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Abstract

A comprehensive spatio-temporal description of the tissue movements underlying organogenesis would be an extremely
useful resource to developmental biology. Clonal analysis and fate mappings are popular experiments to study tissue
movement during morphogenesis. Such experiments allow cell populations to be labeled at an early stage of development
and to follow their spatial evolution over time. However, disentangling the cumulative effects of the multiple events
responsible for the expansion of the labeled cell population is not always straightforward. To overcome this problem, we
develop a novel computational method that combines accurate quantification of 2D limb bud morphologies and growth
modeling to analyze mouse clonal data of early limb development. Firstly, we explore various tissue movements that match
experimental limb bud shape changes. Secondly, by comparing computational clones with newly generated mouse clonal
data we are able to choose and characterize the tissue movement map that better matches experimental data. Our
computational analysis produces for the first time a two dimensional model of limb growth based on experimental data
that can be used to better characterize limb tissue movement in space and time. The model shows that the distribution and
shapes of clones can be described as a combination of anisotropic growth with isotropic cell mixing, without the need for
lineage compartmentalization along the AP and PD axis. Lastly, we show that this comprehensive description can be used
to reassess spatio-temporal gene regulations taking tissue movement into account and to investigate PD patterning
hypothesis.
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Introduction

The cellular processes by which a field of cells develops into a

spatially-organized tissue have traditionally been split into two

distinct questions: pattern formation and morphogenesis. The first

focuses on the regulatory mechanisms underlying spatial and

temporal cell fate specification. The second focuses on the cellular

behaviors that physically drive growth and shaping of multicellular

structures. While these two processes can indeed be considered to

be conceptually separated, in practice they usually occur

simultaneously and are believed to be tightly coordinated. The

vertebrate limb is an excellent model system to study how these

two processes work in combination [1]. In mouse, limb

development starts around 9 days post fertilization with the

protrusion of a mass of undifferentiated mesenchymal cells from

the lateral plate mesoderm of the embryo. This structure, known

as the limb bud, is able to grow and organize itself in less than 3

days to determine most of the structures found in the adult limb

(tendons, skeleton, dermis etc.). Growth and patterning occur

along three major axes: the proximal-distal axis (PD) that goes

from the body to the finger tip; the anterior-posterior axis (AP)

going from the thumb to the little finger and the dorsal-ventral axis

(DV), going from the palm to the dorsal part of the limb.

Important signaling centers of the limb, like the apical ectodermal

ridge (AER) and the zone of polarizing activity (ZPA), are known

to regulate both growth and patterning [2–4] and their activities

are known to be highly coupled [5]. Moreover there is increasing

evidence that tissue growth could play an important role for

patterning [6]. Therefore a crucial step to better understand both

limb morphogenesis and patterning is to accurately map tissue

movements over space and time.

Several studies in chick [7–9] have produced fate maps which

provide an important overview of the tissue movements in the

mesenchyme and in the AER. In mouse, where in utero labeling is

required, a first study was made in [10] by carbon particles

injection and only more recently a first clonal analysis was

performed by using a tamoxifen-inducible Cre reporter line to

obtain cell labeling in the embryo [11]. However, the goal of these

studies was not to build quantitatively-accurate maps of tissue

movements, but rather to address specific questions about (a) the

timing and mechanisms of regional fate determination, and (b) the

possible presence of lineage-restriction compartments. It has been

possible to draw clear conclusions regarding the second question: a

clear compartment boundary restricting cells along the DV axis

was found in [11], while no evidence for compartments along the

other two axes was found (PD and AP). Indeed, both in chick and

mouse a high degree of overlap was found between clones of the

three PD regions corresponding to the stypolod, zeugopod and
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autopod. However, regarding the first question, experimental

results have led to conflicting interpretations. For example, the

relationship between PD patterning and the underlying tissue

movement remains unclear. On one hand, limb tissue movement

data has been used to support the idea that the three PD segments

are specified at early stages of limb development [12] and

subsequently only expand because of growth. On the other hand,

comparisons between fate maps and the expression of distal

markers like Hox genes [9,13] have been used to support the idea

that the PD patterning relies on complex spatio-temporal gene

regulation coordinated with growth [14,15].

Discrepancies between different interpretations of tissue move-

ment data are due to a few specific limitations of previous studies

which we aim to address through the modeling framework

presented here. Firstly, quantitative details matter. Although

alternative hypotheses may be qualitatively different from each

other (such as the Progress Zone Model (PZM) [16] versus the

Early Specification Model (ESM) [12]), the empirical evidence that

could distinguish them will often depend on quantitative details of

timing. Previous projects have revealed the overall pattern of

movements, but have not mapped out the quantitative details.

Secondly, all real data sets are sparse – they provide observations

about a discrete collection of positions in space and time. It is non-

trivial to extrapolate from these observations to a comprehensive

prediction of how any piece of tissue will move at any point in

time. Thirdly, many projects have employed a large time interval

between labeling the cells and assessing the distribution of

descendants. The shapes of the final labeled regions are therefore

the result of an accumulated history of different tissue movements

over time. Again, deconstructing the full sequence of local

movements which lead to the final result is non-trivial. In

particular, a recent study [17] showed that the tissue movements

that drive limb morphogenesis are more complex than previously

thought and depend on anisotropic forces. This and other studies

[18,19] also highlighted that limb mesenchymal cells have a

complex shape and are capable of a wide range of cellular

behaviors including oriented cell division and cell migration.

As an important step beyond the general overview given by

previous fate maps, a formal numerical description of limb tissue

movements over time would be of immense help to analyze the

complex morphogenesis of the limb. Such a description could be

defined by the velocity vectors defining the displacement of each

tissue point in a fixed coordinate system. Ideally, the collection of

these vectors, known as velocity vector field, would be directly

measured by tracking tissue points during growth by time-lapse

imaging. However, despite recent advances in live imaging of the

mammalian limb bud [20,21], it is a challenging technique and a

complete description of tissue movements is still not available. In

plants, clonal analysis has been explored as an alternative to live

imaging for studying the growth of 2D leaves and petals. Local

growth tensors were derived directly from shapes of clones and

these data were combined into a computational model to recreate

a full map of the global tissue movements (the velocity vector field)

over time [22]. Unfortunately, in the mouse limb most of the

available fate maps and clonal analyses have been performed with

a long time-interval between labeling and analysis. This is ideal for

the more common purpose of fate-mapping, as it reveals the final

positions and tissue types of cells which were labeled during their

early patterning phase. However such long-term clone shapes are

not suitable for directly inferring local growth tensors – instead

labeled populations should have undergone only enough growth to

reveal local anisotropies, i.e. a short time-interval between labeling

and analysis [23]. Another complication compared to the 2D plant

case is the extensive mixing of mesenchymal cells that leads to a

strong dispersal of the cells over space. A velocity vector field alone

would therefore be insufficient to fully describe cell movements.

Due to this lack of quantitative data on tissue movements, most

of the existing 2D mathematical models of limb growth have been

used as theoretical tools to explore possible cellular hypothesis

explaining limb outgrowth [24,25]. These studies relied on the

existing literature to suggest the underlying mechanics of limb

growth, and consequently predicted tissue movement maps

consistent with the proliferation gradient hypothesis [26], in

which tissue expansion is concentrated at the distal tip. However,

a recent simulation which performed a more rigorous compar-

ison of this hypothesis against quantitative data on proliferation

rates, has demonstrated the implausibility of this concept [17].

Since it is now clear that the cellular mechanics underlying

outgrowth are complex and not well understood [19,27], we

therefore wished to create a model of tissue movements which is

based not on a mechanistic hypothesis, but which instead acts as

a numerically-descriptive framework within which to integrate

information from real clonal experiments. In particular we have

developed a methodology which is not restricted to short-term

clonal data, and which can interpret the available long-term

clonal and predict cell movements across the full spatio-temporal

extent of mouse limb bud development. The model is able to use

2 sources of data as empirical constraints to define a biologically-

accurate tissue movement map: (i) a temporal sequence of

experimental limb bud morphologies – a numerical shape

description for every hour of development over a 72 hour

period, and (ii) a collection of clonal data generated by a

tamoxifen-inducible Cre transgenic mouse line.

The paper is organized as follows. In the first two sections of

the results we introduce the new computational approach that

was developed to explore different limb tissue movement maps

matching experimental change in limb morphology. In the

subsequent two sections we present a mouse clonal analysis of

early limb development (from 9 to 12 days pf.) and we show how

the tissue movement map that better matched the distribution

and shapes of clones was selected. In the following section, the

tissue movement map is modified to match the experimental

degree of cell mixing observed in the experimental clones. In the

Author Summary

A comprehensive mathematical description of the growth
of an organ can be given by the velocity vectors defining
the displacement of each tissue point in a fixed coordinate
system plus a description of the degree of mixing between
the cells. As an alternative to live imaging, a way to
estimate the collection of such velocity vectors, known as
velocity vector field, is to use cell-labeling experiments.
However, this approach can be applied only when the
labeled populations have been grown for small periods of
time and the tensors of the velocity vector field can be
estimated directly from the shape of the labeled popula-
tion. Unfortunately, most of the available cell-labeling
experiments of developmental systems have been gener-
ated considering a long clone expansion time that is more
suitable for lineaging studies than for estimating velocity
vector fields. In this study we present a new computational
method that allows us to estimate the velocity vector field
of limb tissue movement by using clonal data with long
harvesting time and a sequence of experimental limb
morphologies. The method results in the first realistic 2D
model of limb outgrowth and establishes a powerful
framework for numerical simulations of limb development.

A Computational Clonal Analysis of the Limb Bud
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last section of the results we characterize the tissue movement

map and relate it to traditional PD patterning hypothesis. Finally

in the Discussion section we summarize the study and present the

future applications of the model.

Results

We present here a new computational method that estimates the

velocity vector field of limb tissue movement by using 2

experimental constraints: a sequence of experimental limb mor-

phologies, and long-term clonal data. The main idea underlying the

method is to generate a set of hypothetical velocity vector fields that

are consistent with the first constraint (the experimental morpho-

logical changes), and then to select the one responsible for real limb

outgrowth by comparing simulated fate maps with the second

constraint (the experimental clonal data). In this respect our

approach is analogous to a ‘‘reverse-engineering’ method, as the

data cannot lead to a direct calculation of tissue movements but can

only constrain the possible forward simulations. The resulting

velocity vector field was then used to derive the tensors of the

velocity gradient which describe the local behaviors of the tissue

movement. As an application of the model, a reverse version of the

tissue movement map was generated to provide a relative estimate

of the degree of mixing between the progenitors of three PD

segments. Finally, by mapping a time course of Hoxd13 gene

expression into the model, we were able reveal the contribution of

tissue movement to the expansion of the Hoxd13 domain.

From 2D experimental morphologies to velocity vector
fields

The shape of the limb bud at any point in time can be defined by

a spline curve, but clear morphological features along this line are

absent – the limb displays a smooth rounded shape. This lack of

landmarks means that even a very precise knowledge of the shapes

over time is insufficient to define the underlying tissue movements.

This is true both for the internal tissue and also the limb boundary

itself, as a particular point of tissue (or landmark) could slide along

the boundary spline without altering the shape. Figure 1 illustrates

the nature of the problem: a well-defined shape change is given

(panel A), but numerous different tissue movement maps are all

equally compatible with this observation, each of which has

different combinations of local tissue speed and directionality (B–

E). Despite these degrees-of-freedom, the temporal sequence of

boundary shapes does nevertheless act as an important constraint

on the full range of growth possibilities. To capture an accurate

numerical description of these shape changes we therefore took

advantage of a morphometric analysis performed in [28]. In that

work, 600 limb buds of different ages were photographed in a

standard orientation, cubic splines were fitted to the boundaries,

average shapes were calculated for key timepoints, and shape

interpolation was performed to calculate the intermediate shapes

[28]. The result is an hour-by-hour sequence of 72 shapes which

represents a standard trajectory of limb bud morphology over

developmental time (from approximately E9 to E12) – see Figure

S1. Each shape corresponds to a morphometric stage that is named

as mEdd:hh, where dd is the morphometric embryonic day and hh is

the morphometric embryonic hour. It is important to note that the

morphometric stage notation is different from the standard

embryonic day notation, for example the standard notation E10.5

translates into the morphometric stage mE10:12.

For this study we had to develop software that would allow the

exploration of a set of possible velocity vector fields that can each

reproduce the same observed boundary changes. In particular,

different tissue movement maps are equivalent to considering the

2D limb shape as a rubber sheet or mesh, with different distributions

of elastic deformation (e.g.. the various mesh deformations shown in

Figure 1B–E). To cover the whole temporal sequence of

development, a single complete map would include a sequence of

slightly changing hour-by-hour deformations across all 72 shapes.

We thus spatially discretized each of the limb bud shapes using an

unstructured triangular grid. An example of the type of grid

generated is given in Figure 2C. We then sought a convenient

approach to parameterize the variety of possible mesh deformations

across time, and devised a two-step method – the first step dealing

with boundary, and the second with the internal tissue movements.

For the first step, in effect we must define a series of landmarks

which explicitly map points in each boundary shape to their

Figure 1. Different ways to make the same shape. (A) A simple
semi circle (first column) grows into a defined shape (second column).
The two shapes are aligned at their left boundary (third column). (B) A
velocity vector field pointing in the distal direction with a vector
magnitude distribution that leads to a uniform expansion. (C–E) A
variety of velocity vector fields which can all create the same boundary
shape change. The first magnitude distribution (C) defines uniform
expansion, the second (D) defines a greater distal expansion and the
third (E) a greater proximal expansion.
doi:10.1371/journal.pcbi.1001071.g001
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positions in the next shape (equivalent to controlling the blue and

red triangles in Figure 1). To maximize the flexibility of the system

we devised the concept of user-defined boundary control splines. A

graphical user interface was developed to allow arbitrary positioning

of these control splines onto the sequence of limb shapes (an

example is shown in Figure 2B). Intersections between control

splines and limb shapes (the green points in Figure 2B) determined,

for each pair of contiguous limbs, a set of control vectors which

defined how to displace points on a young limb shape in order to

match a point on the next older one. Due to the intrinsic smooth

curvature of these splines over space, they are a convenient method

for defining smooth boundary movements over time (Figure 2B).

Since the resulting control vectors were defined for arbitrary points

of the limb boundaries they were interpolated onto all the mesh

boundary points using radial basis functions (RBFs) with Gaussian

basis. For each limb mesh, the N control vectors ~VVi, i [ 1::N
(calculated from the intersection between the spline curves the limb

morphologies) were used to derive two radial basis function

interpolations fx(P) and fy(P) with the formula:

f (P)~
Xn

i~0

wiw(EP{ciE) ð1Þ

where the Gaussian basis w(r)~e({br2) and ci is the origin of the

control vector Vi. Coefficients wi were estimated using the matrix

methods of linear least squares to fit the x components of the control

vectors ~VVi in the case of fx(P) and the y components of the control

vectors ~VVi in the case of fy(P). Interpolated velocity vectors~vvP were

thus calculated as~vvP~ffx(P),fy(P)g for all the points on the mesh

boundaries. This results in a series of velocity vector fields (the red

arrows in Figure 2B) which define how to displace the boundary points

of each limb mesh in order to match the following in the chronological

sequence. We have thus created a method by which the user can

conveniently define a variety of different mappings for the boundary,

which are all consistent with the experimental shape changes.

For the second step we had to devise a way of defining the internal

tissue movements (the velocity vector field), and in particular a

method for exploring some variations on these maps. The internal

movements must be consistent with a given boundary mapping

(defined above) and we therefore chose to calculate internal velocity

vectors using an edge spring analogy algorithm which can smoothly

propagate a given set of displacements from the boundary into the

internal points of each mesh. Spring analogy algorithms are a popular

approach to deform mesh elements by modeling edges as lineal

tension springs [29], Figure 2D. Although this approach is sometimes

used to model the elastic mechanics of a tissue, in our case we are not

assuming that it correctly represents the physical properties of the

tissue – it is simply an efficient method for defining hypothetical

displacement maps. The algorithm prevents node element collisions

and for small deformations it ensures that the quality of mesh

elements is maintained. In our model this approach exhibits

particularly good performance due to the small time differences

between contiguous limb morphologies (differing by just one hour of

development). Moreover the smooth propagation of displacements

translates into a smooth spatial distribution of tissue expansion in

accord with the limb proliferation maps presented in [17].

Furthermore, since each spring in the mesh can be given a stiffness

coefficient, it also presents a convenient method to explore variations

to the tissue movement map, simply by varying the spatial distribution

of the stiffness (explained in more detail below).

Our spring analogy method was implemented as follows: given

a mesh Mk defined as Mk~(Vk,Bk,Bl
k,Ek), where Vk are the

mesh points, Bk the points on the mesh boundary, Bl
k the points

on the left-most boundary and Ek the edges of the mesh, our

algorithm proceeds as follows:

1. the displacement of all the boundary points on the left-most

boundary are set to zero (representing the deep internal tissue

of the body) and the displacements of the remaining mesh

boundary points is set to the velocity vectors calculated with the

radial basis function interpolation described above in equation

(1):

Vvi [ Bl
k,di

!
~f0,0g

Vvi [ Bk ^ vi [=Bl
k,di

!
~ffx(vi),fy(vi)g

ð2Þ

where ~ddi is the displacement vector of the vertex vi:

2. The following iterative formula is used to equilibrate the forces

h times until the displacements are close to zero,

(limh??dh
i

!
~0):

Vvi [ Vk ^ vi [=Bk,dhz
�!

1
i ~

Pvi

j~0

aij d
h
i

!

Pvi

j~0

aij

ð3Þ

where aij is the stiffness coefficient of the edge eij that connects

the point vi and vj of the mesh.

3. Eventually the new vertex positions are calculated as:

Vvi [ Vk,vi~vizdi

! ð4Þ

A small graphical example of the algorithm is shown in Figure 2D.

A variety of alternative movement maps which all fit to the

given boundary displacements, can now easily be generated by

altering the spatial distribution of the stiffness coefficient aij .

Figure 2. From morphologies to velocity vector fields. (A) A sequence of limb photos at different developmental stages. (B)The chronological
sequence of limb morphologies derived from [28] (blue color) is overlaid by the boundary control splines (black lines). Intersection points between
control splines and limb morphologies (green dots) define a set of control vectors that are interpolated using radial basis functions (RBF) onto the
boundary mesh points. In this way a series of velocity vector fields is obtained (red arrows) which define how to displace the boundary mesh points
to match the following mesh in the sequence. (C) Starting from the boundary displacement, a velocity vector field that displaces internal mesh points
(red arrows) is calculated by using an edge spring analogy. (D) An example of deformation obtained with an edge spring analogy. 1) A deformation is
applied to the boundary points of the mesh (red points) and the displacements of mesh points of the left-most boundary are fixed to zero (green
points). 2) Edge springs of the triangles close to the deformation exercise tension forces to the neighboring triangles. 3) Relaxation of the forces to
reach equilibrium provides a smooth deformation of the mesh. (E) A mesh (blue mesh) is deformed to match the next mesh in the sequence (green
mesh). A triangle (red triangle) of the deformed mesh is split into the overlapping triangles of the next mesh by considering the respective areas of
overlap (seven red segments on the right). (F) An example of virtual fate map. A triangular element is labeled with a green dye (probability equal to
one) at early stages of development and its fate is simulated using the sequence of deformations and interpolations.
doi:10.1371/journal.pcbi.1001071.g002
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In conclusion, we can define a velocity vector field for each

mesh in the chronological sequence (the red arrows in Figure 2C)

representing a hypothetical tissue movement map connecting each

pair of contiguous morphologies in the sequence, see Video S1.

The displacements on the boundary can be altered through the

use of the boundary control splines, while the internal displace-

ments can be altered through changes in the spatial distribution of

spring stiffness. The collection of 9 different maps explored

extensively in this paper are described later.

Triangle interpolation map and virtual fate maps
In this section we wish to generate virtual clone experiments,

which can later be compared to real clonal data. Although the

velocity vector fields defined above are smooth across time, to

create virtual clones the resulting hour-by-hour mesh deformations

must be linked together to allow tracking the fates of individual

tissue regions over time.

Each of the 72 velocity vector fields defines how to deform a limb

mesh in order to match the following mesh in the sequence, and the

complete set of fields describes a hypothetical computational tissue

movement map that matches the entire sequence of experimental

morphologies. To track a region of tissue over the full 72 hours, we

must determine how the triangular elements of each mesh will map

to the different set of triangles of the 1-hour older mesh. In

particular, we must calculate a triangle-interpolation map from

mesh to mesh. A graphical representation of this process is provided

in Figure 2E. On the left of this panel, a blue mesh is deformed

according to its velocity vector field (red arrows), in the second

column of the figure, the deformed blue mesh is perfectly

overlapping the next green mesh in the sequence. On the right of

the panel, a triangle of the blue mesh (red labeled triangle) is split in

7 parts. Each of these parts represents the area of overlap between

the original triangle of the blue mesh and a triangle of the next green

mesh. In the course of a numerical simulation, numerical values

associated with the triangle of the blue mesh are transferred to the

triangles of the next green mesh according to the area of overlap.

Repeating this operation for each pair of contiguous meshes, we

generate a correspondence map that defines the fate of each

triangle of the first mesh in the sequence (stage E9) with respect to

a set of triangles on the last mesh in the sequence (stage E12). This

map is a computational implementation of an experimental fate

map. The interpolation is conservative and is based upon the

velocity vector fields that define the whole virtual tissue movement.

A virtual fate map can be performed by marking a triangle with a

‘‘virtual clonal dye’’ – in practice by assigning the triangle a

probability of one and then following the evolution of the

probability distribution over time, see Figure 2F and Video S2.

Experimental clones can be seen as a stochastic simulation of these

probability distributions. (Further details on the use and meaning

of this map are provided in Text S3).

This approach has also a more general application, since it

defines the basis for any kind of numerical simulation on a growing

triangular mesh representing limb growth. Indeed, by interpolat-

ing numerical values on a newly generated mesh at every hour of

development we are effectively implementing a global re-meshing

scheme that avoids the large element deformations that a grid

would undergo over the whole 72 hours of limb development. It is

well known that frequent re-meshing introduces a source of spatial

diffusion in numerical solutions [30,31]. This is not however a

problem in the context of virtual fate maps of the limb bud –

clonal data of mouse and chick show a high degree of cell mixing

even for short time intervals after clone induction. In the virtual

fate maps, the probability distribution represents the local density

of labeled cells, with a value of one corresponding to a region

where every cell is labeled. The local decrease of labeled cell

density which is modeled as diffusion therefore corresponds to cell

mixing. Determining the appropriate levels of cell diffusion/

mixing for the model is discussed in a later section.

Mouse clonal data
In this section we present a mouse clonal analysis of early hind

limb development, which will subsequently be used to compare

with hypothetical virtual clones. These experimental results are

compared with previously published fate maps in chick and

implications on PD patterning are discussed.

We used the tamoxifen inducible Cre-line presented in [11] to

conduct a mouse clonal analysis from stage E9 to stage E12 of

development. The clones were induced by injecting low tamoxifen

concentration at E8 (0.10mg) so that random recombination

events would produce single cell labeling events within the

embryos. 24 hind-limbs showing suitable monoclonal labeling

were used for the clonal analysis. To compensate for the variation

in development between embryos of the same litter and the

uncertainty of the injection day, we staged each limb using the

staging system presented in [28] and adjusted the estimation of the

injection day accordingly. The PD and AP clone lengths relative to

the maximum PD and AP length of the limb were measured as

shown in Figure 3A (See also Figure S2). From the quantification

of clone lengths, two graphs representing respectively PD and AP

clone expansion were produced, an example is shown in Figure 3B.

All clone lengths were mapped at stage E12 by considering

prospective or retrospective lengths as shown in Figure 3B. PD and

AP lengths at E12 were visualized representing each clone as a

rectangle centered in its AP and PD midpoint (in Figure 3C). In

this way we were able to cluster the clones in two groups according

to their position and shape: a) isotropically expanding clones in the

proximal and distal part of the limb that showed similar AP and

PD expansion rate (highlighted in blue), b) anisotropic clones that

expanded more along the PD axis than the AP axis (highlighted in

green and red). Plotting the ratio between PD and AP lengths a

similar behavior was revealed (Figure 3D). In accord with a

previous study [11] we found no clear evidence for AP and PD

compartments. Indeed, a high degree of cell mixing was observed

across the whole limb. Consistently with previous studies in chick

[8,9] we found that clones expanded across one or two PD

segments but never span across the whole PD axis of the limb, see

Figure 3E. Remarkably, no clones were found restricted to the

zeugopod alone – all clones found in this zone also overlapped

with the autopod or the stylopod regions.

Tissue movement map estimation
Now that we have (i) a method for generating virtual clones on

hypothetical growth maps, and (ii) a suitable set of experimental

clone data, the next task is to use the latter to infer a biologically-

realistic growth map for the mouse limb bud. This task can be split

into two parts: firstly defining a suitable set of hypothetical velocity

maps, and secondly developing a method to systematically

compare each map against the experimental clone data.

The space of all possible movement maps is highly multidi-

mensional and potentially very large, (as exemplified in Figure 1).

Exhaustively exploring all theoretically-possible maps would have

a prohibitive computational cost, and the challenge is therefore to

find a good match in an efficient manner. However, when

experimentally-derived assumptions about limb development are

considered – for example that tissue never moves backwards

towards the body, and that the distribution of tissue growth varies

smoothly over space – in fact the available options reduce to a

basic set of possible asymmetries, as summarized by the following

A Computational Clonal Analysis of the Limb Bud
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questions: Is there asymmetric growth along the AP axis? E.g. does

the posterior tissue expand faster or slower than the anterior

tissue? Similarly, does the distal region expand faster or slower

than the proximal region? Finally, does the tissue grow fairly

straight distally, or alternatively does it fan-out along the AP axis

into the autopod?

Figure 3. Clonal analysis. (A) Four clones showing the quantification of the AP and PD clone lengths. (B) In order to compensate for the variation
in developmental stage between different embryos each limb was staged and the tamoxifen injection time was adjusted accordingly. Large triangles
represent the AP and PD clone expansion over space and time. PD and AP lengths were mapped at E12 (red line) considering prospective (dotted
line) or retrospective lengths. (C) Each rectangle represents the AP and PD length of one clone. Clones were clustered into two groups: isotropically
expanding clones, with comparable AP and PD length (blue rectangles), and an-isotropically expanding clones having the PD length greater than AP
length (red and green rectangles). (D) A graph showing the degree of clone anisotropy in the limb, PD length over the AP length. Blue means low
anisotropy and red high anisotropy. (E) Top: In-situ of Sox9, a known early skeletal marker showing the position of the three PD segments
(S = stylopod, Z = zeugopod, A = autopod) Bottom: 16 clones showing the degree of overlap between clones spanning across different PD segments.
doi:10.1371/journal.pcbi.1001071.g003
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Using the two levels of manual control described in a previous

section of results (the boundary control splines, and the spring

stiffness distribution) we were able to create a collection of 9 maps

which represent the main plausible asymmetries in limb bud

development (Figure 4). Since the control splines are oriented

substantially along the PD axis, varying their positions primarily

affects the AP distributions of growth. We were thus able to choose

3 sets of these control splines, which define either a fairly straight

distally-oriented growth (Maps 1–3), a strong fanning-out

movement into the distal autopod region (Maps 4–6), or a

posteriorly-biased map in which growth is preferentially twisted

into the posterior region (Maps 7–9). Using the second level of

control – the spring stiffness distribution – we could vary the PD

growth pattern. The stiffness coefficient for each edge of the mesh

was given a spatial distribution in the following way:

Veij [ Ek,aij~
1

lij
P(ex

ij) ð5Þ

where aij is the stiffness coefficient of the edge eij that connects the

point vi and vj of the mesh, lij is the length of the edge eij and

P(ex
ij) is a scaling function used to vary the distribution of the

stiffness coefficients according to ex
ij , the x coordinate of the edge.

We explored a number of scaling functions, P(ex
ij) in equation (5),

to vary the stiffness coefficients along the PD axis (the x axis), and

chose 3 which display different degrees of bias towards the distal end

of the limb. The first function used was an inverted sigmoid (with

respect to x) that defined lower stiffness coefficients in the distal part

of the limb (Maps 1, 4, 7), i.e. allowing greater expansion of distal

tissue. The second function was a constant value defining no change

in stiffness along the PD axis (Maps 2, 5, 8). The third function was a

sigmoid that defined higher stiffness coefficients in the distal part of

the meshes (Maps 3, 6, 9), i.e.. restricting distal growth along the PD

axis. The combination of the 3 AP variations, and the 3 PD

variations resulted in 9 maps to be explored in detail. Additional

details regarding the maps and the scaling functions are provided in

Text S1. As an important control, proliferation patterns were

derived from the velocity vector gradients of each map and the

ranges were ensure to be biologically realistic, see Figure S3.

The second step was to evaluate which of the 9 hypothetical

tissue movement maps best fitted the experimental data. We

mapped the 13 clone pictures having better contrast and best

capturing the main features of the clonal data set onto the last

triangular mesh in the sequence (stage E12). This was done by

manually aligning the limb morphologies of the thresholded clone

pictures on the last mesh boundary. Results are shown in Figure

S4. Next we implemented an algorithm to systematically compare

all possible virtual clones for a given map with the 13 experimental

clones. The youngest timepoint (E9) is represented by a mesh with

3156 triangles, and so this is also the number of virtual clones

which could be calculated for each of the 9 maps. Evaluating the

score of a given map therefore involved over 40 thousand clonal

comparisons, which were calculated in the following way:

Given a set of triangles representing a virtual clone v and a set of

triangles representing an experimental clone e, each virtual clone was

scored with the formula:

Sc(v)~
XN

i~1

pi

XN

i~1

1

M
ð6Þ

where N is the number of common triangles between e and the

virtual clone v, pi is the probability value associated with the triangle i
of the virtual clone and M is the number of triangles of the

experimental clone e. The first part of the scoring function represents

the probability that the experimental clone is obtained from the

spatial probability distribution of the virtual clone. The second part

acts as a penalty for cells founds outside the domain of the virtual

clone. It calculates a score between 0 and 1 describing the proportion

of triangles of the experimental clone contained in the virtual clone.

Figure 5A shows the positions that scored the best for three

experimental clones on three different maps. Experimental clones

are shown in white while virtual clones are visualized with colored

Figure 4. A collection of tissue movement maps. (A) Initial conditions used for the comparison between the tissue movement maps. Clones are
positioned on a grid along the AP and PD axis and are colored according to the PD position, from proximal to distal: blue, green,red, green and blue.
(B) Virtual fate maps resulting from 9 different maps obtained combining different stiffness coefficient distributions and spline curves (described in
more detail in the main text). The left column shows the control spline curves. The stiffness of the distal springs is increasing from left to right. The
tissue movement map outlined in red (Map6) is the one that best matched the mouse clonal data.
doi:10.1371/journal.pcbi.1001071.g004
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contour lines that define three regions of probability: the area

enclosed by the red line contains the 50% of the clone probability,

the area between the green and the red contour the 30% and the

area between the blue and the green contour the 20%. Detailed

clone scores for map are shown in Figure S5. The total score for

each map was calculated by using the formula:

Sj
m~ P

13

i~1
Sij

c ð7Þ

where Sij
c is the best score found for the clone i on the map j using

the formula (6). We calculated the product between the clone

scores (Sc) in order to give higher score to the maps that better

matched all the experimental clones. Figure 5B shows the total

score for each map. In conclusion, Map6 scored almost two-fold

better than the other maps and was therefore selected as the one

the best represented hind-limb tissue movement. As a test of

robustness of this result, we chose to remodel the tissue movements

of Map6, but on a finer mesh (starting with 5678 triangles at E9,

instead of the previous 3156). These results (shown in Text S2)

highlight that the same positions and orientations of virtual clones

were obtained irrespective of the mesh resolution.

Cell mixing estimation
As mentioned in the previous sections, the hourly global re-

meshing process introduces an inherent source of diffusion to the

Figure 5. Virtual clone scores. (A) The left column shows pictures of experimental clones. The remaining columns show numerical comparisons
between the experimental clones (white shapes) and the best matching virtual clone (colored contour lines). The comparison is made for three different
maps (Map1, Map6, Map7). The contour lines define three regions of probability of the virtual clones: the area enclosed by the red line contain the 50%
of the clone probability, the area between the green and the red contour the 30% and the area between the blue and the green contour the 20%. The
number in white is the score value for each virtual clone. Limb shapes at stage E9 show the initial triangle associated with the virtual clone. (B) A
comparison between the total scores of the 9 virtual tissue movement maps. Map6 scores almost 2-fold better than all the other maps.
doi:10.1371/journal.pcbi.1001071.g005
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numerical simulation, which we consider equivalent to the

redistribution in the density of labeled cells. This is in agreement

with our clonal data that clearly shows a decrease of labeled cell

density during early phases of clone expansion resulting from the

mixing between labeled and non-labeled mesenchymal cells, see

Figure 6A. An accurate quantification of the degree of mixing

between mesenchymal cells would require a larger collection of

clonal data, but we nevertheless wished to provide a rough

estimate of the experimental degree of cell mixing and compare it

with the amount of cell mixing introduced by the re-meshing

process. Taking advantage of our model, we decided to estimate

cell mixing by quantifying the degree of overlap between the

experimental clones. The quantification was performed in two

steps.

First, we estimated the spatial probability distribution of three

different clones. This was done by applying a mean filter to the

experimental clones as they were mapped into the mesh at stage

E12. The mean filter averaged the value of each triangle with its

direct neighbors and normalized the overall spatial distribution to

1. By iteratively applying the filter we smooth the distribution of

the labeled triangles until the data did not present any spatial

discontinuities. The estimated probability distributions of three

experimental clones is presented in the second column of

Figure 6B.

Secondly, we defined a score to quantify the degree of overlap

between clone probabilities distributions. Given two clones c1
and c2, the score was defined as:

So(c1,c2)~
XN

i~1

pc1
i zpc2

i ð8Þ

where N is the number of common triangles between the two

clones, pc1
i is the probability value associated with the triangle i

of the clone c1 and pc2
i is the probability value associated with

the triangle i of the clone c2. The overlap between two pairs of

experimental clones was quantified using this formula

(Figure 6B, second column). Results were then compared with

the quantifications of the overlap between the correspondent

virtual clones of Map6, see the third column in Figure 6B. Our

estimations of overlap suggested that the amount of cell mixing

introduced by the global re-meshing process was not enough to

mimic the real degree of clone overlap consistent with the

experimental data.

We therefore introduced an additional diffusion term that

would model a higher degree of cell mixing. The quantification of

the clone overlap was repeated multiple times with different

degrees of extra-diffusion. In this way we were able to provide a

rough estimate of the diffusion constant that better fitted the

experimental clone overlap (see the two columns on the right in

Figure 6B), and importantly to show that the unavoidable diffusion

introduced by our global re-meshing scheme must in fact be

augmented with extra diffusion to reach biologically-realistic

levels.

In conclusion, the refined version of Map6 with the extra-

diffusion not only matched the shape and distribution of the clonal

data but was also matched the relative positing and spatial

extension of the clones. A qualitative comparison between the

experimental and the virtual clones obtained with this map is

shown in Figure 7A. A simulation showing a number of clones that

match the distribution and shape of the experimental clonal data is

shown in Figure 7B and Video S3.

Applications of the model
In this section we present some applications of the growth model

that highlight the power of mathematical modeling in character-

izing limb outgrowth in space and time.

Figure 6. Re-meshing and cell mixing. (A) A picture showing the degree of cell mixing observed at early times after clone induction. (B) The first
column shows 3 experimental clones used for this analysis. The second column shows the estimated probability distributions of experimental clones
obtained by a mean filter. The second and the third row of this column show a quantification of the overlap between pairs of experimental clone
distributions – C6-C7 and C6-C2. The number in white is the score representing the amount of overlap. In the three right-hand columns the overlap
between the correspondent virtual clones from Map6 is calculated by considering different amount of additional diffusion: no additional diffusion
(first column), a diffusion constant of 0.03 (second column) and a diffusion constant of 0.08 (third column). It can be seen that addition of some
diffusion improves the score (compare with the ‘‘Estimated overlap’’ column), while too much extra diffusion makes the scores worse again.
doi:10.1371/journal.pcbi.1001071.g006
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A first interesting application of the model was to derive and

visualize the local tissue behaviors that contributed to the global

tissue movement responsible for limb outgrowth. In the model,

local tissue behaviors can be represented by the growth tensors

associated with each mesh triangle. Tensors were derived from the

spatial gradient of the velocity vector field and provided three

useful pieces of information: tissue growth rate, anisotropy and

rotation [32]. The first of these can be directly related to

proliferation and we translated these values into cell cycle time by

considering the time required to double the area of a triangle. A

similar approach was taken in [17] by assuming that the cell cycle

time was equivalent to the time required to double the volume of a

tetrahedron in a 3D limb tetrahedral mesh. Tensors were

calculated for each time point and expansion rates were visualized

using heat maps, see Figure 8B. Our model predicted a

proliferation distribution with shorter cell cycle times in the distal

region, with an average value of 9h, and longer cell cycle times on

the proximal part of the limb, with an average value of 24h. The

difference between the two regions was more evident from the

stage E11 onwards with an average maximum difference of 12h in

agreement with published experimental proliferation maps [17].

The other two components of the tensor were visualized using

ellipsoids that were scaled and rotated according to the anisotropy

and the rotation, see Figure 8C. The model predicted an initial

relatively uniform anisotropy (until stage mE10.18) that was

oriented towards the distal tip of the limb. This reflected the initial

phase of elongation and protrusion of the limb and confirmed the

results presented in [17] that showed that the elongation of the

limb bud cannot depend only on differential isotropic cell

proliferation but has to depend on anisotropic tissue movement.

The model also revealed a second late phase, after mE10.18, in

which the anisotropy under the distal ectoderm close to the AER

was higher than in the central tissue. Interestingly, within the most

distal/central region of this sub-ridge mesenchyme the direction of

anisotropy was parallel to the AER, whereas it was perpendicular

to the AER in more anterior and posterior regions. Taken together

these results suggested the possibility that during autopod

expansion, signals coming from the distal AER could act

promoting a higher proliferation rate and an anisotropic behavior

of the cells that result in the expansion of the autopod along the AP

axis.

The second application of the model focused on the PD

patterning of the limb. In particular we used our model to address

a matter of debate for the last two decades: that is to identify at

which stage the three PD segments of the limb can be specified.

The problem has been addressed numerous times in the chick by

creating fate maps to study two different aspects: the degree of

mixing between cells of the prospective segments, and to follow the

lineage of cells expressing markers of the three PD segments, like

Hoxa13 and Hoxd13 for the autopod. An early study using both

Figure 7. The matching map. (A) A direct comparison between experimental clones (white background) and simulated clones (black background).
Experimental clones have been thresholded and the clone shape has been highlighted. (B) A collection of clones matching the distribution and shape
of the experimental clonal data. Blue clones expand isotropically on the PD and the AP axis, and green and red clones expand more on the PD axis.
On the left, the initial conditions of the fates are shown.
doi:10.1371/journal.pcbi.1001071.g007
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approaches [7] concluded that the degree of mixing between the

prospective PD segments was low and that the anterior expansion

of the distal marker Hoxa13 was mainly due to growth. In other

words this study suggested that the distal segment was specified

early during development and that it subsequently expanded due

to growth. A similar idea was further developed in [12] where it

was proposed, based on the observation that early fate maps were

almost always confine to a single segment, that the three segments

were specified early in development and that their expansion was

again mainly due to limb growth. This idea became known as the

Early Specification Model. In contrast, a more recent study in

chick [9] concluded that the mixing between zeugopod and

autopod was higher than that between stylopod and zeugopod at

early stages. This together with analysis of Hoxa13 and Hoxa11

expressions suggested that the two more proximal segments were

specified early while the distal segment was specified later during

development. However, another study in chick [8] found no strict

barriers between all the three segments at early stages. Recent

results in mouse [13] also supported a similar view by showing that

cells expressing known markers of three segments were capable of

altering their expression to match the local environments where

they were moved. This supported the idea proposed in [14,15]

that identities were progressively specified over time by active

regulation along the entire limb despite cell transit between the

segments.

Considering some of the controversies mentioned above we

decided to use our model in two ways: firstly to give an estimation

of the degree of mixing along the PD axis, and secondly to

estimate the extent to which limb tissue movement could be

responsible for the expansion of the Hoxd13 domain, one of the

known distal marker of the autopod.

For the first question we used the model to compute a reverse

version of the tissue movement map. This would allow us to start

by marking the three PD segments at the oldest timepoint (E12),

and then work backwards to determine which regions of the young

limb bud could contribute to the 3 segments. Importantly, this is

not equivalent to running a clonal experiment backwards in time.

As in a traditional heat diffusion problem, individual virtual clones

cannot be reverse simulated to discover where they came from. On

the contrary, if a clone was reverse simulated from its final spatial

distribution back to the young limb bud the corresponding region

on the young shape will be proportionally larger than the final

clone. This is clearly the opposite of the normal forward

simulation, which starts with a region much smaller than the final

clone – a single triangle. This distinction is explained in more

detail in Text S3. The purpose of this reverse map is therefore

instead to find the full distribution of possible progenitor regions

for a given final PD zone, e.g. to find the possible distribution of all

zeugopod progenitors at E10. Due to the effective diffusion caused

by cell mixing, the potential progenitor region for a given segment

Figure 8. Derivation of growth tensors. (A) The velocity vector field of the map that best recapitulates limb tissue movement. Velocities have
been normalized for clarity. (B) A heat map visualizing the expansion rate of each triangle. Red corresponds to high expansion rate (low cell cycle time
of 10h) and blue to low expansion rate (high cell cycle 42h). Average cell cycle times of distal (1/3 of the PD axis from the tip) and proximal parts
(remaining 2/3 of the PD axis) are shown for each time point. (C) Ellipses visualizing the anisotropy and rotation of different parts of the tissue. During
an initial phase of development the anisotropy is relatively uniform (until stage mE10.18) and oriented towards the distal tip of the limb. After this
stage the anisotropy is non-uniformly distributed, and is higher in the region under the influence of the AER. In the central sub-ridge region the
direction of the anisotropy is parallel to the AER, while in more anterior or posterior regions it is perpendicular to the AER.
doi:10.1371/journal.pcbi.1001071.g008
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will always be proportionally larger than the final segment. As an

example, if diffusion was high enough there would be a moment in

the early limb bud when any single cell across the whole bud could

provide descendants contributing to all 3 PD zones of the late bud.

In other words, the progenitor region for any point of the older

limb would be the whole young limb.

The positions of the PD segments at E12 were determined by

the expression of the Sox9 skeletal marker, see Figure 9B. Based

on the degree of cell mixing seen in real clones, our reverse model

revealed the existence of regions having high probability to

contribute to two or three segments at early stages of development

(around stage E10 in Figure 9C) when most of the fate maps

discussed above have been performed. In other words, assuming a

spatially-uniform cell mixing that matches the observed overlaps of

experimental clones, our model clearly suggests that the degree of

mixing between the three PD segments does not allow an early

specification of the PD identities even as late as E10.

For the second analysis of PD patterning we investigated the

possible contribution of tissue movement to the known expansion of

the Hoxd13 distal marker. First we mapped into the model a gene

expression time course of Hoxd13 that was obtained from in-situ

hybridization at 7 different developmental stages, see Figure 10A.

This was done by staging each limb with the morphometric staging

system presented in [28] and by mapping the domain of expression

into the correspondent time point of the model. Secondly, we used

the model to expand or shrink each experimental domain of

expression into the following or the previous experimental time

point, see Figure 10B,C. By computing the difference between the

predicted and the experimental domains we were able to disentangle

the active regulation of Hoxd13 from the underlying tissue

movement. Our model showed that there were periods of growth

during which the change in Hoxd13 domain was fairly consistent

with the underlying tissue movements. However, two particular

periods stood out from this trend during which there was strong

active up-regulation of the gene. The first period was from stage

mE10:15 to stage mE10:19, when the Hoxd13 domain undergoes a

quick expansion from the posterior to the anterior part of the limb,

and the second period was from stage mE11:1 to mE11:18, when the

gene was up-regulated proximally. Interestingly, these phases

seemed to correlate well with (a) the up-regulation of some of the

FGFs expressed by the AER that have been described to expand

from the posterior to anterior part of the distal ectorderm in an initial

phase around E10.5, and (b) a later phase when FGFs expression is

up-regulated around stage E11:5. These observations also fitted with

the model proposed in [14] where FGF signaling was proposed as a

candidate for the regulation of distal markers like Hoxa13.

In conclusion, our model predicts that the degree of mixing

observed in mouse is too high to support the Early Specification

Model as a realistic description of PD region specification.

Moreover we have also shown that the expansion of the Hoxd13

domain, one of the genes proposed as a distal marker of the limb,

cannot be explained considering tissue movement only but has to

involve active up-regulation in at least two distinct phases of the

development.

Discussion

In this study we present a novel computational method which

combines a sequence of experimental 2D limb morphologies and

clonal data to estimate a comprehensive description of the tissue

movement map responsible for limb morphogenesis. We present a

mouse clonal analysis of early hind limb development and show

how this allows us to estimate a 2D descriptive model of limb

outgrowth that fits the experimental data. In practice, our

approach is a reverse-engineering method. It is important to note

that the spring analogy algorithm is used as a convenient tool for

creating a variety of different hypothetical growth maps, but is not

employed to represent the mechanical properties of the tissue.

A major advantage of our model over previous fate maps is the

resulting comprehensive prediction of tissue movements over time

and space. Previously, the behavior of a point of tissue had to be

inferred by manual comparison to its closest experimental clone.

Figure 9. PD segments progenitors. (A) A reverse tissue movement map was calculated in order to identify the progenitor regions for the three
PD segments. In the graphs, the stylopod is highlighted in red, the zeugopod in green and the autopod in blue. (B) On the top, the initial position of
the three PD segments is specified as shown by an in situ hybridization at stage E12 of the Sox9 skeletal marker, on the bottom. (C) Graphs showing
the retrospective probability to belong to the three segments along the proximal distal axis. The regions having a high probability to belong to more
than one segment are highlighted with diagonal black lines.
doi:10.1371/journal.pcbi.1001071.g009
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By contrast, in our new map the movement of every piece of tissue

is described numerically across the whole period of development.

A related advantage is the temporal accuracy – the state of any

hypothetical clone can be predicted at any intermediate time point

– not only at the beginning or end of a virtual clonal experiment.

The spatio-temporal comprehensiveness of the model gives it the

power to make more concrete predictions about PD patterning.

To the best of our knowledge, this is the first comprehensive 2D

model of limb outgrowth derived from experimental data.

Many aspects of our clonal analysis agree with previous results

in mouse [11] and with fate maps in chick [9], in particular that

clones expand across one or two PD segments but never span

across the whole PD axis of the limb. By measuring the degree of

overlap between clones at different PD position we found that

clones spanning the zeugopod had a higher degree of overlap – in

fact not a single zeugopod-restricted clone was found. A

quantification of the ratio between AP and PD clone lengths

highlighted a range of behaviors, but which could be broadly split

into two type: isotropic clones on the distal and proximal part of

the limb, and anisotropic clones in the bulk of the tissue showing

greater PD length than AP length (Figure 3). Interestingly, in

contrast to fate maps in chick [8,9], we found that some distal

clones expanded more on the AP axis than the PD axis (e.g. C2 in

Figure 5A). This was also reflected in the fitting of the hypothetic

growth maps to the clonal data. The map which fitted best (Map6)

displayed specific features regarding AP and PD growth: along the

PD axis it was one of the maps with a distally-restricted PD

elongation. On its own, this information would appear to

contradict the knowledge that proliferation rates are highest

distally, however Map6 was also the one with a strong distal

‘‘fanning-out’’ movement along the AP axis (central row in

Figure 4B). This compensates the low PD expansion resulting in a

strong AP-oriented anisotropy, such that predicted proliferation

rates are maintained at high levels in this region (see Figure 8).

Interestingly, although this feature may be stronger in mouse than

chick (resulting in a wider mouse autopod) recent reports have

suggested that the AP expansion of the chick and gecko autopod

could be driven at least in part by AP-oriented cell divisions [33].

Taking advantage of our computer model we can calculate the

growth tensors directly revealing the AP anisotropy of the distal

tissue. However, the tensors also show that tissue movements of

the most anterior and the most posterior regions of the sub-ridge

mesenchyme are perpendicular to the AER, rather than parallel

(Figure 8C). This is an unexpected observation that will require

more attention in future studies.

Another interesting observation regards the general construc-

tion of our model. By representing the local density of labeled cells

as a probability distribution which can diffuse through a smoothly

deforming mesh, we shows that biologically-realistic tissue

movements can be captured through the combination of

anisotropic velocity vector field, with isotropic diffusion. This

could suggest that the cellular properties which govern mixing,

such as cell-cell adhesion, may not themselves display any cell

polarity. In other words, it is theoretically plausible that cells are

subject to two types of activity: directional movements (such as

oriented cell divisions or convergent extension) which are

responsible for the tissue-level shape changes, and non-directional

cell mixing. However, in reality, alternative scenarios may also be

equally compatible with our model. For example, it is likely that

oriented movements naturally lead to the intercalation and

therefore to the mixing of cells, such that directional movement

and cell mixing cannot be conceptually uncoupled.

Figure 10. Hoxd13 domain expansion. (A) Top row: a sequence of 7 in-situ hybridizations of Hoxd13 with corresponding stage given by the
morphometric staging system [17]. Bottom row: the thresholded gene expressions (limb with white background) are mapped into the triangular
meshes of the model (limb with black background). (B) A set of distinct simulations (gray rectangles) showing how the gene expression domains of
each time point would change if only passively carried along by tissue movements, i.e. with no active cellular up-regulation. (C) A similar set of
simulations, but this time in reverse for each time point. (D) Differences between the experimental patterns and the ‘‘growth-only’’ simulated patterns
in the correspondent column. The green regions are predicted to be up-regulated and the magenta regions to be down-regulated. This indicates that
the Hoxd13 domain expansion requires active up-regulation on the anterior part around stage mE10.19 (phase 1) and on the proximal part around
sage mE11:18 (phase 2).
doi:10.1371/journal.pcbi.1001071.g010
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Finally, we used the model to clarify the relation between mouse

limb tissue movement and the existing PD patterning hypothesis.

Firstly we showed, by using a reverse version of the model, that there

is a considerable degree of mixing between the progenitors of the

three PD segments (Figure 9). In contrast to the Early Specification

Model, our model predicts that at early stages there are regions

where cells have a high probability to contribute to more than one

PD segment. Secondly we showed, by mapping a time course of

Hoxd13 expression in the model, that the expansion of the Hoxd13

domain cannot be explained only by tissue movement but requires

active gene regulation, Figure 10. The model gave specific

predictions of the type of spatial and temporal active regulation of

Hoxa13 required suggesting, as proposed in [14], that distal markers

could be under the control of the FGF signaling coming from the

AER. Taken together these two results prove that limb growth

modeling is a valuable resource to extract maximum information

from clonal data and to make specific predictions about the spatio-

temporal dynamic of limb morphogenesis.

To conclude, the software that we developed will allow us to

easily integrate, inside a realistic 2D model of limb growth,

numerical simulations of gene regulatory networks and morpho-

gen gradients taking a big step forward in the study of limb

development by using a systems biology approach.

Materials and Methods

Ethics statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant national and/or local animal

welfare bodies, and all animal work was approved by the

appropriate committee.

Clonal data
The clonal data was produced using the tamoxifen inducible

Cre-line presented in [11]. Lineage tracing at clonal resolution was

obtained by injecting low dose of tamoxifen (0.10mg) to reduce the

probability of polyclonal origin as described in [11]. Female

pregnant females were injected at approximately 8 days pf. and

embryos were extracted at 12 pf. LacZ clone staining was

performed as described in [34] and embryos were post-fixed in 4%

para-formaldehyde (PFA) and stored in 80% glycerol, 4% PFA.

Limb morphologies
72 limb morphologies were extracted from an extended version

of the standard morphological trajectory presented in [28]. Each

limb morphology was represented by an array of curvature values

that were averaged from more than 600 outlines of real limb buds

at different stages. We geometrically reconstructed 72 limb shapes

from the standard morphological trajectory and added an artificial

body of 150|610mm to each shape, see Figure S1. We thus

spatially discretized each of the limb bud shapes using the

unstructured triangular mesh generator presented in [35]. The

meshes used to build the 9 tissue movement maps in Figure 4 were

obtained with an element length of 8mm and the finer version of

the meshes in Figure S2 with an element length of 6mm.

Gene expression data
The Hoxd13 gene expression time course in Figure 10 and the

Sox9 expression in Figure 3 were made using C57Bl/6J mouse

embryos, fixed in 4%PFA and dehydrated into MetOH. Whole

Mount In situ hybridizations were stained using NBT/BCIP and

performed using a Hoxd13 antisense probe, kindly provided by

Denis Duboule, and a Sox9 antisense probe.

Virtual tissue movment maps
Software to generate the virtual tissue movement maps was

written in Java and used the free visualization library vtk [36] to

implement the graphical user interface that allowed the user to

specify the boundary control splines. Virtual tissue movement maps

were stored on a re-usable data structure called MorphoMovie that

was defined by a series of velocity vector fields and a series of

triangle interpolation maps, one for each triangular mesh in the

sequence. We developed a generic partial differential equation

solver that was able to simulate virtual clones on a given

MorphoMovie. The solver used an Euler method for time

discretization and a Finite Volume Method [37,38] on unstruc-

tured triangular meshes for the space discretization.

Supporting Information

Figure S1 Standard morphological trajectory. The 72 experi-

mental limb bud morphologies describing mouse hind-limb

development from stage E9 to stage E12.

Found at: doi:10.1371/journal.pcbi.1001071.s001 (0.33 MB PDF)

Figure S2 Analysis of the clonal data (PD and AP length

measurement). The clonal data that was generated using the

tamoxifen inducible CRE transgenic mouse line. Clones are divided

in two groups: isotropically expanding clones and an-isotropically

expanding clones. The PD and AP clone lengths relative to the

maximum PD and AP length of the limb are measured. Colored

triangles represent the AP and PD clone expansion.

Found at: doi:10.1371/journal.pcbi.1001071.s002 (1.17 MB PDF)

Figure S3 Proliferation patterns of the maps shown in Figure 4.

The proliferation patterns of the 9 virtual tissue movement maps

in Figure 4. Triangle expansion rate are converted to cell cycle

time and are visualized by using a heat map, red corresponds to

low cell cycle times (11h) and blue to high cell cycle times (43h).

Found at: doi:10.1371/journal.pcbi.1001071.s003 (0.40 MB PDF)

Figure S4 Experimental clone registration. The collection of 13

experimental clones that were mapped into the last triangular

mesh of the sequence (stage E12).

Found at: doi:10.1371/journal.pcbi.1001071.s004 (0.66 MB PDF)

Figure S5 Clone scores of the tissue movement maps in Figure 4.

For each of the 9 virtual tissue movement maps, the collection of

virtual clones that best matched the 13 experimental clones.

Virtual clones are shown with colored contour lines and

experimental clones are shown in white color. The text in white

color is the virtual clone score. Finally, a bar diagram summarizing

the clone scores.

Found at: doi:10.1371/journal.pcbi.1001071.s005 (1.68 MB PDF)

Text S1 Description of the tissue movement maps in Figure 4. A

description of the spline curves and stiffness distributions used to

generate the 9 virtual tissue movement maps in Figure 4.

Found at: doi:10.1371/journal.pcbi.1001071.s006 (0.04 MB PDF)

Text S2 Simulation with a refined triangular mesh. The 13

virtual clone positions in Map6 that best matched the experimen-

tal data were used to simulate virtual clones on a version of Map6

with a refined mesh.

Found at: doi:10.1371/journal.pcbi.1001071.s007 (0.46 MB PDF)

Text S3 Forward and backward maps. A description of the

different information that can be extrapolated from a virtual tissue

movement map: fate maps vs progenitor regions. The PD segment

progenitor prediction shown in Figure 9 is also recalculated by

using Map6 without additional diffusion.

Found at: doi:10.1371/journal.pcbi.1001071.s008 (1.00 MB PDF)
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Video S1 Mesh deformation video. Part of the sequence of

triangular meshes that was derived from the experimental limb

bud morphologies. Each mesh is deformed to match the next mesh

in the sequence from which the simulation continues.

Found at: doi:10.1371/journal.pcbi.1001071.s009 (5.46 MB AVI)

Video S2 Virtual fate map video. A video showing a virtual fate

map. The spatial probability distribution of the fate is colored with

a heat map, red represents a high probability and blue a low

probability. A discrete number of triangle-interpolation steps can

be appreciated in the video.

Found at: doi:10.1371/journal.pcbi.1001071.s010 (3.21 MB AVI)

Video S3 Video of the simulation in Figure 7B. A video showing

a number of clones that match the distribution and shape of the

experimental clonal data. Blue clones expand isotropically on the

AP and the PD axis, red and green clones expand more on the PD

axis.

Found at: doi:10.1371/journal.pcbi.1001071.s011 (2.70 MB AVI)
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