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Abstract: Typically, humans interact with a humanoid robot with apprehension. This lack of trust can
seriously affect the effectiveness of a team of robots and humans. We can create effective interactions
that generate trust by augmenting robots with an explanation capability. The explanations provide
justification and transparency to the robot’s decisions. To demonstrate such effective interaction, we
tested this with an interactive, game-playing environment with partial information that requires
team collaboration, using a game called Spanish Domino. We partner a robot with a human to form
a pair, and this team opposes a team of two humans. We performed a user study with sixty-three
human participants in different settings, investigating the effect of the robot’s explanations on the
humans’ trust and perception of the robot’s behaviour. Our explanation-generation mechanism
produces natural-language sentences that translate the decision taken by the robot into human-
understandable terms. We video-recorded all interactions to analyse factors such as the participants’
relational behaviours with the robot, and we also used questionnaires to measure the participants’
explicit trust in the robot. Overall, our main results demonstrate that explanations enhanced the
participants’ understandability of the robot’s decisions, because we observed a significant increase
in the participants’ level of trust in their robotic partner. These results suggest that explanations,
stating the reason(s) for a decision, combined with the transparency of the decision-making process,
facilitate collaborative human–humanoid interactions.

Keywords: trust; decision explanations; human-humanoid interaction

1. Introduction

Social robots are now deployed in human environments, such as in hotels, shops,
hospitals, and particularly in roles as co-workers. These robots complement humans’
abilities with their own skills. Hence, robots are expected to cooperate and contribute
productively with humans as teammates. In recent years, the technical abilities of robotic
systems have immensely improved, which has led to an increase in the autonomy and
functional abilities of existing robots [1]. As robots’ abilities increase, their complexity also
increases, but the increased ability of the robot often fails to improve the competency of
a human–robot team [2]. Effective teamwork between humans and robots requires trust.
In situations with incomplete information, where humans need to interact and work as
teammates with a robot, humans’ trust in their robot teammate is crucial. In such cases,
autonomous decision-making by the robot creates unpredictable and inexplicable situations
for human teammates. Consequently, humans’ lack of insight into the robot’s decision-
making process leads to a loss of trust in their robot teammate. In critical situations, such
as search-and-rescue or completion of a time-sensitive task, humans cannot afford to lose
trust in robot teammates.

Robots shall be required to explain and justify their decisions to humans, and humans
will be more likely to accept those decisions as they realise the reasoning behind them. We
postulate that a robot’s decisions (which generate the robot’s actions) can be communicated
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through explanations to humans. We hypothesise that the explanations that express how a
decision is made and why the decision is made are the most promising to generate trust. We
argue that these types of explanation will lead to a higher inclination in humans to accept
the robot as a trustworthy teammate. Trust is an important aspect for the cooperation of
humans and robots as a team [3]. Trust directly affects humans’ willingness to receive
and accept robot-produced information and suggestions [4,5]. The absence of trust in
human–robot interaction leads to disuse of a robot [6]. Ensuring an appropriate level of
trust is a challenge to the successful integration of robotic assets into collaborative teams
because under-reliance or over-reliance on a robot can lead to misuse of the robot [2].

Trust among humans appears to require explanations [7]. In essence, trust-building
encompasses a more or less detailed understanding of the motives of a person that we may
or may not trust. We accept explanations, or we may cast a validity verdict on them. Artifi-
cial intelligence researchers, within the area of expert systems, have also provided sufficient
motivation to consider the contribution of explanations [8] to building trust in humans [9,10]
and leading to the acceptability of these systems [11]. Hand-crafted explanations have also
shown to be promising in providing enough transparency to humans [12].

It seems timely and essential to understand how to promote effective interaction
between robots and humans, especially when robots and humans share a common goal but
not the same resources, and are required to work as a team. An interaction, by definition,
requires communication between humans and robots [13]. We stipulate that explanations
can be used as an effective communication modality for robots, earning humans’ trust.
Explanations shall enable humans to track the performance and abilities of the robots. We
suggest that insight into the robots’ decision-making process can also lead to a human
desire for interaction and acceptability and will help to establish smooth and trustworthy
human–robot interactions. This paper reports on a study which set out to examine the
effect of a robot’s explanations on humans’ level of trust. The explanations use English like
sentences, in understandable human terms. We expect that understandable explanations
will induce humans to adjust their mental model of the robot’s behaviour, becoming more
predisposed to trust the robot’s actions. Thus, humans will work together with robots as a
team to achieve a common goal.

For human–robot interaction, there has been little empirical evaluation of the influence
of explanations on the humans’ level of trust. Sheh et.al. [14] supported the argument
that explainability does help to establish trust, and that robots should be given the ability
to explain their behaviour to human counterparts. Sheh et.al. [14]’s work focuses on
generating explainable decision-tree models that can explain decision-making processes in
the form of IF-THEN–ELSE statements. In this way, they developed an explainable artificial
intelligent agent that can explain its decisions to humans [14]. However, the study did not
discuss the effectiveness of explanations in improving system understandability since it
did not include a user study (the presentation includes a hypothetical example of a dialog
between a human and the explainable intelligent robot). Other research [15] presented a
needs-based architecture to produce verbal “why explanations” for the transparency of the
goal-directed behaviour of a social robot. This other study suggested that the generated
explanations will give humans the opportunity to make informed behaviour assessments of
the robot [15]. Using long-term feedback, humans will communicate individual preferences,
observe the robot’s adoption of them, and be offered the robot’s explanations. The claim
is that humans will trust more personalised robot behaviour. Although that research [15]
evaluated the architecture by creating an imaginary scenario with a mobile social robot, no
user study was performed to evaluate the influence of explanations on humans’ trust. Wang
et al. [9] used a different approach to increase transparency by using a simulated robot to
provide explanations for its actions. Explanations did not improve the team’s performance.
For some specific high-reliability conditions, trust was identified as an influential factor.
Moreover, Wang [9] used an online survey and the analysis of the survey’s responses
indicated improvements in humans’ acceptance of the robot’s suggestions. One of the
disadvantages of conducting an online survey to evaluate humans’ perception of the robot’s
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attributes is that the human participants act only as observers. Such a human perception
is incomplete, since it is missing the robot’s physical presence and interaction [2]. Thus,
it is unclear what happens in settings where humans and a robot interact directly in the
same environment.

We focus here on a physical setting where the robot has been endowed with the
communication ability of explaining autonomous decisions via natural language utterances.
Such explanations aim to justify decisions and provide transparency, reduce uncertainty,
establish some understanding of the robot’s behaviour, eventually increase the humans’
trust, and shift the humans’ perception of the robot from a tool to a trustworthy teammate.

Our contribution consists of a user study that takes a more socially relevant approach
by focusing on the physical interaction between humans and an autonomous social robot.
We chose Domino, a team-based partial-information game, to form the basis of the inter-
action between humans and the robot. Game-playing scenarios are useful and powerful
environments to establish human–robot interaction [16] because games provide an external,
quantifiable measure of the underlying psychological state of a human’s trust [17]. In par-
ticular, multi-player game environments not only maintain social behaviour when played
in teams, but also develop trust dynamics among teammates to achieve the common goal
of winning the game.

We selected the Domino game as the basis for our experimental paradigm for the
following reasons. The environment of the game Domino is partially observable. A game
of Domino involves two teams, with two members on each team, where each participant
has incomplete information (the hand of each player is not revealed to any other player),
but cooperation is required by members of a team to achieve a win. Because each player
has different tiles, each player has different resources, and in Domino, the resources of
teammates and opponents are unknown when making a decision. We configured mixed
teams: a human and robot, facing an adversary team of only human participants. In
this setting, the robot has two roles: first, as a team partner with a human (the role of
teammate), and second, as a member of a human–robot team that competes against a team
of two humans (the role of adversary). Figure 1a illustrates the heterogeneous team versus
homogeneous team setting.

We want to examine the effect of explanations on the humans’ level of trust, in an
environment where a robot makes decisions, and those decisions influence the outcome.
The primary motivation behind this study is the interaction between humans and robots,
which is distant from a master–slave relationship and is close to a peer-to-peer relationship. We
note that, as is common at present [18,19], the human-in-the-loop concept presents humans
as supervising (intelligent, smart, AI-incorporating) machines. Our setting presents the
heterogeneous team of robots and humans with equivalent intellectual roles. The humans
make decisions, and so do the robots (not about physical tasks). In our case study, rather
than the human controlling, supervising or monitoring machine behaviour [20], the robot’s
decisions alternate with human’s decisions. We augment the robot with the ability to
provide different types of explanation, which will influence the human. Explanations
should disregard the complex behaviour of the robot, but since the explanations are
understandable and intuitive, the human will build a trustworthy mental model of the
robot’s decision-making mechanism, even if such a mechanism is beyond simple and
intuitive explanations. We shall show that these explanations will lead to the development
of human trust in the robot.
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(a) Human participants are playing the game (in teams) with the robot.

.
(b) The robot explains how to
play the game (Condition-2)

(c) Human participants are attentive to the robot’s explanations

Figure 1. Two types of team during the activities. Heterogeneous teams are composed of a robot
and a human. Homogeneous teams have two humans.

Section 2 further surveys the literature on trust and explanations in the context of
human–robot interaction. Although changing the perception of humans towards the robot
is an important factor in trust, and we have evaluated such changes in perception [21],
this paper focuses on the evaluation of trust alone. Section 3 presents our human–robot
interaction scenario, followed by the design description of our robot as a team player.
Section 4 discusses the user study in detail, as well as the experimental design and the
measurement of dependent variables. Section 5 presents the results in detail, taking the
proposed hypotheses into account. Section 6 presents a discussion and, finally, Section 7
considers the implications of this work for future work from the human–robot interaction
community.

2. Related Work

For decades, trust has been studied in a variety of ways (i.e., interpersonal trust
and trust in automation). However, in human–robot interaction, there is much space to
study the trust that humans attribute to robots. There have been a growing number of
investigations into and empirical explorations of the different factors that affect humans’
trust in robots [22,23]. Hancock et. al. [4] reported on 29 empirical studies, and developed
a triadic model of trust as a foundation providing a greater understanding of the different
factors that facilitate the development of humans’ trust in robots. The model’s three
groupings of factors are first, robot-related factors (anthropomorphism, performance and
behaviour), second, environmental-related factors (task- and team-related factors) [4]
and third, human-related factors (i.e., demographic attributes of humans) [1]. Robot-
related factors [4], especially robot-performance-based factors, influence humans’ trust
most dramatically. These robot-performance-based factors include a robot’s functional
ability [24], and robot etiquette (i.e., remaining attentive of errors) [25,26], especially how
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the robot casts blame [2], and its reliability and safety [5]. How a robot address the
significance of errors, and what feedback humans recieve from error-prone robots radically
influences humans’ trust [5]. However, in situations where the robot’s low reliability was
clearly evident, even from the early stages of interaction, human participants continued to
follow the robot’s instructions [5].

Most of the previous investigations regarding the influence of the explanations provide
by an artificial system on humans’ trust have been conducted in rule-based systems [10],
intelligent tutoring systems [27], intelligent systems (i.e., neural networks, case-based
reasoning systems, heuristic expert systems) [8] and knowledge-based systems [28]. Intelli-
gent tutoring systems try to convey knowledge of a particular subject to a learning person.
Nevertheless, intelligent tutoring systems cannot clarify their behaviour and remain re-
stricted to particular tasks [29]. Expert systems [30] are systems that recommend answers to
problems (i.e., financial decisions, industrial procedure investigations). The corresponding
problems usually require a skilled human to solve them [7]. The rule-based expert system
Mycin [31] was the first expert system to provide explanations for its reasoning in response
to Why, Why-Not and How-To queries, but the comparative benefits of these explanations
were limited [8,32]. Since Mycin was incapable of justifying its advice, it was observed that
physicians were reluctant to use it in practice [33]. Earlier work [34] confirmed that differ-
ent types of explanations not only improved the effectiveness of context-aware intelligent
systems but also contributed to stronger feelings of human trust. Although the main focus
was on the influence of the How-to, What-if, Why and Why-not explanations, the results
showed that Why and Why-not explanations were an excellent type of explanation, It was
shown [34] that these two types of explanation effectively helped to improve the overall
understandability of the system. There has been little empirical evaluation of the impact
of explanations on human–machine trust [11]. Dzindolet et. al. [12] explored manually
crafted (and pre-recorded) explanations. Hand-crafted explanations have been shown to
be effective in providing transparency and improved trust. However, since hand-crafted
explanations are static and created manually, they fail to transfer the complexity of the
decision-making process to humans. Nothdurft et. al. [35,36] focused on the transparency
of and the justification for decisions made in human–computer interaction. Glass et. al. [37]
studied trust issues in technical systems, analysing the features that may change the level
of human trust in adaptive agents. They claim that designers should “supply the user of
a system with access to information about the internal workings of the system”, but the
evidence to substantiate such a claim is limited.

The systems, as mentioned earlier, deliberately focused on the use of explanations
to convey conceptual knowledge and increase the acceptability of these systems, such
as the reliability and accuracy of the system’s performance. However, the problem of
the non-cooperative behaviour and trust of humans regarding robots remains largely
unexplored. To the best of our knowledge, there is still a gap in the current human–robot
interaction literature, and there is very little experimental verification that could show that
explanations promote or affect humans’ trust in robots. The systems mentioned earlier
deliberately focused on reliability and accuracy, followed by explanations that convey their
conceptual knowledge and increase acceptability.

In addition to the physical appearance of a robot, human perception of the robot’s
attributes can also affect trust [2]. For example, prior to interacting with a robot, humans
develop a mental model of the expected functional and behavioural abilities of the robot.
Nonetheless, the human’s mental model evolves after interaction with the robot. A mis-
match between the human’s initial mental model and the later mental model can have
a detrimental effect on the human’s trust [38]. A human’s mental model of a robot’s
functional and behavioural abilities also defines the human’s intentions for future use
of robot [8]. Therefore, explanations are valuable because explanations can shape the
humans’ mental model. Finally, we suggest that our approach (enabling a robot to provide
explanations for transparency and justification of its decisions) is to be considered as the
robot’s functional ability, which should be categorised as a robot-related factor.
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3. Human–Robot Interactive Scenario

Our human-robot interactive scenario is focused on a block-type game known as
Spanish Domino. The match takes place between two teams, with two players in each team,
and it consists of several hands; in each hand, each of the four player receives seven random
domino tiles. Game players take their turn, moving clockwise, and aim for their pair to
contain the first player to release all their tiles. The tiles in a hand are confidential to all but
their owner. Thus, the decisions a player makes are made with partial information. During
their turn, a game player can perform only two actions:

1. To release a tile (by putting down a tile with an endpoint matching one of the open
ends of the current board);

2. To pass (because releasing a tile is impossible).

The hand ends when no player can play a domino tile or when a player releases all
the domino tiles in their hand. Domino is a non-deterministic game, because of the random
shuffling and dealing of tiles to the four players at the beginning of every hand. This initial
shuffling is an element of non-determinism, but after each player receives their hand, all
actions are deterministic and successful.

Figure 2 shows the complete set of domino tiles, ranging from (0,0) to (6,6), as used in
the study. Because each tile is different, all players have different resources, and team mem-
bers must cooperate without full knowledge of their partners’ resources or the opposing
teams’ resources. During the match, the robot’s behaviour is completely autonomous.

Figure 2. Representation of the 28 tiles of Domino.

Figure 3 shows the global architecture and the modules involved in our software for
human–robot interaction [39]. Naoqi is the middleware provided by the robot’s manufac-
turer. Our first module is the Knowledge Base, which records the rules of the game as well
as applying Bayesian Inference to update the belief regarding which tile may be held by
which player.

Robotic
Game
Player

Virtual Environment

NaoqiBehavioural
Module

Decision
Maker

Explanation
Generator

Knowledge
Base

Explanation
Interface

Game
Application

Touch Screen
Monitor

Human
Players

Figure 3. Complete architectural overview of our human–robot interaction scenario using components.

If we number the players as Pi (for i ∈ {0, 1, 2, 3}), then Pi is in the same team as Pj, if
and only if, i ∼= j mod 2. Each player holds HPi(u,v), which is the probability that Player Pi
was supplied (u, v) initially. We can assume that, initially, HPi(u,v) = 1/4, and as a player
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Pi reveals its own hand, for instance, a tile (v0, u0), the value HPi(u0,v0)
= 1 (I hold the tile)

and HPj(u0,v0)
= 0 (the others do not hold the tile ) for j 6= i. Bayesian inference updates

HPj(u,v) = 1/3 for any other tile that Pi does not hold (and j 6= i). Thus, Bayesian inference
updates this array HPi(u,v), which is individual and different for each robot; it is their partial
information, and we could play games where all participants are robotic. Another part
of the knowledge base is common knowledge and consists of the history of moves with
the train of tiles (the commonly known board) that defines the current state of the game.
After a player’s turn, the new knowledge is based on observation. Bayesian inference is
an effective way to deal with such a revision of belief and update the probabilistic belief
HPi(u,v) of the hand of the partner and their opponents. The Decision Maker is a module
that approximates perfect play. It rounds the probabilities in HPi(u,v) to zero or one (it
simulates that hands of all players became known) and, in this approximation game with
full information, uses the Min–Max algorithm with Alpha-beta pruning to decide on a
move. The Behaviour Module controls the robot actions and behaviour according to game
events, and communicates the speech and moves as well as capturing the moves of other
players. The Explanation Generator uses a record of the reasoning traces behind a goal tree,
to answer questions about the decisions and generate dynamic explanations. Usually, the
explanation contrasts the available choices at the time the decision was made. The Game
Application displays the game on a digital table (a horizontal touch monitor). Information
becomes available to all players each time a player completes their turn, either by releasing
a tile, or passing.

We developed the explanation-generation mechanism on top of the game-playing
mechanism. We enable the robot to generate multiple Static and Dynamic explanations.
Static explanations are pre-defined, but the agent still has to choose the relevance of the
explanation to a situation; alternatively, dynamic explanations are generated [40] (see
Table 1 for examples of these types of explanations). The Static explanations are based on
(1) history and facts about the game, (2) rules of the game and (3) game-play tips. Dynamic
explanations are “reactive” explanations that provide insight into the robot’s previous
decisions (actions), and are incorporated into the justification and transparency goals of an
explanation. The justification explanations (“why”-explanations) are more about logical
argument, and are the most natural and straightforward way of telling the human why a
decision is correct, but these justification explanations do not necessarily aim to explain the
actual decision-making process. Hence, another type of explanation is required to offer
transparency regarding how did the decision was made; these are “how”-explanations. In
this sense, the goal of explanations shifts from justification to transparency. This reflects that
these two goals work together, and both serve the purpose of making a decision clear and
understandable. Hence, these Dynamic explanations are suitable for answering how-type,
and why-type questions. Finally, the robot can elicit the action outcome of its decision
process by using a straight-forward "what"-explanation.

Dynamic explanations provide team members with the transparency regarding the
different factors involved in the decision-making process of the robot. We focused on the
intentional robot behaviour [41], towards which humans tend to acquire an intentional
perspective, and the construction of explanations in terms of (human-like) reasons, i.e.,
intentions. Further, our approach to explanations for Dynamic explanations is more like
a contrastive approach, which highlighted the intended reason of an event (decision-made)
relative to some other event that did not occur. Providing human participants with the
main reasoning behind the robot’s decisions was the easiest way to inform them about the
reliability of the robot’s decisions. The robot’s decisions were its actions, and those actions
were based on the strategies that it applied to the information it possessed, in order to
make a decision. Hence, the strategies included a causal structure composed of two steps:
“I [played double] because I [intended to block] my opponent who was [lack of tiles] of Suit 3.”
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Table 1. Examples of Static Explanations in contrast to dynamic explanations. dynamic explanations
require a reference to a recently played game. Static Explanations Refer to the Rules of the Game.

Examples

Static Explanations Dynamic Explanations
(Rules of the Game) (Decision Making)

A player can make a pass only
if the player cannot release a tile
on the board.

The legal move is to play a piece
in such a way that one of its
numbers matches a number on
one of the ends of the current
board position.

The game will end with one of
two possibilities. If a player
plays his last tile on the board
and is left with none, he is
deemed the winner. Otherwi
the game is blocked because nei-
ther player can play.

I played (6,6) because it is a basic rule that, during the first game, the
player holding the tile with the highest pips (dots on the tile) goes
first.

I played double because doubles have the same suit value on either
end, which provides fewer opportunities to set them down on the
board. Therefore, it is a good idea to play them as soon as possible.
It is too easy to get stuck with doubles.

I tried to play strategically and compete as much as I could. To play
the tile (1,4) was the best move based on the analysis, although it
contained fewer points. However, it was not enough at the end to
win the game.

I played the tile (1,3) because I had only one choice to play.

My strategy was to reduce the number of points the opposing team
can win with. Therefore, getting rid of the highest-scoring tile was
my strategic move.

4. User Study

Using the human–robot interaction scenario described in Section 3, we conducted a
user study. Our primary objective was to establish an environment in which a social robot
interaction with explanations to human players would shed some light on the hypothesis
detailed next.

4.1. Hypotheses

To investigate the effect of the explanations given by a social robot on a human’s trust,
and how much the explanation influences the human’s perception of the robot attributes,
during an interactive task, we proposed three hypotheses for the experiment, as given
below. We hypothesise that, in a team-based and incomplete-information environment:

Hypothesis H1. A human participant would appreciate understanding about the (transparency)
of the robot’s decisions, and receiving informed justifications of the robot’s choices communicated
in terms of explanations from the robot. Such human inclination will be reflected by the human’s
attribution of more trust in the robot (Condition-2 and Condition-3) compared to no explanation at
all (Condition-1).

Hypothesis H2. The tteam performance of human participants under Condition-2 and Condition-3
would be better compared to the performance of human participants under Condition-1.

4.2. Design and Procedure of the Experiment

We adopted the approach of combining survey(s) with experiments to evaluate the
effect of the explanations on the human participants’ trust in the robot. We used between-
subject and within-subject designs for our user study, in which the human participants play
the Domino game with a stationery humanoid robot NAO. We conducted the experiment
with activities organised in different stages, depending on the conditions we describe in
Section 4.2.2. Several other attributes of participants are also captured in the questionnaires,
to contrast their influence on trust with respect to the explanations.
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4.2.1. Data Collection Approaches

Our experiment creates conditions out of the various activities. Several of the activities
collect self-reported measures. However, to obtain behavioural data from our the human
participants, we video-recorded the players while they played Domino matches. The initial
video inspection of the behavioural data followed the techniques commonly used for this
type of case study [42,43]. We used The Language Archive’ ELAN platform [44] (from the
Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands) for behavioural
coding (verbal and non-verbal actions of the human participants) to examine video material
and perform a reliable organised analysis of the videos (no human subjectivity in extracting
data from videos).

We also maintained a history at the backend of the system to record the moves played
by the human participants in a csv file. We also kept the history of the human participants’
examination of the robot’s explanations.

We used annotations, which were executed to obtain evidence to challenge or support
the self-reported data on which our investigations were established. To better recognise
qualitative accounts, this method is widely used in ethnography [45]. Indeed, by using this
method, we found patterns and relationships, based on which we inspected our observa-
tions and illustrated, complemented and presented support for the self-reported data.

4.2.2. Conditions and Activities

Activity 1 Pre-interaction set of questionnaires: This is a data-collection activity, consisting
of self-reported and not video-recorded measures. Before starting the experiment, we
collected human participants’ demographics (i.e., previous experience with robots,
initial impression of the robots, pet-ownership), initial perception, and trust towards
the robot. In particular, this activity included the following sub-activity.

• Previous experience of human participants: Prior relationship with non-human
agents such as pets [46] influences human interaction with a robot. Thus, to
examine other factors such as prior experience with robots, we evaluated human
participants’ demographical information with the following questions.

– Do you have any prior physical experience with a robot?
– Have you ever watched a television show or a movie that involves robots?
– Do you have any prior relationships with non-human agents such as

pets [46]?

Trust between humans and animals may be a suitable analogy for trust between
humans and robots [2]. Examining the nature of a human–animal relationship
can help to increase understanding of how a human interacts with, and trusts, a
robot [24].

Trust is a dynamic attitude that changes over time [1,3]. To elucidate the changes
in trust and perception of the robot’s attributes, the human participants filled out
questionnaires on their trust in, as well as their perception and impression of, the
robots. In particular, the instruments used during this activity are listed here as
informative of a corresponding dependent variable.

1. Dependent variable Trust: By using a 14-item subscale of Human–Robot Trust
(HRT) questionnaire [1] we measure human teammates’ trust, although this is
not directly observable [47]. This questionnaire is also completed at the end of
all interactions; see Activity 8.

Activity 2 Robot provides verbal static explanations (see Figure 1b): The robot provided
verbal Static explanations of how to play the game to the human participants.

“We will play the block-type game of Domino with double-six set of domino
tiles. There are 28 tiles in the set ranging from (0,0) to (6, 6). There are four
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players in the game and each player will initially receive a set of seven
random tiles. . .!"

Activity 3 A homogeneous team plays match facing a heterogeneous team: We say a team
is homogeneous when both players in the team are humans. A team is heterogeneous
when one participant is the robot and the other is a human. The match is played to
50 points, which usually means five hands (although there could be less or more).

Activity 4 Pre-explanation session questionnaire: Participants respond to questionnaire
before receiving dynamic explanations from the robot. We aim to collect data to
scrutinise the human participants’ mental model of the robot’s behaviour (the under-
standability and credibility of the robot’s decisions); thus, we asked the following
two questions

1. I was nervous with the robot’s decisions during the game (by answering yes or no);
2. The robot’s use of strategy (decisions) was correct, and helped me during the

game (by answering yes or no or not sure).

For Condition-2 and Condition-3 participants, we evaluated this twice: during this
activity and after the explanation-session in Activity 5. However, for participants under
Condition-1, since they did not receive explanations, we applied these questions after
the first and third matches.

Activity 5 Post-explanation session questionnaire: Participants respond to questions after
receiving dynamic explanations from the robot (see Activity 4).

Activity 6 Robot gives static explanations about the robot’s decision: The robot makes
observations about the recently played hands.

Activity 7 Robot gives dynamic explanations about the robot’s decision (see Figure 1c): The
robot debates the recently played games, providing information about the reasoning
behind its decisions.

Activity 8 Post-interaction session questionnaire: Participants respond to questions that
review the entire experience. The HRT questionnaire and the Godspeed question-
naire [48,49], which were applied before the experience, are applied here (see Activity 1).
Similarly, the rating of images of robots is repeated here.

However, to evaluate the effect of explanations (only to those participants that re-
ceived them, thus participants under Condition-2 and Condition-3 see below), we
added five questions in which human participants were required to rate their satisfaction-
level and the understandability of the robot’s decisions, using explanations on a five-
point Likert scale.

1. Satisfaction:

• Explanations were clear and understandable (aimed at measuring the
clarity of the robot’s explanations);

• Explanations helped me during the game (aimed at the usability of the
robot’s explanations).

2. Understandability:

• Explanations helped me to understand the decisions of the robot;
• The robot adequately justified its behaviour (decisions) through explanations;
• I can now understand the robot’s behaviour better.

Activity 9 These activity does not involve the participants. It consists of recording and
analysing the player’s decisions in all the matches (and under all conditions). The goal
is to determine whether the robot’s explanations improved the human participants’
performance and decision-making in the game. We compared the task performance
of human participants under three conditions (see below) based on the wins and
losses of two teams (i.e., human–human and human–robot teams). In particular,
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we examined the decision-making of human participants and their use of strategy
in the games. A difference between the performances of the teams between the
three conditions will suggest to us that the explanations have an impact on human
participants’ learning and performance improvement during the game.

There were different groups of human participants who experienced different variants
of the same experiment that were controlled by the independent variable “explanations”.
In particular, the study had a total of three conditions:

• Condition-1: is our Control Condition. This consisted of the following activities, in this
exact order: Activity 1, three iterations of Activity 3, and Activity 8. There were no
explanations given by the robot, but more matches (Activity 3), with the expectation
that we could compensate for learning with practice playing the game. That is, we
expect that more hands, and more practice with the task, would not improve humans’
performance as much as the advice received through the robot’s explanations;

• Condition-2: Both types of explanation are provided. The activities and their order
are Activity 1, Activity 2, Activity 3, Activity 7, Activity 2, Activity 3, and Activity 8;

• Condition-3: We remove static explanations and use only dynamic explanations.
Thus, the activities and their order are Activity 1, Activity 3, Activity 4, Activity 7,
Activity 5, Activity 3, and Activity 8.

For participants under Condition-2 and Condition-3 (those receiving explanations), the
second game-playing session aims to observe the impact of the decision-transparency, and
justification of the robot’s decisions in improving the task performance of a team.

4.3. Nature of the Participants

We conducted the study in Griffith University Australia, and there were a total of 63
human participants, with ages ranging from 19 to 42 years old (M = 30.60 ± 7.08). Out
of the 63 participants, 42 played the game with a human partner and 21 played with the
robot. These distributions aimed to collect a valid number of answers from the robot’s
partners. Additionally, out of the 63 subjects that revealed their gender, 25 were females
and 38 were males. We recruited human participants through general advertising, using
posters on a university notice board, and communicating directly with students. As many
as 41.82% of human participants were students and involved professionally in a science,
technology, engineering and mathematics subjects, and the rest were evenly distributed
between employed and unemployed. Each human participant received an invitation letter
with the main objective of conducting the experiment. Along with the invitation letter, we
also attached a brochure with a brief description of the Domino (briefly describing the rules
and mechanics of the game). Before taking part in the experiment, all human participants
provided their consent. We offered a 10 AUD gift card as a token of appreciation to every
human participant. There were five groups in Condition-1, 11 groups in Condition-2, and
five groups in Condition-3. Each group in Condition-1 played three matches with the robot;
however, in Condition-2, and Condition-3 each group played two matches, where a single
match consisted of five hands in total, or until a pre-defined score was reached. Each
human participant selected his/her team member in a draw. In addition, in each condition,
before starting the formal game-play, the robot greeted and introduced itself to the human
participants, saying, “Hello human! I am LAVA, today we are going to play Domino in
teams.”

Since the majority of human participants classified themselves new to the Domino
game, a sequenced presentation reviewed the brochure presenting the case study. We
included a description of the game on the user interface (i.e., on the touch screen), until
everyone felt confident with the game’s rules and the operation of the interface. Once
participants confirmed that they felt competent with the rules and the interface, we gave
the human participants a questionnaire based on the rules of the game to assess their initial
level of understanding. After the assessment, the human participants started the first
game-play session. We expected that all human participants would start with the same
common-sense model of the task (i.e., Domino game), which also helped us to estimate
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what knowledge the human participants possessed about the task. At the end of each
session, the robot told the human participants that the interaction had ended, and thanked
the human participants, saying, “Thank you for your participation. Hope you enjoyed
playing with me.”

5. Experiment Results

We investigated (1) the effect of the robot’s explanations on the humans’ level of trust,
and (2) how much effective explanations were at changing humans’ perception of the robot
attributes based on self-reported, quantitative questionnaire data and objectively measured
behavioural data. We obtained a series of results regarding the second point, the human’s
perception of the robot’s attributes. As discussed in Section 2, the perception of robot’s
attributes is a factor in trust, and our results show that explanations impact attributes such
as Animacy, Likeability, Perceived Safety, Perceived Intelligence, and Anthropomorphism.
However, in this paper, we detail only the results on trust.

5.1. Self Reported Data Results

Prior to conducting any analysis, we performed a reliability analysis (Cronbach’s α)
to assess the internal reliability (an α > 0.7 or higher is considered acceptable, indicating
the reliability of the measuring scale) of the questionnaires. Cronbach’s α for the HRT
questionnaire [1] was α = 0.809, and for the Godspeed Questionnaire [48,49], it was α = 0.881.

5.2. Effect of Condition on the Dependent Variable Trust

We performed a normality analysis using the Shapiro–Wilk Test, to examine whether the
dependent variable “Trust” followed a normal distribution under Condition-1, Condition-2,
and Condition-3. The test reported a non-normal distribution for all three conditions. Hence,
we performed a within-subject non-parametric Wilcoxon Signed-Rank Test to analyse the
overall effect of the condition on human participants’ trust in the robot and a between-
subject non-parametric Kruskal–Wallis H Test to analyse the overall effect of the condition
on the human participants’ trust in the robot, controlling for the trust level reported before
interaction with the robot.

Table 2 shows the results comparing the trust of human participants before and after
interacting with the robot for Condition-1 and Condition-2.

Table 2. Participants self-assessed dependable variable Trust before and after the interaction per
condition (using within-subject Wilcoxon Signed-Rank Test).

Condition Value before Interaction Value after Interaction
Is the Difference Statisti-
cally Significant?

Condition-1 M = 50.26± 4.97 M = 69.93± 7.95 YES (Z = −3.411, p = 0.001)

Condition-2 M = 52.24 ± 9.44 M = 89.27 ± 6.44 YES (Z = −5.014, p < 0.001)

For Condition-3, we conducted a simple impact analysis by looking at the influence
of the robot’s explanations’ of its decision-transparency and justification on the trust of the
human participants. We used the non-parametric Friedman Test with repeated measures
because of the violation of Mauchly’s Test of Sphericity, and incorporated a Bonferroni
correction to the significant findings.

Table 3 shows the results comparing the trust of human participants before interaction,
after first interaction, and after the Explanation-session for Condition-3.
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Table 3. Participants self assessed dependable variable Trust Before and after the Interaction for Condition 3 (Using Within-Subject
Friedman Test with Repeated Measures).

Condition Value before Interaction
Value after First Interaction
(By First Interaction, We
Mean after First Match.)

Value after Explanation-Session
Is the Difference Statistically
Significant?

Condition-3 M = 54.03± 3.57 M = 64.73± 1.32 M = 77.06± 2.87 YES (Chi-Square = 30, p = 0.01)

5.2.1. Are the Changes in Trust, from Before to after the Experience of Interacting with
Robot, Different Across Conditions?

The between-subject non-parametric Kruskal–Wallis H Test showed a highly significant
result (Chi-Square = 37.54, p < 0.01) across the three conditions of human participants. We
also ran a series of non-parametric, between-subject Mann–Whitney U Test for paired sam-
ples to compare the trust levels of the group of human participants under three conditions,
and the results are summarised in Table 4, which shows the pair-wise results. Hence, our
results suggested that there were statistically significant differences in the trust levels of all
three groups after interacting with the robot in different settings.

Table 4. Results of non-parametric between-subject Mann–Whitney U Test across pair-wise compari-
son between Condition-1 (Control condition), Condition 2 and Condition 3.

Condition
Contrast
with

Test Per-
formed

Is the Difference Statisti-
cally Significant?

Condition-1
(Control condition)

Condition-
2

non-parametric
between-subject
Mann–Whitney U
Test (This caused
inflation inthe type 1
error rate, that we
controlled using a
Bonferroni adjust-
ment.)

YES (U = 127, p <
0.01)

Condition-1
(Control condition)

Condition-
3

non-parametric
between-subject
Mann–Whitney U Test

YES (U = 88, p <
0.01)

5.2.2. Previous Experience of Human Participants on Trust

We divided the human participants into two sub-groups in each condition, based
on (1) the participants that had previous experience with robots, and the ones without
previous experience with robots, (2) the participants that had pet-ownership and the ones
without pet-ownership. We examined the influence of previous experience with robots,
and pet-ownership on the human participants’ trust in the robot. We performed a between-
subject Mann–Whitney U Test to examine the trust of human participants with and without
previous experience with robots, and with and without pet-ownership. Table 5 reflects that
the human participants’ previous experience with robots and pet-ownership did not seem
to influence their trust in the robot.

Table 5. Influence of participants’ previous experience with robots, and pet-ownership on the Trust
(using between-subject Mann–Whitney U Test).

Condition Previous Experience with Robots Pet-Ownership

Condition-1 U = 21, p > 0.05 (non-significant) U = 19, p > 0.05 (non-significant)

Condition-2 U = 97, p > 0.05 (non-significant) U = 85, p > 0.05 (non-significant)

Condition-3 U = 16, p > 0.05 (non-significant) U = 13, p > 0.05 (non-significant)



Robotics 2021, 10, 51 14 of 23

5.3. Are the Trust Levels Impacted by the Partner (Human or Robot)?

The constitution of a partnership (a team) also allows us to consider the two types of
group. We divided the human participants into two types of group: those in a homogeneous
team, that is, a human–human partnership, and those human participants that had a robotic
partner (a heterogeneous team with a human–robot partnership). Table 6 shows the results
when using the statistical test Welch’s T-Test (unequal variances) with sub-group as a factor,
and post-interaction trust as dependent variable. We found that the humans who partnered
with a robot showed slightly lower levels of trust towards the robot than human adversaries
in Condition-1, and Condition-3, but not in Condition-2. Overall, in Condition-2 and Condition-
3, we found significant differences in trust levels between different Domino players (i.e.,
team partner, adversary), indicating the crucial effect of the robot’s explanations on trust.

Table 6. Summary of results contrasting the human versus robot partner.

Condition
Team # of Trust metric Welch’s T-Test

Structure Participants Mean σ F p

1 Human Partner 10 80.8 4.41 0.810 p > 0.05 not significant
Robot Partner 5 71.6 4.56

2 Human Partner 22 70.54 6.10 5.91 p > 0.02 significant
Robot Partner 11 76.72 6.85

3 Human Partner 10 70.59 1.10 21.22 p > 0.02 significant
Robot Partner 5 69.48 3.921

5.4. Human Participants’ Assessment of the Robot’s Behaviour

We did not inform the human participants about the mechanism guiding the robot’s
behaviour, to avoid bias in the explanations (Condition-2 and Condition-3), and bias towards
the perceived mental model of the robot’s behaviour in different settings. Table 7 shows
the total responses per condition to mental model questions.

In Condition-1, we marked the human participants’ responses to the mental model
questions concerning the robot’s behaviour after the first match and the third match. We
performed non-parametric, within-subject Wilcoxon signed Ranks test to investigate partici-
pants’ mental model of the robot’s behaviour as a consequence of “continuous interaction".
The Wilcoxon signed Ranks test did not reveal a significant difference (Z = −0.707, p > 0.05)
for the statement, “I was nervous with the robot’s decisions during the game", and (Z = −0.365,
p > 0.05) or for the statement, “The robot’s use of strategy (decisions) was correct, and helped me
during the game”. Furthermore, we performed within-subject Pearson’s Chi-Square test to
investigate the relationship between the two questions (recorded after the first and the third
match). The test revealed a significant association between the responses of the human
participants in Condition-1 for the mental model questions recorded after the first match
(X2 = 5.455, p = 0.05), and after the third match (X2 = 3.743, p = 0.05).

In Condition-2, we recorded the human participants’ responses to the mental model
questions about the robot’s behaviour before and after explanations. The non-parametric,
within-subject Wilcoxon signed Ranks test revealed significant differences (Z = −3.900,
p < 0.01) for the statement, “I was nervous with the robot’s decisions during the game". However,
we found no significant difference (Z = −1.33, p > 0.05) for the statement, “The robot’s use of
strategy (decisions) was correct, and helped me during the game". Furthermore, we performed
within-subject Pearson’s Chi-Square test to investigate association between the two questions
(recorded before explanations and after explanations). The test revealed a non-significant
association between the responses of the human participants in Condition-2 for the pre-
explanation mental model questions (X2 = 0.471, p > 0.05), but we found a significant
association for the post-explanation mental model questions (X2 = 5.238, p = 0.05).

In Condition-3, we recorded the human participants’ responses to mental model questions
about the robot’s behaviour before and after explanations. The non-parametric, within-subject
Wilcoxon signed Ranks test revealed significant differences (Z =−1.897, p = 0.05) for the statement,
“I was nervous with the robot’s decisions during the game", and (Z =−1.61, p = 0.03) for the statement,
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“The robot’s use of strategy (decisions) was correct, and helped me during the game". Furthermore,
we performed a within-subject Pearson’s Chi-Square test to investigate the association between
the two questions (recorded before explanations and after explanations). The test revealed a
non-significant association between the responses of the human participants in Condition-3 for
the pre-explanation mental model questions (X2 = 3.750, p > 0.05), but we found a significant
association for the post-explanation mental model questions (X2 = −0.784, p = 0.02).

Table 7. Distribution of human participants’ responses to mental model questions about the robot’s behaviour (Condition-1: 15 partici-
pants, Condition-2: 33 participants, and Condition-3: 15 participants).

Condition
Total Number of

Participants’
Responses

Questions

I Was Nervous with the Robot’s
Decisions during the Task

The Robot’s Use of Strategy Was Correct,
and Helped Me during the Game

Possible Answers Possible Answers
Yes No Yes No Not Sure

1
after firstmatch

15
11 4 3 5 7

after thirdmatch 9 6 4 2 9

2
before explanations

33
22 11 21 7 5

after explanations 5 28 27 3 3

3
before explanations

15
8 7 5 2 8

after explanations 2 13 12 0 3

Furthermore, we performed a between-subject Kruskal–Wallis H Test (non-parametric
ANOVA on ranks) to determine if there were statistically significant differences between
the group of participants in different settings. We found significant differences between
the three groups (Chi-Square = 19.03, p < 0.01) for the statement, “I was nervous with the
robot’s decisions during the game", and (Chi-Square= 17.64, p < 0.01) for the statement, “The
robot’s use of strategy (decisions) was correct, and helped me during the game".

5.5. Analysis of the Effect of Explanations Using Questionnaires

In Condition-2 and Condition-3, we examined the effect of explanations on human
participants’ assessment of the robot’s behaviour based on their responses to the question-
naires. We divided the explanations’ questionnaires into two categories, i.e., category 1:
level of satisfaction with the explanations (questions a and b), and category 2: behaviour
understandability of the robot (questions c,d,e). The between-subject Mann–Whitney Test
(non-parametric) was used to determine if there were statistically significant differences
between the group of human participants in Condition-2 and Condition-3, based on their
satisfaction-level with the explanations, and the understandability-level of the explanations.
The analysis captured the conditions on the grouping variable list, and the mean score of
satisfaction-level and understandability-level questionnaires on the test variable list.

The non-parametric, between-subject Mann–Whitney Test reported statistically signifi-
cant differences based on the explanation assessment questionnaires between the groups
of human participants in two conditions (U = 156.50, p = 0.02) for satisfaction-level, and
(U = 20.50, p < 0.01) for understandability-level questionnaires between the two conditions.
Furthermore, we calculated the Spearman’s correlations between the mean score of men-
tal model questions (post explanations), and the mean score of explanations’ questions.
We found a strong positive correlation (rs = 0.245*, p = 0.05) between the two dependent
variables in Condition-2, and (rs = 0.599*, p = 0.01) between the two dependent variables in
Condition-3.

5.5.1. Do the Game Results Impact the Trust Levels across Conditions

We ran a Two-Way multivariate analysis of variance (MANOVA) on our data to
investigate if the game’s results impacted the trust levels. Since the trust metric and game
result statistic violatied the assumption of multivariate normality, for the multivariate
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test, we selected the Pillai’s Trace and for the Post-Hoc tests, we selected the Scheffe test
(equal variances not assumed). After applying a rank transformation to the data, we
used the game result, and game teams (human–human, human–robot) as fixed factors,
and post-interaction trust and conditions on the dependent variable list. The Pillai’s Trace
reported a significant value for the effect of game results on trust (F = 9.519, p < 0.001), and
for the condition effect on trust (F = 3.600, p = 0.009). However, the interaction effect of
both game result, and condition proved to be non-significant, with (F = 1.468, p > 0.05).
Furthermore, the test of between-subject effect reported non-significant findings for game
results and trust (F = 1.423, p > 0.05), and between condition and game teams (F = 1.452,
p > 0.05). However, we found a significant impact between game results and game teams
(F = 1.953, p < 0.001), and between condition and trust (F = 7.119, p < 0.001) (which has
been shown before). Furthermore, we did not find a statistically significant result for the
interaction effect of game results and condition on trust (F = 0.996, p > 0.05), and on game
teams (F = 1.447, p > 0.05). Furthermore, the Post-Hoc tests Scheffe could not reject the null
hypothesis with (p > 0.05), indicating a non-significant impact on trust. However, based
on the Pillai’s Trace, we found significant differences in the levels of trust based on different
game results.

5.6. Effect of Explanations on Team Performance

We recorded the players during each match, which consisted of several games, and
the game statistics are given in the Table 8 for Condition 2 and Condition 3. We compared the
performance of the teams in the three conditions, to see whether receiving an explanation
or not receiving an explanation impacted the performance of the teams. We also examined
the usability of these explanations for participants during the games, in terms of their use
of strategies and the selection of their next move (Condition-2 and Condition-3). Due to
the introductory brochure, our expectation was that all human participants had a similar
starting playing ability, and approached the matches with the same common-sense model.
We also evaluated participants’ basic understanding of the game based on the assessment
questionnaire containing basic questions regarding the game; all the participants provided
correct answers in the questionnaire.

Table 8. Game statistics: What type of team obtained what result (Condition 2 and Condition 3).

Condition 2 Condition 3

33 human participants (11 groups) 15 human participants (5 groups)

Teams
Before ex-
planation

session

After ex-
planation

session

Total
Number
of Games

Teams
Before ex-
planation

session

After ex-
planation

session

Total
Number
of Games

Human-
Human
Team
Wins

11 14

110

Human-
Human
Team
Wins

5 7

50
Human-
Robot
Team
Wins

29 34

Human-
Robot
Team
Wins

14 14

Game
Stuck 15 7 Game

Stuck 6 4

Table 9 shows the performance of each team in three matches under Condition-1, where
human participants were not provided with explanations, and they only knew the rules of
the game. The same teammates and adversaries played repeated hands in each group, but
we did not see any significant improvement in the three matches. Further, the decrease in
the number of games won in the second match also shows that the human participants’
udnerstanding of the game was not enhanced. Conversely, the performance of teams
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under Condition-2 and Condition-3 was better, compared to Condition-1, which showed the
impact of the explanations. The comparison between both teams’ performances in the first
match (before the explanation-session) with that of the second match (after the explanation-
session) also demonstrated that the performance of teams in both conditions improved
significantly, which was noticeable in the second match, played after the explanation-
session. The difference between the teams in both conditions is quite straightforward in the
sense that, under Condition-3, participants were only provided with Dynamic explanations,
hence their improvement in the game is based on learning from the robot’s decisions,
communicated by way of explanation. Conversely, under Condition-2, human participants
were not only provided with the Dynamic explanations, they were also exposed to the Static
explanations augmented by the rules of the game, and game-play tips, as well as examining
the robot’s decisions. We noticed that many participants during the explanation-session
revised the rules, and checked different tips. Hence, these aspects also played a role in
their improved performance in the matches. Hence, the performance of teams was better
in Condition-2 and Condition-3 compared to Condition-1.

Table 9. Condition-1: performance comparison of both teams in each match (human participants
were not provided with explanations).

Match Human–Human Team Human–Robot Team Game Stuck
First Match 8 13 4

Second Match 7 14 4

Third Match 8 16 1

By evaluating the moves of the players, stored in our records, we observed the implicit
trust between human partners in a team. The records also showed moves where human
participants exhibited cooperation, and sacrifices for their robotic partner. Furthermore,
under Condition-2 and Condition-3, we observed that human participants considered playing
random tiles in the first match. After the explanation session, they used some of the strategies
demonstrated, i.e., they preferred to play tiles with the highest points and place doubles on
the board during the early stages of the hand.

We performed between-subject, one-way MANOVA to test if there were any differ-
ences in the group of human participants under Condition-1, Condition-2, and Condition-3,
regarding the linear combination of the two dependent variables, i.e., game results and
strategy used. We considered two strategies (1) playing tiles with doubles, and (2) play-
ing tiles with the highest points. Before performing One-Way MANOVA, we performed
certain assumption tests, which disclosed the violation of the assumption of multivariate
normality. The assumption of multivariate normality was violated as game results had the
value of the significance level of the Shapiro–Wilk Test p < 0.05, reflecting the non-normal
distribution of the variable. Hence, for the multivariate test, we selected the Pillai’s Trace,
which reported that the three groups, under Condition-1, Condition-2, and Condition-3, were
different across the levels of the independent variable. In a linear combination of the two
dependent variables (game results and strategy used), the value obtained was (F = 8.630,
p < 0.001). We also interpreted the Levene’s Test of equality of variances , which reported
non-significant results (p > 0.05). Hence, we performed the tests of between-subject effects
that reported statistically significant findings (F = 24.057, p < 0.01) for the strategy used.
However, we found non-significant findings for game results (F = 0.455, p > 0.05). The
Multivariate test reported the same, statistically significant findings (Partial Eta Squared
= 0.223, F = 8.630, p < 0.01). Furthermore, the Univariate test reported statistically sig-
nificant findings for strategy used (Partial Eta Squared = 0.445, F = 24.05, p < 0.01), but
not for game results (Partial Eta Squared = 0.015, F = 0.455, p < 0.05). This shows that
we had statistically significant findings for the Pillai’s Trace, so interpreting the post-hoc
test also helped us to interpret the Univariate test results. The post-hoc Scheffe Test (equal
variances not assumed) reported a statistically significant difference between the group of
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human participants under Condition-1 and Condition-2 (p < 0.01), and under Condition-1
and Condition-3 (p < 0.01) on the strategy used. Furthermore, we found a non-statistically
significant difference between the group of human participants under Condition-2 and
Condition-3 (p > 0.01) on the strategy used. We also found a non-statistically significant
difference between the group of human participants under Condition-1 and Condition-2, and
Condition-1 and Condition-3, and Condition-2 and Condition-3 (p > 0.05) on the game results.

Hence, this analysis shows that, with the linear combination of dependent variables
(game results and strategy used), all three groups are different. However, for the strategy
using a dependent variable, we found differences between the group of human participants
under Condition-1 and Condition-2, and Condition-1 and Condition-3, but we found no
difference between the group of human participants under Condition-2 and Condition-3.
This findings provide us with evidence that, after the explanation-session, the use of strategy
was improved in Condition-2, and Condition-3.

6. Discussion

Our study investigated how explanations from a social robot can influence how
humans perceive a robotic partner in a task, and thus how they judge the robot’s behaviour.
We observed evidence that humans showed increased trust levels, and a change in the
perception of the robot. With this experimental procedure, we distinguished the impact
of interaction with the robot on human’s trust and the perception of the robot, without
explanations Condition-1 and with explanations Condition-2 (assuming game-play and
the explanation-session as continuous interaction), and Condition-3 (by distinguishing the
separate influence of the explanations).

6.1. Effect of Results on Our Hypotheses

Overall, the difference in the trust levels in different settings suggested that human par-
ticipants trusted the robot when playing Domino, and the trust levels were upgraded after
playing the game. However, under Condition-2 and Condition-3, when participants were pro-
vided with explanations, their level of trust increased significantly compared to Condition-1.
Hence, results from our preliminary analysis strongly support our Hypothesis H1. We also
observed that the trust levels were also impacted by the game result (Section 5.5.1), which
indicated that, in a team-based environment, winning or losing a game destabilised the per-
ception of trust in the robotic game player. This observation also reinforces the consequence
of condition on this measure, based on the better team performance in Condition-2, and
Condition-3. Furthermore, the element of partnership (human–human team, human–robot
team) allowed us to calculate the effect of every defined measure on humans’ trust. Hence,
we investigated differences in trust levels between different Domino human players (i.e., team
partner, adversary), and found significant differences in trust levels under Condition-2 and
Condition-3. This findings confirm the profound impact of the robot explanations on trust.

We found that, irrespective of the condition, the participants had a higher degree of
trust in the robot after interacting with the robot. However, Figure 4 shows that items
measuring the robot’s explanatory capability, such as Providing Feedback, Providing Appro-
priate Information, and Communicating with People, are tightly connected with the outcome.
Human participants under Condition-2, and under Condition-3 rated these items very highly
when compared to the participants’ ratings in Condition-1. Furthermore, we did not find a
significant difference for the items Malfunctioning, and Have Errors under Condition-2 and
Condition-3, but participants in Condition-1 gave slightly higher ratings to the Have Errors
item, reflecting that they were not confident with the robot’s decisions. In addition, the
human participants also considered the robot less Reliable, more Unresponsive, and less
Predictable under Condition-1. For robots, the factors Predictability and Dependability can be
taken as a basis of trust. Contrarily, human participants in Condition-2 and Condition-3,
trusted the robot, and thereby considered it more Reliable, less Unresponsive, and more
Predictable. Furthermore, we found human participants gave high ratings to the item De-
pendable in all three conditions, indicating that the physical behaviour of the robot did not
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meet their expectations. Hence, our findings suggest the human participants in Condition-2
perceived the behaviour of the robot to be more intelligent and trustworthy compared to
other conditions.

Figure 4. A summary of the quantitative data analysis results for trust.

Although detailed results are not presented here, our experiment enabled us to collect
data and evaluate the participants’ perception of the robot’s attributes linked with trust:
our data showed that human participants under the three conditions ranked attributes
such as Animacy, Likeability, Perceived Intelligence, and the Anthropomorphism differently in
ratings of the robot, but not for the Perceived Safety attributes of the robot. Thus, before
interacting with it, the majority of participants did not know the robot, but, after interacting
with it, they perceived it to be more intelligent and, at the same time, much safer.

Furthermore, the results in Section 5.6 show that the performance of teams was better
under Condition-2 and Condition-3 compared to Condition-1, which is in accordance our
Hypothesis H2.

Further, we also found no difference between the trust levels of human participants
who had previous experience with robots, and rhose who had not interacted previously
with robots. Additonally, participants who never had a pet and who had a pet equally
perceived the robot as an intelligent and trustworthy partner, showing no difference in
levels of trust in the robot.

We also compared human participants’ mental models after direct experience with
the robot under Condition-1, Condition-2, and Condition-3, based on their assessment of
the robot’s behaviour. In Condition-1, we found a slight change in participants’ mental
model of the robot’s behaviour when examined after the third match, compared with
the mental model examined after the first match. We investigated their confidence and
satisfaction in the robot’s decision making, which was slightly changed as a consequence
of continuous interaction. Previous research [50] has also suggested that humans who
interacted little with robots initially have a simple mental model. However, with experience,
their mental model changes. In Condition-2 and Condition-3, we measured the mental model
of participants “after first match”, and then examined the effect of explanations on changes
in their mental model. We investigated how much a human’s score varied via the mental
model questionnaires completed after the explanation-session. Our results suggested that
the impact of “explanations” was significant and valid, and changed participants’ mental
models when compared to mental models examined before the explanations. Additionally,
the explanations also increased participants’ trust and satisfaction in the robot’s decisions.
Although, under Condition-1, the mental model of participants also changed, thiis was a
consequence of continuous interaction with the robot. Conversely, under Condition-2 and
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Condition-3, the change in the mental model of participants was purely the consequence
of “explanations”, as participants had interacted with the robot for some time, i.e., only
during the first match. That is, participants under Condition-2 and Condition-3 had already
incorporated the effect of playing three matches.

In general, the primary goal of explanations in human–robot interaction is to enable
humans to appreciate and understand a robot’s behaviour through an explanation that is
given in “human-understandable terms”. Previous research [51] has also suggested the
use of mechanisms inspired by how humans explain behaviour to make an explanation
useful to them, as humans assign similar levels of intentionality to robots as they attribute
to other humans. Furthermore, in order to establish a social connection with a social robot,
participants should perceive its behaviour as intentional and reasonable. Our results in
Section 5.5 corroborated with the idea that participants under Condition-2 and Condition-3
confirmed that they not only understood the robot’s behaviour through explanations, but
also appreciated the content, quality and clarity of the explanations. Explanations changed
their mental model and their perception of the robot’s behaviour, and also upgraded their
level of trust in the robot.

Under Condition-2, human participants were provided with Static and Dynamic ex-
planations, while under Condition-3, participants were exposed to Dynamic explanations
only. We kept a record of the number of times a human participant (partner/adversary)
accessed explanations, i.e., Static or Dynamic, depending on the condition. We found
that the human participants (regardless of whether they had a role as team partners or
opponents) examined the robot’s decisions for longer and in more detail in both of the
more elaborate conditions that included explanations. Furthermore, we also observed
that, after checking the Robot Moves, participants further examined the different factors
involved in the decision-making process of the robot. The human participants showed
less interest in how did the robot gathered the knowledge required to play the game in an
incomplete-information environment, and investigated other factors, particularly players’
pass, more than the robot.

7. Conclusions and Future Work

In this human-oriented world, while interactive robots are still in their emergent
phase, initial misunderstandings, failures, and mistakes are likely to arise in human–robot
collaborations. The extent to which robots can show human-like attributes, i.e., offer
explanations to justify their behaviours, or offer apologies and corrective measures after
faulty behaviours, can ameliorate dissatisfaction and increase humans’ trust in them. This
perspective is also vital to address the question how a robot rebuilds a human’s trust after
an error, and how successful and effective its attempt to rectify the erroneous situation, or
offer an apology to mitigate the dissatisfaction resulting from its unpredictable behaviour,
will be. We presented an experiment to further the understanding of how an explanation
positively influenced participants’ trust. The results suggest that augmenting robots with
the ability to offer explanations can make robots more trustworthy.

We analysed individual demographics, i.e., previous experience with robots, and
the impact of pet-ownership. For our current experiment, we used participants with a
homogeneous profile, i.e., with little or no previous experience with robots, and no previous
knowledge or experience with the Domino game. In future, we plan to carry out several
interesting analyses, for example, the influence of what kind of explanation has a greater
impact on the perception and trust that humans have in robots. Additionally, in our follow-
up experiments, we aim to examine gender aspects, as well as participants’ personality
traits, technical background, and education. Furthermore, it would be interesting to
investigate the possible influence of cultural background in the perception of and trust in
robots. A investigation of how the personality traits of humans influence their perception of
the explanations in a collaborative setting is also worthy of follow-up study. Additionally,
our results indicated that, to enhance the social presence of a robot, its speech should
be combined with additional measures, such as expressive facial features, and a rich set
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of social behaviours. However, combining functional reliability with expressiveness is
challenging; the design and implementation of a flawless system remains out of reach, as
appropriate speech recognition systems are still emergent. Hence, we aim to conduct more
research, focusing on specific design metrics of robots, in our future work.
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