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Protein post-translational modifications (PTMs) represent important regulatory states that when
combined have been hypothesized to act as molecular codes and to generate a functional diversity
beyond genome and transcriptome. We systematically investigate the interplay of protein
phosphorylation with other post-transcriptional regulatory mechanisms in the genome-reduced
bacterium Mycoplasma pneumoniae. Systematic perturbations by deletion of its only two protein
kinases and its unique protein phosphatase identified not only the protein-specific effect on the
phosphorylation network, but also a modulation of proteome abundance and lysine acetylation
patterns, mostly in the absence of transcriptional changes. Reciprocally, deletion of the two putative
N-acetyltransferases affects protein phosphorylation, confirming cross-talk between the two PTMs.
The measured M. pneumoniae phosphoproteome and lysine acetylome revealed that both PTMs are
very common, that (as in Eukaryotes) they often co-occur within the same protein and that they are
frequently observed at interaction interfaces and in multifunctional proteins. The results imply
previously unreported hidden layers of post-transcriptional regulation intertwining phosphoryla-
tion with lysine acetylation and other mechanisms that define the functional state of a cell.
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Introduction

Cells constantly need to adapt their endogenous biochemical
activities to a changing environment. An important level of
adaptation is achieved by series of post-translational mod-
ifications (PTMs) that affect the chemical properties of
proteins, conferring molecular diversity beyond the amino-
acid sequence. More than 200 different PTMs have been
described, and these are known to affect many aspects of
protein function, such as activity, stability and interaction
(Singh et al, 2007; Li et al, 2009; Deribe et al, 2010; Wang et al,
2010; Zhao et al, 2010). Among all PTMs, reversible protein
phosphorylation and lysine acetylation represent prominent
and ubiquitous regulatory mechanisms that are conserved
from bacteria (Yu et al, 2008; Zhang et al, 2009a; Wang et al,
2010) to humans (Kim et al, 2006; Choudhary et al, 2009;
Huttlin et al, 2010; Zhao et al, 2010). Protein phosphorylation is
regulated by a variety of kinases and phosphatases, which are
themselves regulated by phosphorylation within complex
networks (Bodenmiller et al, 2010; Zorina et al, 2011). A series
of mass spectrometry (MS)-based methods are currently

available that allow the characterization of phosphorylation
and lysine acetylation at unprecedented scales (Kim et al,
2006). Most recent analyses have captured 5000–10 000
phosphorylated (Van Hoof et al, 2009; Huttlin et al, 2010;
Rigbolt et al, 2011) and 1700 lysine-acetylated (Choudhary
et al, 2009) proteins, and large inventories of phosphorylation
and acetylation sites are currently available (e.g., PHOSIDA
(Gnad et al, 2011), Phospho.ELM (Dinkel et al, 2011) or
PhosphoSite (Hornbeck et al, 2004)).

In eukaryotes, many proteins have been observed to be
modified on multiple sites, and some nuclear transcription
factors (Yang and Seto, 2008b), cytoskeletal proteins (Reed
et al, 2006; Zhang et al, 2009b) and protein chaperones
(Scroggins et al, 2007) even carry several different PTMs,
reminiscent of a molecular barcode. Inspired by histones, for
which phosphorylation or lysine acetylation at specific
positions influence further modifications and form complex
regulatory circuits (Strahl and Allis, 2000; Jenuwein and Allis,
2001), the hypothesis of a protein modification code has been
proposed, whereby dynamic patterns of protein modification
would encode for alternative protein functions (Yang and Seto,
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2008a). However, large-scale studies that consistently inves-
tigated direct modulation of one PTM by another are sparse
(Yao et al, 2011). It is also unclear when such a code has
evolved as prokaryotes are poorly studied in this respect with
only a few instances of multiple PTMs in individual proteins
having been previously identified (Soufi et al, 2008; Prisic et al,
2010).

Accordingly, here we exhaustively studied two important
PTM events—serine/threonine/tyrosine phosphorylation and
lysine acetylation in the bacterium Mycoplasma pneumoniae,
a human pathogen that causes atypical pneumonia (Waites
and Talkington, 2004). This organism is established as a
suitable model organism for large-scale systems-wide analyses
on proteome, transcriptome, metabolic and protein networks
(Guell et al, 2009; Kuhner et al, 2009; Yus et al, 2009; Maier
et al, 2011). This self-replicating organism has one of the
smallest known genomes (691 protein encoding genes)
(Dandekar et al, 2000; Guell et al, 2009). It encodes a reduced
PTM machinery, perturbation of which would reveal many of
the regulatory cascades. Since it contains only one protein
phosphatase (PrpC|Mpn247), two known serine/threonine
protein kinases (HprK|Mpn223 and PknB|PrkC|Mpn248) and
two putative N-acetyltransferases (Mpn027 and Mpn114),
M. pneumoniae represents an ideal model organism in which
to study system-wide impact of phosphorylation on other
PTMs. We combined genetics and high-resolution quantitative
MS to measure the global effect of kinase and phosphatase
deletions on proteome abundance, phosphorylation and lysine
acetylation. The study provides a first unbiased and quantify-
ing view on cross-talk between phosphorylation and lysine
acetylation and also suggests that these regulatory circuits are
a fundamental principle of regulation that might have evolved
before the divergence of prokaryotes and eukaryotes.

Results

Quantifying the M. pneumoniae proteome,
phosphoproteome and lysine acetylome

To gather insights into the mechanism of prokaryotic
phosphorylation, and to systematically chart impacts of
protein phosphorylation on lysine acetylation, we profiled
both modifications in wild-type strains of M. pneumoniae and
three isogenic mutants deficient in either one of the two
protein kinases, HprK and PknB, or the phosphatase, PrpC
(Halbedel et al, 2006) (Figure 1A). We applied a quantitative
proteomics approach based on chemical, differential labeling
with three isotopic dimethyl forms (Boersema et al, 2009). The
chemically encoded digested proteomes (originating from the
four strains) were combined according to a scheme that
includes both technical and biological replicates to ensure that
each proteome is chemically labeled with at least two different
stable isotopes (Figure 1B; see Materials and methods). To
reduce the complexity of the samples and increase sensitivity,
peptides were subjected to fractionation: non-phosphorylated
and phosphorylated peptides were separated by strong cation
exchange (SCX) chromatography (Mohammed and Heck,
2010), whereas lysine-acetylated peptides were enriched using
a specific antibody (Choudhary et al, 2009). All fractions were
analyzed using a nano LC-LTQ-Orbitrap (Thermo, San Jose,

CA) (see Materials and methods). Unmodified, phosphory-
lated and lysine-acetylated peptides were identified with the
Mascot search engine using the M. pneumoniae sequence
(UniProt) and corresponding decoy databases: peptide thresh-
olds were set at false discovery rates (FDRs) of 1%. The
majority (75%) of phosphorylation and all lysine acetylation
sites could be localized to a single amino acid (see Materials
and methods). Modified and unmodified peptides were
quantified using the software MSQuant (Mortensen et al,
2010). Importantly, to prevent possible biases due to variation
in protein expression, the relative intensities of modified
peptides were normalized for changes in protein abundance
(Figure 1C) (Wu et al, 2011). For each peptide, the statistical
significance of the observed change in abundance was
computed with the software OutlierD (Cho et al, 2008). The
test provides a P-value based on the variation in the normal-
ized ratios observed for all peptides with similar intensities
(see Materials and methods). The thresholds were set
stringently. Only changes that were statistically significant
and that could be further confirmed by visual inspection were
considered for further analysis. Additionally, changes in
intensities lower than B2.8� (log2o1.5, for proteins and
phosphopeptides) or 4� (log2o2, for lysine-acetylated
peptides) were disregarded. We also used the reproducibility
between the different technical and biological duplicates to
further assess the reliability of the experimental and computa-
tional approaches (Supplementary Figure S1C–F). The biolo-
gical reproducibility for the identification of proteins and
phosphopeptides (between the four analyzed mixtures) were
86% and 98%, respectively. The reproducibility for the
identification of lysine-acetylated peptides (two mixtures) is
70%. We also measured the reproducibility for the quantifica-
tion as follows: (1) technical replicates with reverse labeling
were included for all phosphorylation measurements (all four
strains), whereas for lysine acetylation measurements, tech-
nical duplicates were present in the wild-type and PknB
mutants and (2) biological replicates were included for the
quantification of proteins and phosphopeptides in the wild-
type and the PknB mutant (Figure 1). Technical reproducibility
of detecting upregulation or downregulation reaches 93%,
whereas biological reproducibility varies from 63 to 90%.
However, for the final data sets (Supplementary Tables SI–SIII),
all changes in abundances that were not reproducible between
the technical duplicates were excluded.

Overall, we identified 564 proteins, of which 460 (81.6%)
were quantified. For 104 proteins, we did not obtain
quantitative measurements because the proteins were identi-
fied with too few peptides (fewer than three) or the extracted
ion chromatograms (XICs) peaks for some peptides were
overlapping, precluding unambiguous and reliable quantifica-
tion. Close to half of all identified proteins (241; 42.7%) were
found modified by either phosphorylation or lysine acetyla-
tion. In total, 93 phosphorylation and 719 lysine acetylation
sites were characterized on 72 and 221 proteins, respectively
(Figure 1; Supplementary Tables S1–S3). We observed
phosphorylation on serines (58%), threonines (37%) and
tyrosines (5%) consistent to previous studies in other bacteria
(Mijakovic et al, 2006; Macek et al, 2007, 2008; Soufi et al,
2008). The phosphorylation data set is extensive, and adding
an extra enrichment step, using titanium dioxide (TiO2), lead
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to only two additional phosphopeptides. Similarly, the
consideration of previous phosphoproteomics studies in
M. pneumoniae (based on two-dimensional gel electrophor-
esis) (Schmidl et al, 2010b) added only 11 additional
phosphosites (11%). The vast majority (98%) of the lysine-
acetylated peptides were identified in the anti-acetyl-lysine
fraction, which contained a 20-fold enrichment in sites. This
represents the largest lysine acetylation data set performed in a
prokaryote. To assess quality further, we randomly selected 11
proteins from the lysine acetylome data set and independently
confirmed nine lysine acetylations by immunostaining with an
anti-acetyl-lysine antibody, two could not be confirmed using this
method (Supplementary Figure S2). For example, we found all
enzymes in the glycolytic pathway to be phosphorylated or
lysine-acetylated, consistent with previous reports in human
(Zhao et al, 2010) and other bacteria (Mijakovic et al, 2006;
Macek et al, 2007, 2008; Soufi et al, 2008; Wang et al, 2010).

The data set covers 81.6% of all annotated open reading
frames (ORFs) or 93% of the previously identified
M. pneumoniae proteome (Jaffe et al, 2004; Kuhner et al,
2009) (Supplementary Figure S1A). The sets of protein
identified broadly cover all cellular functions (Figure 2A).
The median sequence coverage of all identified proteins
reaches 43%, a value close to the known upper detection
limit inherent to current MS-based protocols (Supplementary
Figure S1B) (Swaney et al, 2010). We tested the set for
several possible biases, and found that the sets of proteins
identified broadly cover all biophysical and biochemical
properties (Supplementary Figure S3). Taken together, the
data set is among the most comprehensive analyses of
both phosphorylation and lysine acetylation in a single
prokaryote. The results show that lysine acetylation in
M. pneumoniae is very common, being at least as frequent
as phosphorylation.
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Evolutionary conservation of phosphorylation and
lysine acetylation sites

Both serine/threonine phosphorylation and lysine acetylation
are ancient PTMs conserved throughout evolution (Kennelly,
2002; Choudhary et al, 2009). Due to their high fraction in
M. pneumoniae proteins, we were able to evaluate the
phylogenetic conservation of phosphorylated and lysine-acety-
lated sites. We observed that for 23% of acetylated-lysines in
proteins with a eukaryotic ortholog, the lysine residues were
conserved from Mycoplasma species to eukaryotes (Figure 2D).
The most conserved PTM sites (460% conserved in 480
eukaryotes) were frequently found in metabolic enzymes
compared with other sites within other evolutionary ubiquitous
proteins (P¼2.0�10�4, Fisher’s exact test). When considering
exactly the same residues, lysine acetylation sites appear slightly
less conserved than phosphorylation sites (P¼2.8�10�3).
However, when the acetylated-lysine was not conserved, an
alternative lysine could be frequently found in other species
within a window of three amino acids, one upstream or one
downstream of the original aligned site (Figure 2D). This
suggests that for some lysine acetylation sites, the exact position
may not be so critical to maintain function.

We also observed that proteins only occurring in species of
the Mycoplasma genus were found to be less frequently

modified than other proteins (Figure 2A), indicating that
regulation through PTMs can evolve only secondary to
proteome differentiation. The sites in these proteins likely
represent recently acquired regulatory signals. Interestingly,
none of these sites is conserved across all of the 12 sequenced
Mycoplasma species, suggesting that they play species-specific
regulatory functions.

Dissecting the roles of kinases and phosphatase
in M. pneumoniae phosphoproteome

As consideration of putative changes in protein abundance is
critical for the proper interpretation of PTM data (Wu et al,
2011), we first quantified the impact of kinase and phosphatase
deletion on overall protein abundance. We observed that the
levels of 39 of the 447 proteins quantified consistently were
significantly affected (Supplementary Figure S4; Supplemen-
tary Table S1). We selected 15 for validation by western blot. Of
the 45 abundances measured by western blotting in the three
knockouts (k.o.), 39 (86.6%) showed upregulation and
downregulation consistent with the previous MS data (Sup-
plementary Figure S5). Among the proteins affected by PknB
deletion, we found eight of the nine cytadherence proteins
previously known to be downregulated upon PknB k.o.
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Figure 2 M. pneumoniae proteome, phosphoproteome and lysine acetylome. (A) Modified proteins are significantly enriched in functions related to metabolism and
cellular processes and signaling. (B) Box plots indicating the relative extents of modification for serines, threonines, tyrosines and lysines within all observed modified
proteins. (C) Modified proteins show a complex pattern of modification. Bubble plot showing the number of proteins with distinct modification profiles.
(D) Phosphorylation is more positionally conserved in bacteria than lysine acetylation. The fraction of conserved modified residues is shown for either precise site
conservation (site conservation) or a more plastic conservation within three residues (±1 amino acids conservation).

Cross-talk between PTMs in prokaryotes
V van Noort et al

4 Molecular Systems Biology 2012 & 2012 EMBO and Macmillan Publishers Limited



(Schmidl et al, 2010a) together with four uncharacterized
proteins that could represent new players in the process of cell
adhesion (Mpn256, Mpn387, Mpn400 and Mpn454; Supple-
mentary Figure S4 and see Supplementary information). For
proteins encoded by the cell-cycle operon: the ribosomal RNA
small subunit methyltransferase H (MraW|Mpn315), the cell-
cycle proteins MraZ (Mpn314) and the tubulin-like protein
FtsZ (Mpn317) we observed a decreased abundance upon
PrpC deletion that correlated with changes in corresponding
transcripts (Supplementary Table S4). However, in general,
we found that mRNA levels were largely unaffected, indicating
the existence of post-transcriptional regulatory mechanisms
(Supplementary Table S4) (Schmidl et al, 2010a). These
results show that perturbations of the phosphorylation net-
work in M. pneumoniae affect protein abundance and
turnover, acting at both transcriptional but also post-transcrip-
tional levels.

We also determined the impact of systematic kinase and
phosphatase perturbation on the M. pneumoniae phospho-
proteome (see Materials and methods). Of the 67 phosphosites
unambiguously quantified, only 16 (23.9%) were never found
to be affected (Supplementary Table S2). They might represent
compensatory mechanisms, whereby deletion of one kinase
may cause the other kinase to compensate. Alternatively, they
might account for HprK-, PknB- and PrpC-independent
phosphorylation events, including autophosphorylation of
some metabolic enzymes (Jolly et al, 2000) or metabolic
intermediates observed at catalytically active sites. For
example, the constitutive phosphoserine (S64) in the ATP-
binding site of the guanylate kinase (Gmk|Mpn246) might
represent a metabolic intermediate, since in the Escherichia
coli structure the equivalent serine lies very close, though not
obviously bound, to both phosphate and sulfate groups (Hible
et al, 2005). However, the majority (76.1%) of the phospho-
sites were found regulated in at least one of the k.o., implying
that the three enzymes are indeed the major modifiers of
this network. The impact of protein kinase and phosphatase
deletion largely depends on the extent of their substrate
phosphorylation before perturbation, that is, in the wild-
type cells. We thought to use the abundance profiles across
the different k.o. strains to derive information on the
phosphorylation stoichiometries of the different substrates
(Figure 3). Phosphosites for which degrees of modification
were only affected by deletion of the phosphatase PrpC were
rare, possibly because such scenarios are energetically costly,
implying futile cycles of phosphorylation and dephosphoryla-
tion, whereby the phosphatase activity largely overcomes that
of the kinases in the wild type. Instead, for the majority of the
sites, phosphorylation levels were affected by deletion of
either one of the two kinases PknB and/or HprK. Phosphosites
with degrees of modification exclusively downregulated in the
kinase mutants were frequent in metabolic enzymes. These
include the previously known HprK substrate, the phospho-
carrier protein HPr (PtsH|Mpn053). In contrast, sites with
phosphorylation levels regulated in both the kinase and
phosphatase k.o. were enriched for proteins specifically
conserved among members of the Mycoplasma genus,
suggesting recently acquired regulatory mechanisms. Pre-
viously known substrates of PknB (Schmidl et al, 2010a, b):
Mpn256, RpoE (Mpn024), Hmw1 (Mpn447) and Mpn474 are

found in this second category. These results suggest that
different cellular processes could require a discrete balance of
substrate modification. Phosphorylation dynamics apparently
bear functional relevance and could represent a way to extend
diversity and complexity beyond the set of available enzymes
and their respective specificities.

We explored if phosphorylation in M. pneumoniae is
organized as a network by measuring indirect, downstream
responses. For example, we identified a number of phospho-
sites (13.7% of all regulated sites) that responded with
inverted directionality; increased phosphorylation in kinase
deletions and decreased phosphorylation in phosphatase
deletion that might be indicative of complex regulatory events
whereby kinases and phosphatases might directly or indirectly
regulate each other. A series of phosphosites were also found
to be affected by both PknB and HprK k.o. (17.6% of all
regulated sites) (Figure 3; Supplementary Table S2), suggest-
ing that the two kinases act sequentially. Alternatively, for
some of the substrates, the two kinases might have redundant
specificities. In yeast, such indirect responses have been
interpreted as an indication of interconnected signaling
networks and they account for more than half of all regulatory
events (Bodenmiller et al, 2010). Even though the frequency
of indirect phosphorylation we report here is lower, our
results support the existence of regulatory networks in
M. pneumoniae with principles similar to those described inyeast.

The phosphorylation network modulates protein
lysine acetylation states

Because our data set on two different PTMs covers a very
significant fraction of an organismal proteome, it offers the
opportunity to measure the intertwining of phosphorylation
and lysine acetylation globally. Vastly extending early proteo-
mic analyses in other bacteria (Soufi et al, 2008; Prisic et al,
2010), we now show that an important fraction of modified
proteins (57%) contain multiple sites, a third being modified
on four or more residues (four-fold enrichment, P � 10�4)
and 5.8% carrying even 10 or more modifications (29-fold
enrichment, P � 10�4) (Figure 2C; Supplementary Table SI).
While on average o10% of all serines, threonines, tyrosines
and lysines are modified (Figure 2B), some proteins exhibit an
unusually high level of modification. These include the
ribosome-recycling factor (Frr|Mpn636), with 41% of all
lysines being acetylated and an inorganic pyrophosphatase
(Ppa|Mpn528) for which 29% of all serines and 33% of all
lysines were found modified. Remarkably, a significant
fraction (37.7%) of multiply modified proteins contains both
lysine acetylation and phosphorylation sites that appear
tightly coupled: the vast majority of phosphorylated proteins
were also found lysine-acetylated (72%; P � 10�6, Fisher’s
exact test) and, reciprocally, an over-represented fraction of all
lysine-acetylated proteins were also phosphorylated (24%;
P � 10�6, Fisher’s exact test). In contrast to lipid modifica-
tions, only one of the 40 lipidated proteins predicted from
UniProt (UniProt Consortium, 2011) and contained in the data
set was lysine-acetylated (P � 10�6, Fisher’s exact test). For
example, eight of the nine protein chaperones (UniProt
(UniProt Consortium, 2011)) in M. pneumoniae were found
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lysine-acetylated and four carried additional phosphorylation
sites (Figure 2A; COG class O and Supplementary informa-
tion), suggesting that PTMs exert pleiotropic effects on
chaperonin function, reminiscent of the complex regulation
of the eukaryotic chaperone Hsp90 (Scroggins et al, 2007).

The k.o. permitted us to measure and quantify for the first
time the impact of phosphorylation on lysine acetylation
patterns on an organismal scale. We observed that the degree
of modification of 81 acetylated-lysines (out of 449 unambigu-
ously quantified) was significantly affected in the different
kinase or phosphate k.o. (Supplementary Figure S6; Supple-
mentary Table S3). Corresponding unmodified peptides were
1.4-fold more frequently (13%) identified as outliers compared
with other non-modified peptides for the same protein (9.8%)
(P¼8.0�10�5) (Supplementary Figure S7). The two kinases
have dramatically different global impacts on lysine acetyla-
tion. While PknB k.o. leads to a decrease in the overall level of
lysine acetylation, HprK mutation induces a corresponding
increase, suggesting that the two kinases have antagonistic
effects (Figure 4). The individual perturbations caused
complex changes in the patterns of lysine acetylation, inducing
both increased and decreased degree of modification, some-
times even within the same protein. For example, 16 of the 30
acetylated-lysines within the coiled-coil regions of the
cytoskeletal protein Hmw2 (Mpn310) were significantly
regulated. Among the sites affected by PknB deletion, 13
showed decreased and three increased acetylation levels
(Supplementary Table S3). Four additional cytoskeletal pro-
teins (Mpn474, Hmw1|Mpn447, Hmw3|Mpn452 and Mpn387)
were found similarly regulated (Figure 5). This suggests that in

M. pneumoniae, the regulatory control exerted by the
phosphorylation networks on cellular processes such as
cytadherence imply cross-talk with lysine acetylation. Sup-
porting this view, previous genetic data showed that
M. pneumoniae strains deficient for one of the two putative
N-acetyltransferase (Mpn114) had, similarly to PknB
deletion, defects in attachment organelle and gliding motility
(Hasselbring et al, 2006).

We further explored if reciprocally, perturbation of lysine
acetylation could affect protein phosphorylation. We applied
the same quantitative MS approaches to profile both modifica-
tions in two mutant strains of M. pneumoniae deficient in
either one of the two putative N-acetyltransferases, Mpn027
and Mpn114. The deletions led to a general decrease in overall
levels of lysine acetylation and 64 lysine acetylation sites (out
of 600 unambiguously quantified) were significantly regulated
(10.7%) (Supplementary Figure S8). Importantly, a significant
fraction of the acetylated-lysines though was found unregu-
lated, suggesting that additional N-acetyltransferases might
exist. In prokaryotes, these enzymes have not been system-
atically characterized and the repertoires are still incomplete:
for example, no bacterial members of the non-GNAT families
of acetyltransferases have been reported to date (Hu et al,
2010). The two k.o. had only marginal impact on overall
protein abundance (four proteins affected out of 353 quanti-
fied (1.1%). Finally, we found that some of the quantified
phosphorylation sites (19%) were affected (Supplementary
Tables S1 and S2), consistent with the view that the interplay
between phosphorylation and lysine acetylation is
bi-directional.

Multilevel impact of kinases and phosphatase
perturbation

We observe that phosphorylation exerts pleiotropic effects on
cellular proteomes: about a quarter (115) of the quantified
proteins showed perturbed abundances or modified phosphor-
ylation and lysine acetylation patterns in the different k.o.
Integration of interaction data from the STRING database
(version 8.3, COG mode) (Jensen et al, 2009) reveals that these
affected proteins are 2.4 more frequently interacting with each
other than expected from a random set of proteins (P � 10�6)
(Figure 5A), illustrating that they form a highly connected
regulatory network. We then determined the impact of
phosphoproteome perturbation at the level of the entire
interaction network built from STRING. As expected, we
observe direct interactors of the perturbed enzymes, PknB,
HprK or PrpC are affected most (Figure 5B): phosphorylation
and lysine acetylation states and protein abundance levels
changed considerably. The fraction of perturbed nodes rapidly
decreases with network distance from the source of perturba-
tion, suggesting that the perturbations are spread by direct
interactions.

PTMs target interaction interfaces, altering protein
oligomerization states

To gain mechanistic insights into the observed dynamic PTM
patterns and how they might cause different functional states
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of the respective proteins, we integrated data on protein–pro-
tein interactions and structure (Choudhary et al, 2009). This
revealed that multiply modified proteins are found more
frequently than expected to be associated with more than one
protein complex (P � 10�6, Fisher’s exact test), a property
that has been proposed to account for protein multifunction-
ality (de Lichtenberg et al, 2005; Kuhner et al, 2009). The
integration of three-dimensional structures (Berman et al,
2000) revealed that compared with non-modified amino acids,
the phosphorylated (23% versus 13%; P¼0.001, w2 test) and
the acetylated (27% versus 14%; Po0.0001) sites are more
frequently located at interaction interfaces, suggesting that
modifications could alter the oligomeric state of proteins
(Figure 6; Supplementary Figure S9). In some instances, the

modification would be predicted to prevent an interaction. For
example, serine 392 (S392) in Mpn134, a putative ABC
transporter, is predicted to face itself in a homodimeric
interface (Figure 6A); phosphorylation would place two
negative charges adjacent to each other that would likely lead
to a repulsion. For the elongation factor Tu (Tuf|Mpn665)
interacting with the elongation factor Ts (Tsf|Mpn631), we saw
multiple modifications, T34 on Tuf and K133 on Tsf, on both
sides of the interaction interface (Kawashima et al, 1996)
(Figure 6B). Another example, is threonine 29 (T29) (red in
Figure 6C) of GroS (Mpn574) that lies on the outside of the
GroS heptamer at an interface that contacts with either the
GroL (Mpn573) tetradecamer (Shimamura et al, 2004)
(Figure 6C) or a second GroS heptamer (Roberts et al, 2003)
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(Figure 6D), suggesting that phosphorylation could affect
these assemblies. Consistent with this, we found that the
massive increase in T29 phosphorylation in the PrpC k.o.
(Supplementary Table S2) coincides with changes in GroS
sedimentation profiles on sucrose gradients (Figure 6E;
Supplementary Figure S9) and elution patterns upon gel
filtration (GF) (data not shown). Overall, the results suggest
the existence of combinatorial patterns of PTMs in prokaryotes
that are part of a global regulatory network. They also suggest
how PTMs could be exploited by nature to modulate the
functions of individual proteins affecting the way they interact,
reminiscent of the molecular barcode proposed in eukaryotes.

Discussion

Our extensive analysis of protein abundance, phosphorylation
and lysine acetylation, simultaneously measured in a small

bacterium, gave first insights into the specificity of the key
enzymes that modulate phosphorylation networks at an
organismal scale and quantifies the penetration of signals
through the phosphorylation networks and beyond: it revealed
that phosphorylation exerts an unanticipated broad impact on
other layers of post-transcriptional regulations in M. pneumo-
niae. Many components of the translational machinery,
including ribosomal proteins, tRNA synthetases, translation
initiation and elongation factors, and chaperones were
affected by the perturbation of the phosphorylation network,
which might account for observed changes in protein
abundance that are not obviously the result of transcriptional
regulation. Conservation of sites beyond this organism implies
that these features can be generalized to other prokaryotes.
However, there are a variety of specialized eukaryotic domains
recognizing phosphorylated or acetylated residues (e.g.,
bromodomains, SH2, PTB) that lack known prokaryotic
counterparts, suggesting that we have detected earlier, more

WT

2Fraction:
MW (kDa): 2000 670 200 70

PknBΔ 

PrpC Δ 

GroS

Fraction

%
 o

f t
ot

al
 p

ro
te

in
 a

m
ou

nt

0

2

4

2

6

8

10

12
WT

PknB Δ

PrpC Δ 

****

A

14× GroS
~140 kDa

7× GroS 14× GroL
~1000 kDa

B

E

C D

2× Mpn134

EF-Tu EF-Ts

Phosphorylated residue in interface
Acetylated lysine in interface
Acetylated lysine not in interface

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

4 6 8 10 12 14 16 18 20 22

Figure 6 PTMs are enriched at interaction interfaces, affecting protein–protein interactions. (A) Homodimerization of Mpn134 modeled on a homodimeric E. coli
maltose transporter structure ((Oldham and Chen, 2011), PDB: 3PUY). Cyan and magenta ribbons show the interaction of two copies of Mpn134, spacefilled atoms
colored by atom type show the side chains of S392 from both copies. Phosphorylation of S392 is predicted to lead to repulsion of negatively charged phosphates and
likely prevent homodimerization. (B) Example of multiple modifications in a single interaction interface: EF-Tu (magenta) interacting with EF-Ts (cyan) modeled on E. coli
EF-Tu–EF-Ts ((Kawashima et al, 1996), PDB: 1EFU). EF-Tu phosphorylation site T34 and EF-Ts acetylation site K133 are show as spacefilled atoms colored by atom
type. Both are in the interface. (C) GoS/GroL chaperonin modeled on the structure from Thermus thermophilus ((Shimamura et al, 2004), PDB: 1WE3). Phosphorylation
sites (T29) are in red spacefill and those of the acetylated-lysines in yellow spacefill. Those sites not in an interface are shown in orange (acetylation) or pink (GroL
phosphorylation). One face has been removed to show the surface of the internal cavity. (D) A dimer of GroS heptamer modeled on the structure of a Chaperonin-10
tetradecamer from Mycobacterium tuberculosis ((Roberts et al, 2003), PDB: 1P3H). The overall structure is shown as a surface with one heptamer in blue to emphasize
heptamer–heptamer interface. A single monomer is shown with magenta ribbons, with the C-a atom of the lone phosphorylated site (T29) in red spacefill and those of the
acetylated-lysines in yellow spacefill. In this model, in at least one monomer, all these sites are in an interface (within 4 Å of a different monomer). Most occur on flexible
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fundamental mechanisms of regulation by PTM. In contrast to
what is currently available in eukaryotes, the number of
acetylation sites in M. pneumoniae appears to be nearly an
order of magnitude higher than that for phosphorylation, and
three times as high as previously observed values for bacteria
with larger genomes such as E. coli or Salmonella enterica
(Yu et al, 2008; Zhang et al, 2009a; Wang et al, 2010). Extensive
modulation of cellular proteomes by lysine acetylation or
phosphorylation affects virtually all cellular processes and
many sites appear to be conserved in eukaryotes.

Both the extensive degree of phosphorylation and acetyla-
tion in this bacterium, and the observed cross-talk between the
two PTMs argues for the early evolution of these post-
translational events as important regulatory mechanisms in
biological systems. A protein modification code might
represent an ancient mechanism to diversify protein function
outside of the transcription and translation paradigm.

Materials and methods

Cell culture

The k.o. strains of hprK kinase (mpn223), prpC (mpn247) phospha-
tase and pknB (mpn248) kinase were generated by transposon-
mediated insertion of a gentamycin resistance cassette in wild-type
M. pneumoniae M129 (ATTC29342 broth passage No. 31) (Halbedel
et al, 2006; Schmidl et al, 2010b). Three 100-ml cultures were
inoculated with either wild-type M. pneumoniae M129 or one of the
three k.o. strains, and the cultures were grown in modified Hayflick
medium without antibiotics for 96 h until late exponential phase. Wild-
type M. pneumoniae, hprK (mpn223) kinase k.o. strain and prpC
(mpn247) phosphatase k.o. strain were then washed three times with
ice-cold phosphate-buffered saline (PBS), scraped from the bottom of
the flask and centrifuged at 9860 g. As the pknB (mpn248) k.o. strain
does not grow adherent, the cells were centrifuged at 9860 g and then
washed three times with ice-cold PBS. Of wild-type and pknB
(mpn248) k.o., three such pellets were generated and two pellets
were generated for hprK (mpn223) k.o. and prpC (mpn247) k.o. to
serve as biological replicates.

Cell lysis

Cell pellets were resuspended in urea buffer (8 M urea (Merck), 50 mM
ammonium bicarbonate (Fluka), 1 mM sodium vanadate (Merck),
1 mM potassium fluoride (Fluka), 5 mM sodium phosphate (Sigma),
supplemented with protease and phosphatase inhibitors (Roche)) and
homogenized using a glass douncer. Cells were then lysed by
sonication (6� 20 s, 40 s pause, 80% output level, 50% duty cycle,
using an Ultrasonic processor UIS250v and a VialTweeter of Hielscher
Ultrasound Technology) and insoluble debris was pelleted at 10 000 g
in a table-top centrifuge (Eppendorf 5415D) at 41C. Protein concentra-
tions were determined for all lysates by Bradford assay (Bio-Rad) and
adjusted to 2.5 mg/ml using urea buffer. Cell lysates were snap frozen
at –801C until further processing.

Proteome digestion

For the proteomic and PTM analysis, lysates for three biological
replicates of wild-type M. pneumoniae, two hprK (mpn223) k.o., two
prpC (mpn247) k.o. and three pknB (mpn248) k.o. (indicated as C1–3
in Figure 1) were produced as described above. From each lysate, two
equivalents of 500mg protein, each, were further processed as
technical duplicates. Cysteines were reduced with 5 mM dithiothreitol
(DTT) for 15 min at 561C and subsequently alkylated with 10 mM
iodacetamide (Sigma) for 30 min at 251C in the dark. Proteomes were
then digested with 4mg endoprotease LysC for 4 h at 371C and the
solutions were then diluted with 50 mM ammonium bicarbonate

(Sigma) to a final urea concentration of 1 M. The proteomes were
further digested by incubation with 8 mg trypsin protease for additional
18 h at 371C, followed by an additional incubation with 8 mg trypsin at
371C for another 5 h.

Differential dimethyl labeling of peptides and
combining of proteomes

The resulting peptides were bound to a C18 SepPak column and
differentially modified with a dimethyl label on the column following
the protocol of Boersema et al (2009). ‘Light’-, ‘medium’- and ‘heavy’-
labeled peptide solutions were then combined according to the scheme
in Figure 1 to give a total of six proteome combinations.

SCX chromatography for peptide fractionation

Each of the six proteome combinations was fractionated using
SCX chromatography to separate phosphorylated from unmodified
peptides, monitored by UV absorbance.

Peptides from each digest corresponding to 1.5 mg of protein
material were loaded onto two C18 cartridges using an Agilent 1100
HPLC system. The flow rate applied was 100 ml/min using water,
0.05% formic acid (FA), pH 2.7, as solvent. Subsequently, peptides
were eluted from the trapping cartridges with 80% acetonitrile, 0.05%
FA, pH 2.7, onto a PolySULFOETHYL A column 200�2.1 mm2

(PolyLCinc.) for 10 min at the same flow rate. Separation was
performed using a non-linear 65 min gradient, 0–10 min 100% solvent
A (5 mM KH2PO4, 30% Acetonitrile, 0.05% FA, pH 2.7), 10–15 min up
to 26% solvent B (5 mM KH2PO4, 30% acetonitrile, 350 mM KCl,
0.05% FA, pH 2.7), 15–40 min to 35% solvent B and from 40 to 45 min
to 60% solvent B. At 49 min, the concentration of solvent B was 100%.
The column was subsequently washed for 6 min with high salt
concentration and finally equilibrated with 100% solvent A for 9 min.
The flow rate applied during the SCX gradient was 200ml/min.

Fractions were collected at 1-min intervals for 40 min. After
evaporation of the solvents, fractionated peptides were resuspended
in 10% FA. Of each of the fractions 11–22 20% and of the fractions
26–30 0.4% were then analyzed by reversed phase LC-MS/MS.

Enrichment of lysine-acetylated peptides

For the investigation of the acetylome of M. pneumoniae, one lysate of
each strain was analyzed. A cocktail of deacetylase inhibitors
(Trichostatin A (10mM), nicotinamid (10 mM) and butyric acid
(50 mM)) was added to the urea lysis buffer mentioned for the
phosphoproteomic analysis. Lysis, proteome digestion and peptide
labeling were essentially performed as described for the phosphopro-
teomic analysis above. Acetylated peptides were immunoprecipitated
following the protocol published by Choudhary et al (2009). In brief,
after digestion, dimethyl labeling and proteome combination accord-
ing to Figure 1, the equivalent of 5 mg of peptides was lyophilized
overnight and subsequently dissolved in acetyl-lysine affinity purifica-
tion buffer (50 mM MOPS pH 7.2, 10 mM sodium phosphate, 50 mM
sodium chloride). After incubation with anti-acetyl-lysine affinity
resins (ImmuneChem, Canada) for 14 h at 41C on a rotating wheel, the
resins were then washed four times with acetylated-lysine affinity
purification buffer and two additional times with distilled water.
Acetylated peptides were eluted with 0.1% trifluoroacetic acid (TFA).
The eluates and flow throughs were desalted using StageTips as
described in Rappsilber et al (2007) prior to LC-MS/MS analysis.

Mass spectrometry

The analysis of the SCX fractions was performed using a nano LC-LTQ-
Orbitrap Classic (Thermo). An Agilent 1200 series LC system was
equipped with a 20-mm Aqua C18 (Phenomenex, Torrance, CA)
trapping column (packed in-house, i.d., 100mm; resin, 5 mm) and a
400-mm ReproSil-Pur C18-AQ (Dr Maisch GmbH, Ammerbuch,
Germany) analytical column (packed in-house, i.d., 50 mm; resin,
3mm). Trapping was performed at 5 ml/min for 10 min in solvent A
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(0.1 M acetic acid in water), and elution was achieved with a gradient
of 10–35% B (0.1 M acetic acid in 80/20 acetonitrile/water) in 90 min
in a total analysis time of 120 min (fractions 11–22), or in 135 min in a
total analysis time of 180 min. The flow rate was passively split to
100 nL/min when performing the elution analysis. Nanospray was
achieved using a distally coated fused silica emitter (New Objective,
Cambridge, MA) (o.d., 360mm; i.d., 20mm, tip i.d. 10 mm) biased to
1.7 kV. A 33-MO resistor was introduced between the high voltage
supply and the electrospray needle to reduce ion current.

The LTQ-Orbitrap mass spectrometer was operated in data-
dependent mode, automatically switching between MS and MS/MS.
Full scan MS spectra (300–1500 m/z) were acquired with a resolution
of 60 000 at 400 m/z after accumulation to a target value of 500 000.
The five (fractions 11–22) or 10 (fractions 26–30) most intense peaks
above a threshold of 500 were selected for collision-induced
dissociation in the linear ion trap at normalized collision energy of
35% after accumulation to a target value of 30 000.

The acetyl-lysine enriched and depleted peptide mixtures were
analyzed by chromatographic separation on a EASY-nLCTM system
(Proxeon Biosystems) fitted with a trapping (self-packed Hydro-RP C18
(Phenomenex), 100mm� 2.5 cm, 4mm) and an analytical column (self-
packed Reprosil C18 (Dr Maisch) 75mm� 15 cm, 3mm, 100 Å). The
outlet of the analytical column was coupled directly to an LTQ-
OrbitrapVelos (Thermo Scientific) using a Thermo Scientific Nanospray
Flex Ion Source. Solvent A was water, 0.1% FA and solvent B was
acetonitrile, 0.1% FA. The samples (1ml in 5% acetonitrile, 5% FA) were
loaded with a constant flow of solvent A at 20ml/min onto the trapping
column. Trapping time was 1 min. Peptides were eluted via the analytical
column at a constant flow of 0.3ml/min. During the elution step for the
acetyl-enriched samples, the percentage of solvent B increased in linear
gradients from 5 to 25% B in 40 min, then from 25% B to 80% in 5 min,
to a total gradient time of 60 min including a final wash step of 15 min at
80% B. For the elution of the acetyl-lysine-depleted samples, the
percentage of solvent B increased in linear gradients from 5 to 25% B in
90 min, then from 25% B to 40% in 10 min and finally from 40 to 80% B
in 10 min, to a total gradient time of 120 min including a final wash step
of 10 min at 80% B. The peptides were introduced into the mass
spectrometer via a Pico-Tip Emitter 360mm OD� 20mm ID; 10mm tip
(New Objective), and a spray voltage of 1.9 kVwas applied. The capillary
temperature was set to 2001C. Full scan MS spectra with a mass range
300–1700 m/z were acquired in profile mode in the FTwith a resolution
of 30 000. The filling time was set at maximum of 500 ms with limitation
of 106 ions. The most intense ions (up to 15) from the full scan MS were
selected for sequencing in the LTQ. Normalized collision energy of 40%
was used, and the fragmentation was performed after accumulation of
3�104 ions or after filling time of 50 ms for each precursor ion
(whichever occurred first). MS/MS data were acquired in centroid mode.
Only multiply charged (2þ and 3þ ) precursor ions were selected for
MS/MS. The dynamic exclusion list was restricted to 500 entries with
maximum retention period of 30 s and relative mass window of 10 p.p.m.
In order to improve the mass accuracy, a lock mass correction using a
background ion (m/z 445.12003) was applied.

Mascot search results were uploaded into the TRANCHE data
repository (https://proteomecommons.org/tranche/) in Scaffold file
format, which can be viewed with the free Scaffold viewer available at
http://www.proteomesoftware.com/Proteome_software_prod_Scaffold.
html. The files can be downloaded using the following Hash:

OejVCeG2v3KJap1OlQbfeYM3KvQwv6EtRRw9þmsFLnPpLl/4MBu
KKp6hdI/ZgX2JNW1pUoUGAUeMro8FRgIOkLp/tW8AAAAAAAAFN
g¼¼. Additionally, the scaffold files and raw data are available at http://
vm-lux.embl.de/Docu/VanNoortMSB2012/ and from TRANCHE using
the hash 8YQSJO0UiPO2JoOgE2DZ3yXolC5cGOCOhra/0kvrMLRGKa
gf1fXUJ2w1c/5DdbkS9/k0aIDW0d4+qR/Kpz03zrrvCDAAAAAAAABv
Yw¼¼. Note that scaffold files contain the raw mascot results loaded into
the Scaffold tool with some default filter criteria and were not filtered the
same way as described in the Materials and methods section, and also the
FDR calculations there will be different than in our final data sets.

Peptide identification

Peak lists in the Mascot generic text file format were extracted from
Thermo raw data files using the Quant application in the MaxQuant

environment (Cox and Mann, 2008) (version 1.1.1.13). Results from
all LC-MS/MS experiments of each proteome combination were
combined into a single file and analyzed with the Matrix Science
Mascot search engine (version 2.2.03) using a UniProt protein
database of M. pneumoniae (downloaded on 18 May 2010 from
http://www.uniprot.org) plus previously identified contaminants.
Search parameters were chosen as follows: trypsin as the proteolytic
enzyme, up to three missed cleavages, cysteine carbamidomethylation
as a fixed modification and methionine oxidation as well as serine/
threonine/tyrosine phosphorylation as variable modifications. Instead
of searching for differential dimethyl labels as variable modifications
(see below), dimethyl (‘light’ (12C2

1H6), ‘medium’ (12C2
1H2

2H4) and
‘heavy’ (13C2

2H6)) lysine and peptide N-termini were defined as
exclusive modifications in the Mascot-specific ‘Quantitation’ mode.
The peptide tolerance was set to 15 p.p.m., and the MS/MS tolerance
was set to 0.6 Da. The ‘Decoy’ option was used for subsequent peptide
FDR-based filtering (see below). The data of all SCX fractions of a
proteome combination were searched together. Only unique peptides
in the protein database were taken into account. For this the following
rules to identify peptides were applied: (1) the peptide is unique
among SwissProt M. pneumoniae proteins or (2) the peptide is unique
in UniProt (SwissProt þ trEMBL) M. pneumoniae proteins else the
peptide identification is discarded.

Modified and unmodified peptide filtering

We used RockerBox (van den Toorn et al, 2011) to filter all peptides
(modified and unmodified) to a 1% peptide FDR, using the Mascot
Percolator option (Kall et al, 2007) for each proteome combination
separately (Supplementary Table S2). For this purpose, we trained
RockerBox on the complete set of peptides (including phosphorylated
or lysine-acetylated) and then separated the target and decoy peptides
into modified and unmodified sets. Two separate score thresholds were
set per proteome combination such that both the modified and
unmodified peptides had a peptide FDR of 1%. As phosphorylated and
lysine-acetylated peptides have more degrees of freedom and therefore
there are more options to fit decoy peptides, this procedure results in
taking a higher threshold for modified than unmodified peptides.
Nevertheless, to reduce the false positive rate, the spectra of modified
peptides with a low Mascot score were manually inspected and
modified peptides with a Mascot score o10 were removed from the
data set.

Automatic peptide quantification

The Mascot result files were then exported to Mascot peptide html file
format without any further filtering and loaded into MSQuant version
2.0a81 (Mortensen et al, 2010) together with the respective raw mass
spectrometric data files. Peptide abundance ratios were determined
automatically by MSQuant using the dimethyl (‘light’ (12C2

1H6),
‘medium’ (12C2

1H2
2H4) and ‘heavy’ (13C2

2H6)) lysine labels in the
‘Quantitation mode’ without any additional peptide or protein filters.
Phosphorylation sites were localized using MSQuant’s PTM scoring.
Selected peptide ratios for which contaminant peptide signal
intensities and non-co-eluting peptide pairs were detected were
re-calculated by manually adjusting their LC elution time window in
MSQuant.

Automatic acetylated peptide identification and
quantification

Acetylation as well as the dimethyl labels target lysine residues and
protein N-termini. To identify acetylated peptides, both of these
modifications have to be chosen as variable modification in MASCOT.
However, in contrast to the ‘Quantitation mode,’ the selection of the
dimethyl labels as variable modifications includes experimentally
impossible combination of these labels at the peptide N-terminus and
at the lysine side chain (e.g., light label at the N-terminus and heavy
label at the lysine side chain). Together with oxidized methionines,
these modifications add up to nine variable modifications, which is the
maximum number of variable modifications allowed in Mascot (light,
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intermediate and heavy dimethyl labels on lysines and peptide
N-termini, acetylation of lysines and protein N-termini and oxidized
methionines).

The use of a large number of variable modifications in database
searches is known to decrease the number of identifications at a fixed
FDR. Therefore, we employed a strict filtering of the Mascot search
results for peptides with inconsistent labels (i.e., ‘light’ dimethyl
N-terminus and ‘intermediate’ lysine) and unlabeled lysines/peptide
N-termini as they should be incorrect. As additional control, we also
estimated the accuracy of the search to be above 99% by counting the
number of peptides with a C-terminally acetylated-lysine (either an
in vitro artifact or incorrect identification as trypsin is not expected
to cleave C-terminal to acetylated-lysine residues (Choudhary et al,
2009) in the entire acetylation data set. We only found seven such
cases among the 759 non-redundant acetylated peptide matches
(¼0.9% FDR).

For automatic quantification of lysine-acetylated peptides in
MSQuant, all ‘K’ entries corresponding to acetylated-lysines in the
Mascot result (.dat) files were replaced by ‘J’ in the respective peptide
sequences, and ‘Acetyl (J)’ was added to the MSQuant parameter file
(quantitationModes.xml).

Detection of outlier peptides

The detected unmodified peptides of a particular protein should all
exhibit a similar abundance ratio. As the peptide ratios are used to
determine the abundance change of the protein, the quality of the
determined changes in protein abundance relies on reproducible
quantification of the peptides that originate from the same parent
protein. We called an unmodified peptide ‘outlier’ in case it displays a
significantly (P-valueo0.05, corrected for multiple testing according
to Benjamini and Hochberg (1995)) different ratio than the remaining
peptides originating from the same parent protein. These different
abundance changes can arise from co-eluting contaminants in the
chromatogram for one of the isotope entities, stoichiometric dynamics
in PTM or not considered differences between the combined
proteomes (although processed in parallel).

To account for mixing error, the measure signal intensities of each
peptide were normalized, such that the sum of signal intensities for
each dimethyl label are equal in each proteome combination. Then,
the change in protein abundance was estimated by the median of the
peptides quantified for each protein and the normalized peptide signal
intensities were corrected for this estimated protein abundance change
of the parent protein. The corrected peptide signal intensities were
analyzed with the R package OutlierD according to the author’s
recommendations (‘linear’ method and k¼1.5 (Cho et al, 2008)) and
detected outliers were removed (Supplementary Figure S10).

Protein quantification

The change in protein abundance was calculated as the ratio of the
sum of the peptide signal intensities normalized for mixing error. The
change in protein abundance was calculated as the weighted average
of the peptides identified for this protein. A minimum of two
unmodified non-outlier peptides was required and outlier peptides
as well as modified peptides were excluded from the protein
quantification.

Detection of regulated peptides and regulated
proteins

The normalized peptide signal intensities were corrected for protein
abundance determined by weighted average. The R package OutlierD
(Cho et al, 2008) was used to determine the first and third quartiles of
the peptide abundance changes, respectively. This information was
used to calculate the z-score and subsequently the P-value for each
peptide. The P-values were then corrected for multiple testing
according to Benjamini and Hochberg (1995). A modified peptide
was called regulated if the corrected P-value was o0.001 or a log2
abundance ratio was 41.5 for phosphorylated peptides and two for
acetylated peptides. Essentially the same approach was used for the

proteins. As only peptides were measured, but not entire proteins, the
sum of peptide intensities was used as ‘protein signal intensity.’
Proteins were considered ‘regulated’ if the log2 abundance change was
41.5 and a corrected P-value o0.01.

Integration of protein quantification from different
proteome combinations

The peptide signal intensities from both technical duplicates were
added for each protein, as they should represent maximal reproduci-
bility. To integrate the biological duplicates the more significant
change was taken. If the P-values were equal, the more severe change
was chosen. In case neither of the two abundance changes was
significant, the mean of the abundance changes from the biological
duplicates was taken and the P-value was set to ‘none significant.’ The
regulated proteins were classified according to in which mutant the
protein is regulated. Essentially the same method was applied to
integrate the abundance change of modified peptides.

Functional enrichment analysis

The classification of the M. pneumoniae proteins in the different
clusters of orthologous groups of proteins was extracted from the
‘whog.txt’ file downloaded from the National Center for Biotechnology
Information (ftp://ftp.ncbi.nih.gov/pub/COG/COG/) and the P-value
for the enrichment was determined using Fisher’s exact test. The
P-values were corrected for multiple testing according to Benjamini
and Hochberg (1995). Proteins were considered to be enriched in a
particular cluster if the corrected P-value was o0.05.

Bias analysis

The molecular weight, the isoelectric point, the hydrophobicity and
the instability index were calculated for each M. pneumoniae protein
annotated in SwissProt using the protparam tool from ExPASy (http://
www.expasy.ch/tools/protparam.html). The distribution of each
parameter was then binned into 20 equally spaced bins. Supplemen-
tary Figure S3 shows the comparison of the coverage of each of these
bins across all identified proteins in this study and all proteins
annotated in the SwissProt database.

PTM localization

PTM scores from MSQuant were summed for each possible PTM site
within phosphopeptides identified in multiple fractions. The PTM was
localized if the highest PTM score was at least 1.25 times the second
highest PTM score and the combined score was 44.

Evolutionary conservation of modified residues

PTM sites were localized in alignments of orthologous groups from
eggNOG (Muller et al, 2010) version 2. Species were assigned to one
phylogenetic group being ‘other Mycoplasmas,’ ‘other Firmicutes,’
‘other Bacteria’ or ‘Archaea and Eukaryotes’ based on NCBI Taxonomy.
If at least one protein form one species has the same amino acid as the
PTM site, the site is considered ‘Site conserved’ in this species,
otherwise if in a window of three residues, one before to one after the
PTM site, the same amino acid is found the site is considered
‘Conserved in window’ in this species. Otherwise, the site is
considered ‘Not conserved’ in this species. If there is no protein for
the considered species in the orthologous group, it is not counted at all.
Each species is counted only once for one PTM site. The conservation
level for each phylogenetic group is the number of ‘Site conserved’
divided by the sum of ‘Site conserved,’ ‘Conserved in window’ and
‘Not conserved.’ Random conservation was estimated by taking 10
times the same number of PTM sites with the same amino-acid
distribution from the M. pneumoniae proteome and performing the
same conservation analysis.
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Clustering of modified regulated peptides and
proteins

Log2 ratios for regulated proteins and modified peptides in three k.o./
wt comparisons and two k.o./k.o. comparisons were used to calculate
uncentered correlations between each set of regulated proteins,
regulated phosphopeptides and regulated lysine-acetylated peptides.
The uncentered correlations were used for hierarchical clustering with
hclust as implemented in the R package.

Network generation and analysis

Interactions between M. pneumoniae proteins were derived from
STRING (Jensen et al, 2009) version 8.3. Scores between COGs and
NOGs were converted to scores between M. pneumoniae proteins by
mapping M. pneumoniae proteins to COGs and NOGs as they are in
STRING v8.3. A network was generated between proteins regulated on
abundance, phosphorylation and acetylation level by taking only
interactions with a score 40.7. Random networks were generated by
taking 100 times the same number of proteins from all M. pneumoniae
proteins and counting the number of interactions between them
reveals a random expectation of number of interactions.

Minimum path lengths to HprK, PknB and PrpC were calculated for
all M. pneumoniae proteins through the complete network of
interactions (40.7). Number of affected (upregulated or down-
regulated) proteins at each minimum path length were calculated for
each k.o. strain and divided by the total number of proteins at each
minimum path length.

Validation of lysine acetylation: TAP purification
and quantitative western blot

One-liter cultures were incubated in five 300 cm2 cell culture flasks
(Sarstedt) and harvested 96 h after inoculation. Cells were washed
twice with ice-cold PBS and centrifuged at 9860 g. Pellets were
resuspended in 2 ml lysis buffer (50 mM Tris pH 7.5, 5% glycerol,
1.5 mM MgCl2, 100 mM NaCl, 0.2% NP40, 1 mM DTT, 1 mM AEBSF,
1 mM PMSF, 1mg/ml pepstatin A, 1mg/ml antipain, 2 mg/ml aprotinin,
1mg/ml leupeptin and 16mg/ml benzamidin) and lysed mechanically
using a douncer. TAP purification was done following established
protocols (Kuhner et al, 2009) stopped after TEV elusion. The elusion
was split into two and each of these samples was analyzed by
SDS–PAGE and western blot. A peroxidase anti-peroxidase antibody
(Sigma, P1291) was used to detect the TAP-fusion proteins. Acetylated
proteins were detected using an anti-acetyl-lysine primary antibody
(Immunechem) and a HRP-coupled secondary antibodies (Sigma). For
quantification, total band intensity was integrated with Photoshop
software (Adobe) and normalized versus the highest detected peak
(Supplementary Figure S2).

Validation of protein abundance changes by
quantitative western blot

Mycoplasma strains were lysed as for the TAP purification. Total cell
lysate of each of the four strains was then analyzed by SDS–PAGE and
western blot using polyclonal antibodies raised against endogenous
M. pneumoniae proteins. Final detection was done using secondary
antibodies coupled to HRP (Sigma). For the quantification, total
band intensity was integrated with Photoshop software (Adobe)
and normalized versus the highest detected peak (Supplementary
Figure S5)

Evaluating the protein complexes by separation on
sucrose gradient, GF chromatography and
western blot

Lysis was performed as mentioned for the TAP purification supple-
menting the lysis buffer with the deacetylase inhibitors nicotinamid
(10 mM) and butyric acid (50 mM). Volume of 30 ml of samples were

layered on a top of 4 ml sucrose gradient (10–35%) and separated by
14 h centrifugation at 130 000 g at 41C. The gradient was subsequently
divided into 22 fractions per 165ml. GF chromatography was
performed at 101C on a Pharmacia SMART system at a flow rate of
40 ml/min by using a SuperoseTM 6 PC 3.2/30 column, equilibrated
with lysis buffer. The chromatographic profile was monitored at
280 nm by using the mPeak monitor (Pharmacia). Volumes of 50ml of
samples were loaded on a column and 60ml fractions were collected.
Fractions from both sucrose gradient and GF were analyzed by SDS–
PAGE and western blot (Figure 6). Polyclonal antibodies produced in
rabbits have been used to detect the GroS protein (Mpn574) and 50S
ribosomal protein RlpA (Mpn220); final detection was done using
secondary antibodies coupled to HRP (Sigma) on Image Station
4000 MM Pro (Kodak). For the quantification, the band intensities
detected with Photoshop software (Adobe) were first normalized for
equal sample loading and subsequently each fraction was represented
as a percentage of total protein amounts of particular sample. The
values obtained from three independent sucrose gradient separation
experiments were used for calculation of average values and standard
deviations. To test for a significant difference in the intensities for the
three different groups (WT, PrpC, PknB), we performed a one-way
ANOVA with a significance threshold of Po0.01. To further test for
pairwise differences, we then applied Tukey’s Honest significant
difference test for the corresponding fractions, with a significance
threshold of Po0.05.

Surface accessibility

Structure models of each sequence, where available, were retrieved
from ModBase (Pieper et al, 2009). ModBase gives several models for
each UniProt entry, covering different parts of the sequence and with
different scores, e-values and sequence identity between the target and
the template (template¼the known structure on which the target is
modeled). For each of the modified residues (Supplementary Tables S2
and S3), and for their unmodified equivalents (unacetylated-lysine,
unphosphorylated serine, threonine and tyrosine), the model with the
lowest e-value that included the residue was taken. For each of these
models, NACCESS (http://www.bioinf.manchester.ac.uk/naccess/)
was used to calculate the relative accessible surface area (RSA) of all
side chains, and a residue was defined as exposed when RSA45%.

3D structures of interactions

Structural templates for interactions of any pair of proteins were found
by BLASTcomparisons (Altschul et al, 1990) of the sequences against
sequences of structures in the PDB (Ep0.001), including biounit
assemblies, and looking for pairs of proteins that hit different but
interacting parts of the same structure. A particular pair of proteins
might have zero, one or more templates. For each template, the
residues of one component that are in contact with the other were
found and, via the sequence alignments given by BLAST, used to infer
the residues in contact in the query pair (with InterPreTS (Aloy and
Russell, 2003)). The occurrence of modified residues (Supplementary
Tables S2 and S3) in interfaces was compared with that of their
unmodified equivalents and significance measured with a w2 test.
Images were produced with PyMol (http://sourceforge.net/projects/
pymol/). For selected protein interfaces, we also constructed
homology models using MODELLER (Sali and Blundell, 1993).

Microarray analysis of k.o. strains

A custom DNA array was used consisting of 688 70 mers representing
688 ORFs. The M. pneumoniae array consists of oligos (70 bases,
amino linker) spotted on the array four times each. The design process
was done in cooperation with Operon Biotechnologies, synthesis of the
688 oligos (probes) was performed by Operon Biotechnologies and the
spotting was done at the EMBL Genomics Core Facility (Guell et al,
2009). M. pneumoniae M129 was grown in 150 cm2 tissue culture
flasks with 100 ml of modified Hayflick medium with the following
composition: 18.4 g of PPLO broth, 29.8 g of HEPES, 10 g glucose, 5 ml
of 0.5% phenol red and 35 ml of 2 N NaOH per liter. Horse serum and
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penicillin were included to a final concentration of 20% and 100 U/ml,
respectively. In the reference condition, cells were grown for 96 h at
371C.

After growth, surface-attached cells were washed once with PBS and
immediately lysed in the cultivation flask by adding RLT buffer from
the QiagenTMRNeasyPlus Mini Kit (Cat. Num. 74134). This isolation
method used for RNA extraction removed most RNAs o200
nucleotides, thus preventing the synthesis of cDNA from tRNA. For
cell lysis, 2 ml of RLT buffer in the presence of 0.134 M
b-mercaptoethanol was used per cultivation flask. The purification
was done according to the manufacturer’s protocol.

In all, 9 mg of total RNA was used for the reverse transcription
polymerase chain reaction (RT–PCR) using SuperScriptTM Indirect
cDNA Labeling System from Invitrogen. This kit was used according to
the manufacturer’s indications, with the exception of two modifica-
tions. RT–PCR was carried out at 371C instead of 461C and the set of
random hexamers (2 ml of 2.5 mg/ml) was used instead of polyT
20 mers. Hybridization and scanning was carried out at the EMBL
Genomics Core Facility. Custom microarrays were scanned using an
Axon GenePix 4000.

After background subtraction, quantile normalization was done
using the bioconductor package marray (http://www.bioconductor.
org/packages/release/bioc/html/marray.html).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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