merger

21

• Subcategorization Frames

• Syntactic Arguments

• Lexemeproperties

• Senses

The same version suffers of a limitation: namely the attributes and values in the input lexicons must be the
same. On the contrary of the merger described in chapter 2, the current version of the tool does not
implement the basic semantic interoperability. Next version of the tool will address this issue.

2.2.3.1 When are two object equivalent?

Figure 4 below shows how two objects, namely objecta and objectb can be considered as equivalent.

One lexical object, when formalized in a DTD, can be described as a list of attributes and properties, i.e.
features. The equivalence between these two objects can be established at different levels and according to
various needs. Some scenarios can require a full equivalence (all attributes and features are equivalent in
both lexicons. In reality features are the same in both the lexicons: they have the same attribute and the same
value.), while other can require a weaker equivalence, that's to say an equivalence where only some features
are the same as well as only some attributes.

The challenge, here, is how to formalize all possible equivalences. It is clear that the tool has to follow
human “directives” in and before taking decisions.

Figure 3: Full and partial equivalence

D6.4 – Lexical Merger

2.2.3.2 The equivalence rule directive

The rules to define equivalence among lexical objects has been coded by two distinct directive files: a file
which contains “what to check” and a file which specifies the “features to check”.

The first file describes what the tool has to check when it defines two objects as equivalent. Following the
official documentation of the LMF rev. 16, lexical objects are adorned with certain features which add
information to the objects which is summed up to the information possibly contained in the attributes. This
file contains an entry checkFeats which tells the tool which features must be taken into account for the
equivalence. These features are listed in the second file.

Figure 5 below describes the relations among DTD, Java and equivalence directive. The method
isEquivalent(...) is defined for every object described in section 2.2. This method takes an integer as input
parameter and switches to the correct equivalence method defined by the integer.

The integer is a value defined by the user which assign a bit to the things (attributes and features) to check.
The tool reads the file and assigns the value to the corresponding lexical object.

Figure 4: Relations among DTD, Java and equivalence rules

2.2.3.3 The equivalence rule by example

Following examples can help to understand the equivalence rule formalism:

Features can be defined equivalent if they have same attribute, same value or both. Attribute and value are
listed in order of decreasing importance: attribute,value. Reading from lower to higher bit (right to left), the
value has position 0, the attribute position 1. The three possible combination can be written as follows:
“,value” ,“attribute,” and “attribute,value”; but a bitmap of the three possibilities is also possible:

21=2 20=1

Attribute (position 1) Value (position 0)

[0|1] *0 is absent, 1
present

[0|1] *0 is absent, 1
present

Table 33: attributes and values assume numeric values according to the position

D6.4: Lexical Merger

23

The three combination can be bitmapped as reported in table 35 and then transformed back to decimal values
to be passed to the isEquivalent() method.

Combination Bit sequence Decimal value

,value 01 0*21+1*20=1

attribute, 10 1*21+0*20=2

attribute,value 11 1*21+1*20=3

Table 34: Combination → bitmap → decimal values

The “what to check” file contains, for features, the following instruction (lines starting with # are comments)

value - position 0 2^0=1

attribute - position 1 2^1=2

range 1 - 3

Feature = 3

Table 35: Equivalence rule for features

Setting “Feature =3” basically tells the method that the feature objects shall be considered equivalent iff both
the attribute and value are the same. For other lexical objects the control checkFeats has been added in the
lowest position, lowest bit.

#LexicalEntry

#checkFeats - position 0 2^0=1

#LexicalEntry = 0 for not CHECKING FEATS

LexicalEntry = 1

#WordForm

#checkFeats - position 0 2^0=1

#WordForm = 0 for not CHECKING FEATS

WordForm = 1

Table 36: Rules for LexicalEntry and WordForm

Both LexicalEntry and WordForm lexical objects have no attributes to be checked, so that the integer sent to
the isEquivalent() method is either 0 or 1. If the value is 0, the tool does not check any features. On the other
hand if the value is 1, the the list of features is extracted from the “features to check” file, as reported in table
38 below:

D6.4 – Lexical Merger

#The format of the file is

#Object = value

#LexicalEntry

LexicalEntry:partOfSpeech

LexicalEntry:writtenForm

#WordForm

personNumber

tense

verbMood

grammaticalGender

grammaticalNumber

writtenform

WordForm:personNumber

WordForm:tense

WordForm:verbMood

WorForm:grammaticalGender

WordForm:grammaticalNumber

WordForm:writtenform

Table 37: Features for lexical entries and wordforms

The tool assigns to the lexical objects the list of features:

LexicalEntry → partOfSpeech,writtenForm

WordForm → personNumber,tense,verbMood,grammaticalGender,grammaticalNumber,writtenform

The presented example involve features of the objects. But the same logic applies for attributes only and for
combination of attributes and features. A typical example is the SyntacticBehaviour. Generally speaking two
SBs can be considered equivalent if the point to equivalent SCFs and have the same auxiliary. The first is an
attribute (in the DTD), while the second is a feature.

#SyntacticBehaviour

checkFeats - position 0 2^0=1

idSCF - position 1 2^1=2

range 1 - 3

#SyntacticBehaviour = 2 for not CHECKING FEATS.

#Check the attribute idSCF and feats

SyntacticBehaviour = 3

Table 38: Rule for SBs

The list of features to check is the following:

D6.4: Lexical Merger

25

#SyntacticBehaviour

auxiliary - position 0 2^0=1

id - position 1
 2^1=2

corpusLabel - position 2
 2^2=4

idSCF - position 2
 2^3=8

SyntacticBehaviour:aux

SyntacticBehaviour:corpusLabel

Table 39: Features to control for SBs

The equivalence rule for SCFs is quite complex. This rule is based on the one defined for Syntactic
arguments: two SCFs are equivalent if they have the same argument structure. Arguments are checked
according to a list of features. Users can also add the lexemeproperty to the rule. In this case the tool selects
among SCFs, that are equivalent for SAs, the ones that share the same lexemeproperty.

#SubCategorizationFrame

checkFeats - position 0 2^0=1

id - position 1 2^1=2

Synargs - position 2 2^2=4

lexemeproperty - position 3 2^3=8

range 1 - 15

#SubCategorizationFrame = 4 for not CHECKING FEATS. SCF has no essential
features to check

SubCategorizationFrame = 4

#SyntacticArgument

checkFeats - position 0 2^0=1

#SyntacticArgument = 0 for not CHECKING FEATS

SyntacticArgument = 1

#LexemeProperty

checkFeats - position 0 2^0=1

#LexemeProperty = 0 for not CHECKING FEATS

LexemeProperty=1

Table 40: Equivalence rule for SCFs

D6.4 – Lexical Merger

The equivalence rule for LexemeProperty is standard, a list of features, but the equivalence rule for
SyntacticArguments needs additional explanations. For some reasons connected to the automatic extraction
methods of SCFs, it may happen that some features and/or values of features are not extracted6. To address
this situation, new instructions have been added to the “features to check” file.

Part of things to exclude in checking

!SyntacticArgument:realization=*

!SyntacticArgument:introducer=da

!SyntacticArgument:=env

#!SyntacticArgument:function=*

Objects to exclude in checking

#-SyntacticArgument:realization=*

-SyntacticArgument:function=subject

#-SyntacticArgument:function=object

Table 41: Features and/or values to skip

Where the syntax of the instructions is as follows. The “!” tells the tool that the following lexical object, in
the example the SyntacticArgument, has some features which are to be skipped.

The “:” is the separator between the lexical object and the features to exclude.

This syntax accomplishes for punctual exclusion such in introducer=da; in this case the tool will exclude the
corresponding feature applying Feature=3 equivalence mode; for excluding all features whose value is env
(applying the Feature=1 equivalence mode); for excluding all features whose attribute is function such as
function=* (applying Feature=2 equivalence rule). In all these examples the tools manages features
accordingly. For example realization=np and realization=pp are considered equivalent.

The second part of table 42 addresses the full exclusion of objects. The “-” tells the tool that the following
lexical object, in the example the SyntacticArgument, has to be removed when 2 Syntactic arguments are
checked. The “:” is the separator between the lexical object and the complete features to exclude.

The rule “SyntacticArgument:function=subject” tells the tool to exclude the SA which contains such feature.

The exclusion rules are applied by the tool when two SCFs are compared:

Exclusion rule SCF-SAa SCF-SAb Equival
ent

!SyntacticArgument:realizati
on=*

<Syn.... >
<feat att="function" val="subj"/>
<feat att="realization" val="np"/>
<feat att="introducer" val="to"/>
</Syn....>

<Syn.... >
<feat att="function"
val="subj"/>
<feat att="realization"
val="pp"/>
<feat att="introducer"
val="to"/>
</Syn....>

YES(1)

6 For example the Italian SCF lexicon, automatically extracted, does not list the function=subject feature. In this case
SAs with this feature will never match with SAs that do not have this feature, even if all other features (introducer,
realization) are equivalent. This situation should be addressed.

D6.4: Lexical Merger

27

Exclusion rule SCF-SAa SCF-SAb Equival
ent

-
SyntacticArgument:function
=subject

<Syn.... >
<feat att="function" val="subject"/>
<feat att="realization" val="np"/>
<feat att="introducer" val="to"/>
</Syn....>

<Syn.... >
<feat att="function" val="indirect-
object/>
<feat att="realization" val="np"/>
<feat att="introducer" val="to"/>
</Syn....>

<Syn.... >
<feat att="function"
val="indirect-object"/>
<feat att="realization"
val="np"/>
<feat att="introducer"
val="to"/>
</Syn....>

YES(2)

Table 42: Exclusion rules for SAs and SCFs

(1) The first two SAs are equivalent because the two different features realization=np and realization=pp are
considered as the same. (2)The first structure contains two SAs, while the second has only one SA. These
two structures are equivalent since the equivalence rule applied tells the software to cut the SA which
contains the feature function=subject.

2.2.4 Merger WorkFlow

This section describes the general workflow of the merger. The main workflow is reported in figure 5. The
tool takes two lexical resources in input; analyzes all possible lexicons for each lexical resource, does
“something” with the lexical objects and produces a merged lexical resource in output.

Figure 5: Basic Workflow

2.2.4.1 Detailed workflow

In this section the detailed workflow, reported in figure 6, is described. The merger parses the two lexical
resources and creates a software data structure which reflects the lexical resources.

D6.4 – Lexical Merger

Figure 6: Detailed WorkFlow

There are two main building blocks that the software analyzes:

• The SubcategorizationFrames for the syntax

• The LexicalEntry for morphology and for link to the syntax (SyntacticBehaviours)

The tool executes the following steps:

1. For each lexicon contained in both lexical resources the lexical entries are
extracted and those coming from lexicons in lexical resource (a) are checked
against the ones from lexical resource (b);

2. For each lexical entry in (a) which is equivalent (according to the specific
rule) to a lexical entry in (b) all sub elements are extracted;

3. For each subelement extracted in 2 in (a) and in (b) the equivalence is
checked;

4. For each lexicon contained in both lexical resources the SCFs are extracted
and those coming from lexicons in lexical resource (a) are checked against
the ones from lexical resource (b);

5. For each SCF in (a) which is equivalent (according to the specific rule) to
a SCF in (b) the pointing Syntacticbehaviours are extracted and ids are
managed;

6. The output is written.

Point 5 is interesting. From figure 6 the SyntacticBehaviour syntacticBehave_a1 points to scf_a2 and scf_a2
is equivalent to scf_b1 which is, in turn, pointed by syntacticBehave_b1. But these two syntactic behaviours
are not equivalent according to their equivalence rule. In this case the tool assigns to the lexicalentry_a2 both
syntactic behaviours. On the other side the merged lexical resource will contain only the scf_a2
subcategorization frame:

D6.4: Lexical Merger

29

Lexicon

 lexicalentry_a2

 syntacticBehave_a1 scf=scf_a2

 syntacticBehave_b1 scf=scf_b1

 scf_a2

Table 43: The merged lexical resource

The lexical resource is inconsistent, since the syntacticbehave_b1 is orphan. The tool manages this issue by
rewriting all ids of objects which are linked to common lexical objects7:

Lexicon

 lexicalentry_a2

 syntacticBehave_a1 scf=scf_a2

 syntacticBehave_b1 scf=scf_a2

 scf_a2

Table 44: The merged lexical resource after id management

2.2.5 Differences between the two mergers

This chapter summarizes the two mergers.

SubCatFrame oriented

characteristics

Morpho-Syntax oriented

characteristics

Extract common LexicalEntries;

Focused on SubCatFrames (SCFs) only.

Manages similarity of SCFs according to a cosine
similarity (CS) among Syntactic Arguments (Sas);

Merge Syntactic Behabiours (SBs) of totally equivalent
SCFs (CS=1);

User driven via directive files;

Extract common LexicalEntries;

Focused on the MorphoSyntax core+extension.

Manages similarity of SCFs according to a cosine
similarity (CS) among Syntactic Arguments (Sas);

Merge features of every single lexical object: lexical
resource, global information, lexentries....;

Merge lexical objects related to common lexentries:
wordforms, relatedforms, components (MW), SB, SCFs,
Sas;

Manages IDs and orphans/unused objects;

User driven via equivalence rules.

7 These objects are syntactic behaviour, related forms and components. All these objects have IDREF in the DTD, so
they need to point to objects that are in the same lexicon.

D6.4 – Lexical Merger

SubCatFrame oriented

characteristics

Morpho-Syntax oriented

characteristics

Work on common Lexical entries ? YES

Generic? NO (Only SCFs and related SBs are managed)

Implement semantic interoperability? YES (A basic
semantic interoperability is set up for SAs. Namely
attributes and values are reciprocally mapped)

User driven ? YES via directive files;

Modular in output lexicon(s) NO Only the intersection of
two lexicons is outputted.

Work on common Lexical entries ? YES

Generic? NO (Only morpho syntactic extension and the
Sense object)

Implement semantic interoperability? NO

User driven ? YES via equivalence rule;

Modular in output lexicon(s) YES For a two lexical
resources in input which contain N and M lexicons
respectively, the output is a lexical resources with
N+M+1 lexicons: intersections and complements. Users
can decide to compact the N+M+1 lexicons into only
one.

Table 45: Synopsis of the two mergers

2.2.6 To do List

From table 46 can be noticed that the major weakness of the second merger is related to the non
implementation of the basic semantic interoperability which is managed by the first merger. On the contrary
the second one offers many other capabilities including the one for modeling the output. However, ILC has
the commitment to add the semantic interoperability to the second merger.

2.3 Merging Lexicons with Graph Unification

UPF experimented to develop a new approach to fully automatically merge lexicons using graph unification.
The research in this line has been conducted merging already existing lexicons. The proposed method has
been tested in different scenarios with different formats and information. The main goal of the performed
research was to develop a method to merge lexicons fully automatically.

Basically, the merging of lexicons has two well defined steps (Crouch and King, 2005):

1. Mapping Step: because information about the same phenomenon can be expressed differently, the
information in the existing resources has to be extracted and mapped into a common format.

2. Combination Step: once the information in both lexicons is encoded in the same way, this
information from both lexicons is mechanically compared and combined to create the new resource.

Thus, our goal was to carry out the two steps of the merging process in a fully automatic way. This is to
perform both mapping and combination steps without any human supervision.

Necsulescu et al. (2011) and Bel et al. (2011) proposed to perform the combination step using graph
unification (Kay, 1979). This single operation which is based on set union of compatible feature values,
makes it possible to validate the common information, exclude the inconsistent one and to add, if desired, the
unique information that each lexicon contained for building a richer resource. For graph unification in our
experiments, we used the NLTK unification mechanism (Bird, 2006). This mechanism proved to be useful
for building richer lexicons, but the most difficult part was to convert both lexicons into a common format

D6.4: Lexical Merger

31

that allows the merging, this is, the mapping step.

Thus, a method to avoid manual intervention when converting two lexicons into a common format with a
blind, semantic preserving method was devised (Bel et al., 2011). This proposal departs from the idea of
Chan and Wu (1999) of comparing information contained in common entries of different lexicons and
looking for significant equivalences in terms of consistent repetition. The basic requirement for this
automatic mapping is to have a number of common entries encoded in the two lexicons to be compared.
Chan and Wu (1999) were working only with single part-of-speech tags, but the lexicons we address here
handle more complex and structured information, which has to be identified as units by the algorithm. In
order to avoid the necessity of defining the significant pieces of information to be mapped by hand, we
proposed a method to first automatically identify such pieces (“minimal units”) in each lexicon and secondly,
to automatically learn the correspondence of such pieces between the two lexicons. The results showed that it
is possible to assess that a piece of the code in lexicon A corresponds to a piece of code in lexicon B since a
significant number of different lexical entries hold the same correspondence. Then, when a correspondence
is found, the relevant piece in A is substituted by the piece in B, performing the conversion into the target
format to allow for comparison and, merging. Note that the task is defined in terms of automatically learning
correspondences among both, labels and structure since both may differ across lexicons.

This technique has been applied in two different scenarios: on the one hand two subcategorization frame
(SCF) lexicons for Spanish have been merged into one richer lexical resource. On the other hand, two
morphological dictionaries were merged. In both cases the original lexicons were manually developed.

Regarding the merging of SCF lexicons, the two original SCF lexicons were developed for rule-based
grammars: the Spanish working lexicon of the Incyta Machine Translation system (Alonso, 2005) and the
Spanish working lexicon of the Spanish Resource Grammar, SRG, (Marimon, 2010) developed for LKB
framework (Copestake, 2002). The SRG lexicon was already encoded as feature structures, but Incyta
lexicon was encoded as a parenthesized list of all the possible subcategorization patterns. The conversion
into a common format proved to be complicated due to the non-standard encoding of the lexicons, but
feasible, achieving up to 92% in precision and 93% in recall when comparing automatically to manually
extracted entries. The details of this experiment can be found in Bel, Padrò, Nesculescu (2011), Necsulescu
et al. (2011) and Padró, Bel, Nesculescu (2011).

In the second experiment we extended and applied the same technique to perform the merging of
morphosyntactic lexicons encoded in LMF. Lexical Markup Framework, LMF (Francopoulo et al. 2008) is
an attempt to standardize the format of computational lexicons and may be useful to reduce the complexities
of merging lexicons. However, LMF (ISO-24613:2008) “does not specify the structures, data constraints,
and vocabularies to be used in the design of specific electronic lexical resources”. Therefore, the merging of
two LMF lexicons is certainly easier, but only if both lexicons also share the structure and vocabularies, if
not, mapping has still to be done by hand or automatically.

The aim of this second experiment was to assess to what extent the actual merging of information contained
in different LMF lexicons could be done automatically, following the proposed method, in two cases: when
the lexicons to be merged share structure and labels, and when they do not. Besides, our second goal was to
prove the generality of the approach, i.e. if it could be applied to different types of lexical resources.

Therefore, we applied the method presentedbefore to merge different Spanish morphosyntactic dictionaries.
A first experiment tackled the merging of a number of dictionaries of the same family: Apertium
monolingual lexicons (Armentano-Oller et al. 2007) developed independently for different bilingual MT
modules. A second experiment merged the results of the first experiments with the Spanish morphosyntactic

D6.4 – Lexical Merger

FreeLing lexicon (Padró et al. 2010). All the lexicons were already in the LMF format, although Apertium
and FreeLing have different structure and tagset. In addition, note that these morphosyntactic lexicons
contain very different information than SCF lexicons of the first experiment, so this second scenario can be
considered a further proof of the good performance and generality of the proposed automatic merging
method.

The results of that work showed that the availability of the lexicons to be merged in a common format such
as LMF indeed alleviates the problem of merging. In our experiment with different Apertium lexicons it was
possible to merge three different monolingual morphosyntactic lexicons with the method proposed as to
achieve a larger resource. We have also obtained good results in automatically converting to a common
format and merging Apertium and FreeLing lexicons, this is. two LMF lexicons with different tag set.
Details about these experiments can be found in Padró, Bel, Nesculescu (2012).

3 Lexical Merger Web Services

The list of deployed web services for lexical merger is presented in this section. There are currently three
workflows which accomplish the merging of two acquired lexicons. Additional web services will be released
in T32, especially related to multi-level merging.

Name Type Category Language Provider Registry
Number

lmf_merger Soaplab CNR-ILC 251

merge_lmf_files Soaplab UPF 245

merge_list_of_lmf_files Soaplab UPF 270

lmf_ml_merger Soaplab CNR-ILC 300

3.1 lmf_merger
http://registry.elda.org/services/251

Given two LMF files, this web service merges them into a single LMF file.

It can manage LMF files encoding the information in different ways as well as in the same way: users can
supply their directives to the service. This will work, for example, for merging different lexicons learnt under
PANACEA platform, i.e. which will be encoded in the same way; but the service is able to merge "gold"
lexicon with automatically extracted ones. For example, when the PAROLE Italian Lexicon which is created
by linguists is merged with an extracted lexicon.

This version of the webservice only works for LMF files which contain “<LexicalEntry>”,
“<SyntacticBehaviours>” and “<SubcategorizationFrame>” elements. The input of the service consists of
two lexicons and four directives used by the service to map features and values; the output of the service is a
single LMF file containing the intersection, common “<LexicalEntry>”, of the two original lexicons.

D6.4: Lexical Merger

33

3.2 merge_lmf_files
http://registry.elda.org/services/245

Given two LMF files, this web service merges them into a single LMF file. It works for LMF files encoding
the information in the same way, i.e. same labels, values and structure. This will work, for example, for
merging different lexicons learnt under PANACEA platform. If the LMF files contain equivalent
information encoded in different ways, a mapping into a common format should be previously performed.

This version of the webservice only works for LMF files without references. This is, LMF files containing
only “<LexicalEntry >” elements. I.e. it works for morphological dictionaries, noun classification, etc but not
for SCF lexicons, for example.

The input of the service are two LMF files, and the output a single LMF file containing information from the
two original lexicons.

3.3 merge_list_of_lmf_files
http://registry.elda.org/services/270

Given a list of URLs pointing to LMF files, this webservice merges them into a single LMF file. This is an
extension of the merge_lmf_files, so it works for the same kind of lexicons.

The input of the service is a list of URLs pointing to the LMF files to be merged. The output is a single LMF
file with all information combined.

3.4 lmf_ml_merger
http://registry.elda.org/services/300

This service applies the multi level merger described above. The service takes two lexical resources and two
directive files as well as other parameters, as explained in table 3.1.

The two input lexical resources can, in principle, contain N and M lexicons respectively. The merger
addresses this situation extracting all common lexical entries from the N+M input lexicons and generates the
1 lexicon with all common objects. The merger manages the N and M lexicons purging them of common
objects, that's to say defining their complements.

Parameter Comment

first_lmf This is the first LMF file. The file contains Morpho-
syntax objects plus the sense.

second_lmf This is the second LMF file. The file contains Morpho-
syntax objects plus the sense.

what2check This file contains which attribute of specific lexical
objects should be taken into account when those objects
are compared.

It contains also a checkFeature instruction.

If this instruction is present, then the tool reads the
features to check in the feats2check file. The format is the

D6.4 – Lexical Merger

Parameter Comment

following:

#LexicalEntry

#checkFeats - position 0 2^0=1

 #LexicalEntry = 0 for not CHECKING FEATS

 LexicalEntry = 1

feats2check This file contains the list of features to check for a
specific lexical object.

The format is the following:

#LexicalEntry

LexicalEntry:partOfSpeech

LexicalEntry:writtenForm

compact This parameter is a bit [0|1] to tell the tool to produce the
output lexical resource with only 1 lexicon which is the
union of the intersection of the input lexicons plus the two
complements or N+M+1 lexicons.

Use 1 to compact, 0 to write N+M+1 lexicons. Default is
0

write_stat

This parameter is a bit [0|1] to tell the tool to write the
cosine similarity measure among SCFs in the input
lexicons.

Use 1 to write statistics in the out_stats_mode output, 0
for skipping. Default is 1

out_stats_mode

is the output print stream where statistics are written.

out_file_mode is the output print stream where the merged resource is
written.

Table 46: Service parameters

D6.4: Lexical Merger

35

4 Workflows

Here the workflows related to merging are presented. Workflows are also documented at
myexperiment.elda.org. Additional workflows related to multi-level merger are pending.

4.1 Classification of nouns found in crawled data into lexical classes
http://myexperiment.elda.org/workflows/63

This workflow annotates with FreeLing the input crawled data (in TO1 format) and sends it to three different
noun classifiers: event, location and human nouns. Each classifier produces a LMF output. The three
obtained LMF files are merged into a single LMF lexicon containing information for all classes using the
merging web service. This workflow works for English and Spanish, since those are the languages for which
there are noun classifiers available.

Provider: UPF

4.2 Classification of nouns in PoS tagged data for English and 7 available classes
http://myexperiment.elda.org/workflows/84

This workflow uses FreeLing annotated data to classify the given list of nouns with the different available
noun classifiers for Enlgish (7 classes). The LMF ouputs of each classifier are merged into a single LMF
lexicon containing information for all classes.

Provider: UPF

4.3 Classification of nouns in PoS tagged data for Spanish and 9 available classes
http://myexperiment.elda.org/workflows/85

This workflow uses FreeLing annotated data to classify the given list of nouns with the different available
noun classifiers for Spanish (9 classes). The LMF ouputs of each classifier are merged into a single LMF
lexicon containing information for all classes.

4.4 Merging of two SCF LMF Lexicon
http://myexperiment.elda.org/workflows/72

This is a simple workflow for merging two existing lexicons of subcategorisation frames represented and
encoded in LMF. In the PANACEA scenario, one lexicon is automatically produced through the platform
and saved on the user local machine and the second lexicon is an already existing lexicon owned by the user,
or retrieved/downloadable from third parties. This workflow only provides in input two LMF SCF lexicons
and uses default directives for mapping and merging.

Provider: ILC

4.5 Merging of two Morpho-syntactic LMF lexicons
http://myexperiment.elda.org/workflows/95

This is a simple workflow for merging two existing lexicons which contain morpho syntactic objects
including sense. This workflow applies the basic lmf_ml_merger, that's to say it creates a compacted lexicon

D6.4 – Lexical Merger

as output and does not provide statistics.

Provider: ILC

5 LREC 2012 Workshop

At LREC 2012 the PANACEA project held a successful and well-attended half-day workshop on “The
Automatic Merging of Lexical Resources”. The list of presentations is reproduced here:

Núria Bel, Introduction to the Workshop

Invited talk: Iryna Gurevych, How to UBY – a Large-Scale Unified Lexical-Semantic
Resource

Oral Session:

Laura Rimell, Thierry Poibeau and Anna Korhonen, Merging Lexicons for Higher Precision
Subcategorization Frame Acquisition

Muntsa Padró, Núria Bel and Silvia Necşulescu, Towards the Fully Automatic Merging of
Lexical Resources: A Step Forward

Benoît Sagot and Laurance Danlos, Merging Syntactic lexicons: The Case for French Verbs

Cristina Bosco, Simonetta Montemagni and Maria Simi, Harmonization and Merging of Two
Italian Dependency Treebanks

Poster Session:

Riccardo Del Gratta, Francesca Frontini, Monica Monachini, Valeria Quochi, Francesco
Rubino, Matteo Abrate and Angelica Lo Duca, L-Leme: An Automatic Lexical Merger Based
on LMF Standard Technologies

Anelia Belogay, Diman Karagiozov, Cristina Vertan, Svetla Koeva, Adam Przepiórkowski,
Maciej Ogrodniczuk, Dan Cristea, Eugen Ignat and Polivios Raxis, Merging Heterogeneous
Resources and Tools in a Digital Library

Thierry Declerck, Stefania Racioppa and Karlheinz Möhrt, Automatized Merging of Italian
Lexical Resources

Radu Simionescu and Dan Cristea, Towards a Universal Automatic Corpus Format
Interpreter Solution

The full proceedings can be found at this URL.

6 Documentation and Scientific articles

A full list of papers related to WP6 is given in D6.2, with the papers themselves annexed to D6.2. The
following papers are relevant to the merging experiments and components:

LMF-based merging of SCF Lexica:

Del Gratta R., F Frontini, M Monachini, V Quochi, F Rubino, M Abrate, A. Lo Duca. 2012. L-
LEME: an Automatic Lexical Merger based on the LMF Standard. In Proceedings of LREC 2012
Workshop on Language Resource Merging. Istanbul, Turkey.

Use of graph unification to merge two SCF lexicons after manually converting them into a common

D6.4: Lexical Merger

37

format:

Silvia Necşulescu, Núria Bel, Muntsa Padró, Montserrat Marimon and Eva Revilla. 2011. Towards
the Automatic Merging of Language Resources. In Proceedings of WoLeR 2011. Ljubljana,
Slovenia.

Automatic conversion of the two SCF lexicons into a common format that allows posterior merging:

Muntsa Padró, Núria Bel and Silvia Necşulescu. 2011. Towards the Automatic Merging of Lexical
Resources: Automatic Mapping. In Proceedings of RANLP 2011. Hissar, Bulgaria

Núria Bel, Muntsa Padró and Silvia Necşulescu. 2011. A Method Towards the Fully Automatic
Merging of Lexical Resources. In Proceedings of Language Resources, Technology and Services in
the Sharing Paradigm Workshop. November 12, 2011 at IJCNLP 2011 (Chiang Mai, Thailand).

Use of the method to merge morphosyntactic lexicons encoded in LMF:

Muntsa Padró, Núria Bel and Silvia Necşulescu. 2012. Towards the Fully Automatic Merging of
Lexical Resources: a Step Forward. In Proceedings of LREC 2012 Workshop on Language Resource
Merging. Istanbul, Turkey.

Merging for improving precision:

Rimell, Laura; Poibeau, Thierry and Korhonen, Anna. (2012). Merging Lexicons for Higher
Precision Subcategorization Frame Acquisition. In Proceedings of the LREC Workshop on Language
Resource Merging, Istanbul, Turkey.

7 References

Juan Alberto Alonso, András Bocsák. 2005. Machine Translation for Catalan-Spanish. The Real Case for
Productive MT; In Proceedings of the tenth Conference on European Association of Machine
Translation (EAMT 2005), Budapest, Hungary.

Carme Armentano-Oller, Antonio M. Corbí-Bellot, Mikel L. Forcada, Mireia Ginestí-Rosell, Marco A.
Montava, Sergio Ortiz-Rojas, Juan Antonio Pérez-Ortiz, Gema Ramírez-Sánchez, Felipe Sánchez-
Martínez. 2007. Apertium, una plataforma de código abierto para el desarrollo de sistemas de
traducción automática. In Proceedings of FLOSS (Free/Libre/Open Source Systems) International
Conference, p. 5-20. Jerez de la Frontera, Spain.

Núria Bel, Muntsa Padró and Silvia Necşulescu. 2011. A Method Towards the Fully Automatic Merging of
Lexical Resources. In Proceedings of Language Resources, Technology and Services in the Sharing
Paradigm, workshop in IJNLP 2011.

Steven Bird. 2006. NLTK: the natural language toolkit. In Proceedings of the COLING/ACL on Interactive
presentation sessions. Association for Computational Linguistics, Morristown, NJ, USA.

Daniel K. Chan and Dekai Wu. 1999. Automatically Merging Lexicons that have Incompatible Part-of-
Speech Categories. Joint SIGDAT Conference on Empirical Methods in Natural Language Processing
and Very Large Corpora (EMNLP/VLC-99). Maryland.

Ann Copestake. 2002. Implementing Typed Feature Structure Grammars. CSLI Publications, CSLI lecture
notes, number 110, Chicago.

D6.4 – Lexical Merger

Dick Crouch and Tracy H. King. 2005. Unifying lexical resources. Proceedings of Interdisciplinary
Workshop on the Identification and Representation of Verb Features and Verb Classes. Saarbruecken;
Germany.

Gil Francopoulo, Núria Bel, Monte George, Nicoletta Calzolari, Mandy Pet, and Claudia Soria. 2008.
Multilingual resources for NLP in the lexical markup framework (LMF). Journal of Language
Resources and Evaluation, 43 (1).

Montserrat Marimon. 2010. The Spanish Resource Grammar. Proceedings of the Seventh Conference on
International Language Resources and Evaluation (LREC'10). Paris, France: European Language
Resources Association (ELRA).

Silvia Necşulescu, Núria Bel, Muntsa Padró, Montserrat Marimon and Eva Revilla. 2011. Towards the
Automatic Merging of Language Resources. In Proceedings of WoLeR 2011. Ljubljana, Slovenia.

Lluís Padró, Miquel Collado and Samuel Reese and Marina Lloberes and Irene Castellón. FreeLing 2.1:
Five Years of Open-Source Language Processing Tools. Proceedings of 7th Language Resources and
Evaluation Conference (LREC 2010), ELRA. La Valletta, Malta. May, 2010.

Muntsa Padró, Núria Bel and Silvia Necşulescu. 2011. Towards the Automatic Merging of Lexical
Resources: Automatic Mapping. In Proceedings of RANLP 2011. Hissar, Bulgaria

Muntsa Padró, Núria Bel and Silvia Necşulescu. 2012. Towards the Fully Automatic Merging of Lexical
Resources: a Step Forward. In Proceedings of LREC 2012 Workshop on Language Resource
Merging. Istambul, Turkey.

