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Abstract—We propose a novel approach to the task of 
identifying performers from their playing styles. We investigate 
how skilled musicians (Jazz saxophone players in particular) 
express and communicate their view of the musical and 
emotional content of musical pieces and how to use this 
information in order to automatically identify performers. We 
study deviations of parameters such as pitch, timing, amplitude 
and timbre both at an inter-note level and at an intra-note level. 
Our approach to performer identification consists of establishing 
a performer dependent mapping of inter-note features 
(essentially a ‘score’ whether or not the score physically exists) to 
a repertoire of inflections characterized by intra-note features. 
We present a successful performer identification case study. 

Index Terms— Artificial Intelligence, Signal Processing, 
Music, Audio Recordings. 

I. INTRODUCTION 
key challenge in the area of music information, given the 
explosion of online music and the rapidly expanding 
digital music collections, is the development of efficient 

and reliable music search and retrieval systems. One of the 
main deficiencies of current music search and retrieval 
systems is the gap between the simplicity of the content 
descriptors that can be currently extracted automatically and 
the semantic richness in music information. Conventional 
information retrieval has been mainly based on text, and the 
approaches to textual information retrieval have been 
transferred into music information retrieval. However, music 
contents and text contents are of a very different nature which 
very often makes textual information retrieval unsatisfactory 
in a musical context. It has been widely recognized that music 
retrieval techniques should incorporate high-level music 
information. 
    In this paper we focus on the task of identifying famous 
performers from their playing style using high-level 
descriptors extracted from audio recordings. The identification 
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of performers by using the expressive content in their 
performances raises particularly interesting questions but has 
nevertheless received relatively little attention in the past. 
Given the capabilities of current audio analysis systems, we 
believe expressive-content-based performer identification is a 
promising research topic in music information retrieval. This 
work is based on our previous work on expressive 
performance modeling (Ramirez, 2005) (Ramirez, 2006).  
    The data used in our investigations are audio recordings of 
real performances by famous Jazz saxophonists. The use of 
audio recordings, as opposed to MIDI recordings where data 
analysis is simplified, poses substantial difficulties for the 
extraction of music performance information. However, the 
obvious benefits of using real audio recordings widely 
compensate the extra effort required for the audio analysis. 
We use sound analysis techniques based on spectral models 
(Serra, 1990) for extracting high-level symbolic features from 
the recordings. The spectral model analysis techniques are 
based on decomposing the original signal into sinusoids plus a 
spectral residual. From the sinusoids of a monophonic signal it 
is possible to extract high-level information such as note pitch, 
onset, duration, attack and loudness among other information. 
In particular, for characterizing structure in saxophone 
performances, we are interested in two types of features: 
intra-note features representing the internal structure of 
performed notes, and inter-note features representing 
information about the music context in which expressive 
events occur. We use the software SMSTools (SMS) which is 
an ideal tool for preprocessing the signal and providing a 
high-level description of the audio recordings. Once the 
relevant high-level information is extracted we apply machine 
learning techniques (Mitchell, 1997) to automatically discover 
regularities and expressive patterns for each performer. We 
use these regularities and patterns in order to identify a 
particular performer in a given audio recording. We discuss 
different machine learning techniques for detecting the 
performer’s expressive patterns, as well as the perspectives of 
using sound analysis techniques on arbitrary polyphonic audio 
recordings. 
    The rest of the paper is organized as follows: Section 2 sets 
the background for the research reported here. Section 3 
describes how we process the audio recordings in order to 
extract both intra-note and inter-note information. Section 4 
describes our approach to performance-driven performer 
identification. Section 5 describes a case study on identifying 
performers based on their playing style and discusses the 
results, and finally, Section 6 presents some conclusions and 
indicates some areas of future research. 
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II. BACKGROUND

Music performance plays a central role in our musical culture 
today. Concert attendance and recording sales often reflect 
people’s preferences for particular performers. The 
manipulation of sound properties such as pitch, timing, 
amplitude and timbre by different performers is clearly 
distinguishable by the listeners. Expressive music 
performance studies the manipulation of these sound 
properties in an attempt to understand expression in 
performances. There has been much speculation as to why 
performances contain expression. Hypothesis include that 
musical expression communicates emotions (Justin, 2001) and 
that it clarifies musical structure (Kendall, 1990), i.e. the 
performer shapes the music according to her own intensions 
(Apel, 1972).  
    Understanding and formalizing expressive music 
performance is an extremely challenging problem which in the 
past has been studied from different perspectives, e.g. 
(Seashore, 1936), (Gabrielsson, 1999), (Bresin, 2002). The 
main approaches to empirically studying expressive 
performance have been based on statistical analysis (e.g. 
(Repp, 1992)), mathematical modeling (e.g. (Todd, 1992)), 
and analysis-by-synthesis (e.g. (Friberg, 1998)). In all these 
approaches, it is a person who is responsible for devising a 
theory or mathematical model which captures different aspects 
of musical expressive performance. The theory or model is 
later tested on real performance data in order to determine its 
accuracy. The majority of the research on expressive music 
performance has focused on the performance of musical 
material for which notation (i.e. a score) is available, thus 
providing unambiguous performance goals. Expressive 
performance studies have also been very much focused on 
(classical) piano performance in which pitch and timing 
measurements are simplified.  
    This paper describes a machine learning approach to 
investigate how skilled musicians (Jazz saxophone players in 
particular) express and communicate their view of the musical 
and emotional content of musical pieces and how to use this 
information in order to automatically distinguish among 
performers. We study deviations of parameters such as pitch, 
timing, amplitude and timbre both at an inter-note-level and at 
an intra-note-level. This is, we analyze the pitch, timing (onset 
and duration), amplitude (energy mean) and timbre of 
individual notes, as well as the timing and amplitude of 
individual intra-note events. We focus on saxophone 
performance where timing and pitch measurements present a 
greater challenge compared to the measurements in piano 
performances (this is due to the fact that in piano 
performances certain expressive resources, e.g. vibrato and 
glissando, are absent).  
    Roughly, the basic idea of our approach to performer 
identification is to establish a performer-dependent mapping 
from inter-note features (essentially a ‘score’ whether or not 
the score physically exists) to a repertoire of inflections 
characterized by intra-note features. As an analogy, the inter-
note features may be seen as a literary text, while the 
repertoire of inflections (i.e. the intra-note features) is like a 
typeface or style of handwriting that different performers use 

to render the text in different ways. Our approach to performer 
identification is motivated by our pervious work (Ramirez, 
2005b) on expressive music performance synthesis. In 
(Ramirez, 2005b) we consider a set of inflections 
(characterized by intra-note features) and use the note musical 
context (characterized by inter-note features) in order to 
predict the type of inflection to be used in that context. We 
use particular instances, i.e. audio samples, of the type of 
inflection predicted to synthesize expressive performances 
from inexpressive score descriptions. It is clear that by using a 
particular performer’s samples the synthesized pieces ‘sound’ 
like played by that performer. Thus, it seems reasonable to 
apply the inverse process for performer identification. 
    Previous research addressing expressive music performance 
using machine learning techniques has included a number of 
approaches. Lopez de Mantaras et al (Lopez de Mantaras, 
2002) report on SaxEx, a performance system capable of 
generating expressive solo saxophone performances in Jazz. 
One limitation of their system is that it is incapable of 
explaining the predictions it makes and it is unable to handle 
melody alterations, e.g. ornamentations. 
    Ramirez et al (Ramirez, 2006) have explored and compared 
diverse machine learning methods for obtaining expressive 
music performance models for Jazz saxophone that are 
capable of both generating expressive performances and 
explaining the expressive transformations they produce. They 
propose an expressive performance system based on inductive 
logic programming which induces a set of first order logic 
rules that capture expressive transformation both at an inter-
note level (e.g. note duration, loudness) and at an intra-note 
level (e.g. note attack, sustain). Based on the theory generated 
by the set of rules, they implemented a melody synthesis 
component which generates expressive monophonic output 
(MIDI or audio) from inexpressive melody MIDI descriptions. 
    With the exception of the work by Lopez de Mantaras et al 
and Ramirez et al, most of the research in expressive 
performance using machine learning techniques has focused 
on classical piano music where often the tempo of the 
performed pieces is not constant. The works focused on 
classical piano have focused on global tempo and loudness 
transformations while we are interested in both intra-note and 
inter-note level tempo and loudness transformations.  
    Widmer (Widmer, 2001) reported on the task of 
discovering general rules of expressive classical piano 
performance from real performance data via inductive 
machine learning. The performance data used for the study are 
MIDI recordings of 13 piano sonatas by W.A. Mozart 
performed by a skilled pianist. In addition to these data, the 
music score was also coded. The resulting substantial data 
consists of information about the nominal note onsets, 
duration, metrical information and annotations. 
    Tobudic et al (Tobudic, 2003) describe a relational 
instance-based approach to the problem of learning to apply 
expressive tempo and dynamics variations to a piece of 
classical music, at different levels of the phrase hierarchy. 
Their learning algorithm recognizes similar phrases from the 
training set and applies their expressive patterns to a new 
piece. 
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    Other inductive approaches to rule learning in music and 
musical analysis include (Dovey, 1995), (Baelen, 1996). In 
(Dovey, 1995), Dovey analyzes piano performances of 
Rachmaniloff pieces using inductive logic programming and 
extracts rules underlying them. In (Baelen, 1996), Van Baelen 
extended Dovey's work and attempted to discover regularities 
that could be used to generate MIDI information derived from 
the musical analysis of the piece. 
     Nevertheless, the use of expressive performance models, 
either automatically induced or manually generated, for 
identifying musicians has received little attention in the past. 
This is mainly due to two factors: (a) the high complexity of 
the feature extraction process that is required to characterize 
expressive performance, and (b) the question of how to use 
the information provided by an expressive performance model 
for the task of performance-based performer identification. To 
the best of our knowledge, the only group working on 
performance-based automatic performer identification is the 
group led by Gerhard Widmer. Saunders et al (Saunders, 
2004) apply string kernels to the problem of recognizing 
famous pianists from their playing style. The characteristics of 
performers playing the same piece are obtained from changes 
in beat-level tempo and beat-level loudness. From such 
characteristics, general performance alphabets can be derived, 
and pianists’ performances can then be represented as strings. 
They apply both kernel partial least squares and Support 
Vector Machines to this data.  
    Stamatatos and Widmer (Stamatatos, 2005) address the 
problem of identifying the most likely music performer, given 
a set of performances of the same piece by a number of skilled 
candidate pianists. They propose a set of very simple features 
for representing stylistic characteristics of a music performer 
that relate to a kind of ‘average’ performance. A database of 
piano performances of 22 pianists playing two pieces by 
Frédéric Chopin is used. They propose an ensemble of simple 
classifiers derived by both subsampling the training set and 
subsampling the input features. Experiments show that the 
proposed features are able to quantify the differences between 
music performers.  

III. MELODIC DESCRIPTION 

In this section, we outline how we extract a description of a 
performed melody for monophonic recordings. We use this 
melodic representation to provide a inter-note and intra-note 
description of the performances and apply machine learning 
techniques to these extracted features. This is, our interest is to 
obtain for each performed note, a set of intra-note features and 
a set of inter-note features from the audio recording. The set 
of intra-note features includes descriptors such as the note’s 
attack level, sustain duration, sustain slope, amount of legato 
with the previous note, amount of legato with the following 
note, mean energy, spectral centroid and spectral tilt. The set 
of inter-note features includes the relative pitch and duration 
of the neighboring notes (i.e. previous and following notes) as 
well as the musical structures to which the note belongs.  

A. Extraction of inter-note features 
First of all, we perform a spectral analysis of a portion of 
sound, called analysis frame, whose size is a parameter of the 
algorithm. This spectral analysis consists of multiplying the 
audio frame with an appropriate analysis window and 
performing a Discrete Fourier Transform (DFT) to obtain its 
spectrum. In this case, we use a frame width of 46 ms, an 
overlap factor of 50%, and a Keiser-Bessel 25dB window. 
Then, we compute a set of low-level descriptors for each 
spectrum: energy and an estimation of the fundamental 
frequency. From these low-level descriptors we perform a 
note segmentation procedure. Once the note boundaries are 
known, the note descriptors are computed from the low-level 
values. 
    As mentioned before, the main low-level descriptors used 
to characterize note-level expressive performance are 
instantaneous energy and fundamental frequency.  

Energy computation. The energy descriptor is computed on 
the spectral domain, using the values of the amplitude 
spectrum at each analysis frame. In addition, energy is 
computed in different frequency bands as defined in (Klapuri, 
1999), and these values are used by the algorithm for note 
segmentation. 

Fundamental frequency estimation. For the estimation of 
the instantaneous fundamental frequency we use a harmonic 
matching model derived from the Two-Way Mismatch 
procedure (TWM) (Maher, 1994). For each fundamental 
frequency candidate, mismatches between the harmonics 
generated and the measured partials frequencies are averaged 
over a fixed subset of the available partials. A weighting 
scheme is used to make the procedure robust to the presence 
of noise or absence of certain partials in the spectral data. The 
solution presented in (Maher, 1994) employs two mismatch 
error calculations. The first one is based on the frequency 
difference between each partial in the measured sequence and 
its nearest neighbor in the predicted sequence. The second is 
based on the mismatch between each harmonic in the 
predicted sequence and its nearest partial neighbor in the 
measured sequence. This two-way mismatch helps to avoid 
octave errors by applying a penalty for partials that are present 
in the measured data but are not predicted, and also for 
partials whose presence is predicted but which do not actually 
appear in the measured sequence. The TWM mismatch 
procedure has also the benefit that the effect of any spurious 
components or partial missing from the measurement can be 
counteracted by the presence of uncorrupted partials in the 
same frame.  
    First, we perform a spectral analysis of all the windowed 
frames, as explained above. Secondly, the prominent spectral 
peaks of the spectrum are detected from the spectrum 
magnitude. These spectral peaks of the spectrum are defined 
as the local maxima of the spectrum which magnitude is 
greater than a threshold. The spectral peaks are compared to a 
harmonic series and a two-way mismatch (TWM) error is 
computed for each fundamental frequency candidates. The 
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candidate with the minimum error is chosen to be the 
fundamental frequency estimate.  
    After a first test of this implementation, some 
improvements to the original algorithm where implemented to 
deal with some errors of the algorithm: 

• Peak selection: a peak selection routine has been
added in order to eliminate spectral peaks
corresponding to noise. The peak selection is done
according to a masking threshold around each of the
maximum magnitude peaks. The form of the masking
threshold depends on the peak amplitude, and uses
three different slopes depending on the frequency
distance to the peak frequency.

• Context awareness: we take into account previous
values of the fundamental frequency estimation and
instrument dependencies to obtain a more adapted
result.

• Noise gate: a noise gate based on some low-level
signal descriptor is applied to detect silences, so that
the estimation is only performed in non-silent
segments of the sound.

Note segmentation is performed using a set of frame 
descriptors, which are energy computation in different 
frequency bands and fundamental frequency. Energy onsets 
are first detected following a band-wise algorithm that uses 
some psycho-acoustical knowledge (Klapuri, 1999). In a 
second step, fundamental frequency transitions are also 
detected. Finally, both results are merged to find the note 
boundaries (onset and offset information). 

Note descriptors. We compute note descriptors using the note 
boundaries and the low-level descriptors values. The low-level 
descriptors associated to a note segment are computed by 
averaging the frame values within this note segment. Pitch 
histograms have been used to compute the pitch note and the 
fundamental frequency that represents each note segment, as 
found in (McNab, 1996). This is done to avoid taking into 
account mistaken frames in the fundamental frequency mean 
computation. First, frequency values are converted into cents, 
by the following formula: 

where fref = 8.176 (fref is a the reference frequency of the C0). 
Then, we define histograms with bins of 100 cents and hop 
size of 5 cents and we compute the maximum of the histogram 
to identify the note pitch. Finally, we compute the frequency 
mean for all the points that belong to the histogram. The MIDI 
pitch is computed by quantization of this fundamental 
frequency mean over the frames within the note limits. 

Musical Analysis. It is widely recognized that expressive 
performance is a multi-level phenomenon and that humans 
perform music considering a number of abstract musical 

structures. After having computed the note descriptors as 
above, and as a first step towards providing an abstract 
structure for the recordings under study, we decided to use 
Narmour’s theory of perception and cognition of melodies 
(Narmour 1990), (Narmour, 1991) to analyse the 
performances.  
    The Implication/Realization model proposed by Narmour is 
a theory of perception and cognition of melodies. The theory 
states that a melodic musical line continuously causes listeners 
to generate expectations of how the melody should continue. 
The nature of these expectations in an individual are 
motivated by two types of sources: innate and learned. 
According to Narmour, on the one hand we are all born with 
innate information which suggests to us how a particular 
melody should continue. On the other hand, learned factors 
are due to exposure to music throughout our lives and 
familiarity with musical styles and particular melodies. 
According to Narmour, any two consecutively perceived notes 
constitute a melodic interval, and if this interval is not 
conceived as complete, it is an implicative interval, i.e. an 
interval that implies a subsequent interval with certain 
characteristics. That is to say, some notes are more likely than 
others to follow the implicative interval. Two main principles 
recognized by Narmour concern registral direction and 
intervallic difference. The principle of registral direction states 
that small intervals imply an interval in the same registral 
direction (a small upward interval implies another upward 
interval and analogously for downward intervals), and large 
intervals imply a change in registral direction (a large upward 
interval implies a downward interval and analogously for 
downward intervals). The principle of intervallic difference 
states that a small (five semitones or less) interval implies a 
similarly-sized interval (plus or minus 2 semitones), and a 
large interval (seven semitones or more) implies a smaller 
interval. Based on these two principles, melodic patterns or 
groups can be identified that either satisfy or violate the 
implication as predicted by the principles. Such patterns are 
called structures and are labeled to denote characteristics in 
terms of registral direction and intervallic difference. Figure 1 
shows prototypical Narmour structures. A note in a melody 
often belongs to more than one structure. Thus, a description 
of a melody as a sequence of Narmour structures consists of a 
list of overlapping structures. We parse each melody in the 
training data in order to automatically generate an 
implication/realization analysis of the pieces. Figure 2 shows 
the analysis for a fragment of a melody.  

Fig. 1 Prototypical Narmour Structures 

Fig. 2 Narmour analysis of All of Me 
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B. Extraction of intra-note features 

Once we segment the audio signal into notes, we perform a 
characterization of each of the notes in terms of its internal 
features. 

Intra-note segmentation. The proposed intra-note 
segmentation method is based on the study of the energy 
envelope contour of the note. Once onsets and offsets are 
located, we study the instantaneous energy values of the 
analysis frames corresponding to each note. This study is 
carried out by analyzing the envelope curvature and 
characterizing its shape, in order to estimate the limits of the 
intra-note segments. 
When observing the note energy envelopes from the 
saxophone recordings, we identify that there are usually three 
segments (attack, sustain and release (Bernstein, 1976)) 
needed to conform a description that fits the model 
schematically represented in figure 3. We discarded the decay 
segment due to the general characteristics of the notes within 
the performances. 

In order to extract these three characteristic segments, we 
study the smoothed derivatives in a similar way that presented 
in (Jenssen, 1999), where partial amplitude envelopes are 
modeled for isolated sounds. The main difference is that we 
analyze the notes in their musical context, rather than isolated. 
In addition, only three linear segments are considered. 
Moreover, instead of studying the contribution of all the 
partials, we obtain general intensity information from the total 
energy envelope characteristic. The procedure is carried out as 
follows. 

E XX

t

NOTENOTE

SUSTAIN

RELEASE

ATTACK RELEASE

SILENCE NOTE SILENCE

ATTACK RELEASEE XX

t

NOTENOTE

SUSTAIN

RELEASE

ATTACK RELEASE

SILENCE NOTE SILENCE

ATTACK RELEASE

ATTACK
RELEASE

Fig. 3. Schematic view of the proposed energy envelope-
based intra-note segmentation. 

Considering the energy envelope as a differentiable function 
over time, the points of maximum curvature can be considered 
as the local maximum variations of the first derivative of the 
signal energy (second derivative extremes), that is, the local 
maxima or minima of the second derivative.     

Due to the characteristics of the audio signal, the energy 
envelope must be previously smoothed by low-pass filtering, 
since there are typically too many second derivative extremes. 
The low-pass filtering is carried out by means of a variable-
width Gaussian convolution. Several smoothing steps are 
carried out in order to find a good cut-off frequency of the 
smoothing filter. The smoothed envelope should not differ 
much to the original one to avoid loss of localization due to 

the filtering effect. Thus, for each smoothing step, the error em 
at smoothing step m between original and current envelope is 
computed. This is carried out by means of (2), where N is the 
length of the envelope in frames, env is the original envelope 
and envm is the smoothed envelope at step m. 

1

( ) ( )1 N
m

m
k

env k env k
e

N env=

−
= ∑   (2) 

Starting from a low cut-off frequency f0init, this frequency is 
increased each smoothing step until the error em gets lower 
than a certain threshold eth., empirically selected. Then, we 
compute the three first derivatives of the last smoothed 
envelope. Frame positions and corresponding y-values of 
second derivative extremes are stored. Afterwards, these 
characteristic points are sorted by the second derivative 
modulus, and the n highest positions are selected to build up 
the set of characteristic points F. Of course, when the total 
number of third derivative zero-crossings is less than n, the set 
is F shortened.  

Both note onset and offset are added as characteristic points to 
the set F. The slope defined by each pair of consecutive 
characteristic points on the envelope is computed (3), where i 
and j denote frame positions. A minimum slope duration 
(measured in frames) ∆fr is defined relative to the note 
duration as the five per cent of the note length N for excluding 
the possible too high valued slopes near the note limits. 

,

( ) ( )
, , m m

i j
such as

env j env i
i j F i j fr s

j i

−
∀ ∈ ≤ + ∆ =

−
  (3) 

Finally, the two pairs of points defining, respectively, the most 
positive and most negative slope values from the remaining 
slopes after discarding are extracted. The end of the attack 
segment fAE is defined as the frame position corresponding to 
second point of the maximum slope, while the start of the 
release segment position fRB is defined as the first point of the 
minimum slope. This is stated in (4) and (5) and depicted in 
figure 4. 

, ,max( )
M MM i j i js s s= =  , AE Mf j=    (4) 

, ,min( )
m mm i j i js s s= =  , RB mf i=    (5) 

The attack is defined as the segment between the note onset 
and the end of the most positive of the computed slopes, while 
the release segment is defined as the segment between the 
start of the most negative of the computed slopes and the note 
offset. Sustain is restricted to the remaining segment. When 
the end of attack and the start of release limits of a note 
coincide, it is considered that the note does not have a sustain 
segment. 
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time(seconds) 

Fig. 4. Original and smoothed envelopes of a sax note for a 
value of eth=0.05 (top figure, solid and dashed thin lines, 

respectively); selected characteristic points are denoted with a 
square within extremes of the second derivative of the 

smoothed envelope (bottom figure). 

Intra-note segment characterization. Once we have found 
the intra-note segment limits, we describe each one by its 
duration (absolute and relative to note duration), start and end 
times, initial and final energy values (absolute and relative to 
note maximum) and slope. For the stable part of each note 
(sustain segment), we extract an averaged spectral centroid 
and spectral tilt in order to have timbral descriptors related to 
the brightness of a particular execution. We compute the 
spectral centroid as the frequency bin corresponding to the 
barycenter of the spectrum, expressed as (6), where fft is the 
fast fourier transform of a frame, N is the size of the fast 
fourier tarnsform, and k is the bin index. For the spectral tilt, 
we perform a linear regression of the logarithmic spectral 
envelope between 2kHz and 6kHz, and get the slope 
expressed in dB/Hz. 

1

1

( )

( )

N

k
N

k

k fft k
SC

fft k

=
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Fig. 5. Energy envelope and its linear approximation of a real 
excerpt with intra-note segment limits marked. 

IV. PERFORMANCE DRIVEN INTERPRETER IDENTIFICATION

In this section, we describe our approach to the problem of 
recognizing famous saxophonists from their playing style. In 
particular, we introduce the different note descriptors we use 
to characterize the internal and inter-note note properties 
(computed as described in the previous section), as well as the 
different algorithms we apply to identify performers from 
their playing style. 

A. Note Descriptors 
We characterize each performed note by the following two 
sets of features:  

• Intra-note features. The intra-note features represent
the internal structure of a note which is specified as
intra-note characteristics of the audio signal. The set
of intra-note features we have included in the
research reported here are the note’s attack level,
sustain duration, sustain slope, amount of legato with
the previous note, amount of legato with the
following note, mean energy, spectral centroid and
spectral tilt. This is, each performed note is
characterized by the tuple

      (AtackLev, SustDur, SustSlo, LegLeft, LegRight, 
EnergyM, SpecCen, SpecTilt)  

• Inter-note features. The inter-note features represent
both properties of the note itself and aspects of the
musical context in which the note appears.
Information about the note includes note pitch and
note duration, while information about its melodic
context includes the relative pitch and duration of the
neighboring notes (i.e. previous and following notes)
as well as the Narmour structures to which the note
belongs. The note’s Narmour structures are computed
by performing the musical analysis described in
Section 3.1. Thus, each performed note is
contextually characterized by the tuple

      (Pitch, Dur, PrevPitch, PrevDur, NextPitch, 
NextDur, Nar1, Nar2, Nar3) 
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B. Algorithm 
One of the first questions to be asked before attempting to 
build a system to automatically identify a musician by his or 
her playing style is how is this task performed by a music 
expert? In the case of Jazz saxophonists our hypothesis is that 
most of the cues for performer identification come from the 
timbre or ‘quality’ of the notes performed by the saxophonist. 
That is to say, while timing information is certainly important 
and is useful to identify a particular musician most of the 
information relevant for identifying a performer is the timbre 
characteristics of the performed notes. In this respect, the 
saxophone is similar to the singing voice in which most of the 
information relevant for identifying a singer is simply his or 
her voice’s timbre. Thus, the algorithm to identify performers 
from their playing style reported in this paper aims to detect 
patterns of notes based on their timbre content. Roughly, the 
algorithm consists of generating a performance alphabet by 
clustering similar (in terms of timbre) individual notes, 
inducing for each performer a classifier which maps a note 
and its musical context to a symbol in the performance 
alphabet (i.e. a cluster), and given an audio fragment identify 
the performer as the one whose classifier predicts best the 
performed fragment. More formally, we are ultimately 
interested in obtaining a classifier MC of the following form: 

MC(MelodyFragment(n1,…,nk)) → Performers 

where MelodyFragment(n1,…,nk) is the set of melody 
fragments composed of notes n1,…,nk and Performers is the 
set of possible saxophonists to be identified. For each 
performer i to be identified we trained another classifier CLi of 
the following form: 

CLi(CNote) → AlphabetSymbol 

where CNote is the set of notes played by performer i 
represented by their inter-note features, i.e. each note in Note 
is represented by the tuple (Pitch, Dur, PrevPitch, PrevDur, 
NextPitch, NextDur, Nar1, Nar2, Nar3) as described before, 
and AlphabetSymbol is the set of clusters generated by 
clustering all the notes performed (by all performers) using 
their intra-note features. 

In order to obtain the classifiers MC and CLi we use and 
explore several machine learning techniques. The machine 
learning techniques considered in this paper are the following: 
K-means Clustering, Decision Trees (Quinlan, 1993), Support 
Vector Machines (SVM) (Cristiani, 2000), Artificial Neural 
Networks (ANN) (Chauvin, 1995), Lazy Methods, and 
Ensemble Methods. 

We segmented all the recorded pieces into audio segments 
representing musical phrases. Given an audio fragment 
denoted by a list of notes [N1,…,Nm] and a set of possible 
performers denoted by a list of performers [P1,…,Pn], 
classifier MC identifies the performer as follows:  

MC([N1,…,Nm], [P1,…,Pn]) 

     for each performer Pi 
          Scorei = 0 
     for each note Nk 

   PNk = intra-note_features(Nk)  
   CNk = inter-note_features(Nk)  
   (Xk1,…,Xkq) = cluster_membership(PNk) 
   for each performer Pi 

  Clusteri,k=CLi(CNk) 
        Scorei = Scorei  + XCluster

i,k

return PM such that ScoreM = max(Score1,…,Scoren) 

This is, for each note in the melody fragment the classifier MC 
computes the set of its intra-note features, the set of its inter-
note features and, based on the note’s intra-note features, the 
cluster membership of the note for each of the clusters 
(X1,…,Xq are the cluster membership for clusters 1,…,q, 
respectively). Once this is done, for each performer Pi its 
trained classifier CLi(PN) predicts a cluster representing the 
expected type of note the performer would have played in that 
musical context. This prediction is based on the note’s inter-
note features. The score Scorei for each performer i is updated 
by taking into account the cluster membership of the predicted 
cluster (i.e. the greater the cluster membership of the predicted 
cluster, the more the score of the performer is increased). 
Finally, the performer with the higher score is returned. 

Clearly, the classifiers CLi play a central role in the output of 
classifier MC. For each performer, CLi is trained with data 
extracted from the performer’s performance recordings. We 
have explored different classifier induction methods 
(described above) for obtaining each classifier CLi. The whole 
procedure for training classifiers CLi is as follows: 

1. Collect all training recordings by all performers
2. Segment notes in the training recordings
3. For each segmented note N, compute its intra-note

description PN
4. Using the intra-note description of all segmented

notes, apply fuzzy k-means clustering (resulting in k
clusters of notes, each cluster corresponding to a set
of similar notes in terms of their intra-note
description)

5. For each performer Pi,
• Collect training recordings for that performer
• For each segmented note N in the performer’s

recordings, compute N’s inter-note description
CN

• Build a classifier (e.g. a decision tree) using the
inter-note features as attributes and its cluster
(computed in step 4) as class.

6. Return the resulting classifier (e.g. the decision tree)
CLi for each performer Pi 

The motivation for inducing the classifiers as described above 
is that we would like to devise a mechanism to capture which 
(perceptual) type of notes are played in a particular musical 
context by a performer. By clustering the notes of all the 
performers based on the notes’ intra-note features, we intend 
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to obtain a number of sets, each containing perceptually 
similar notes (e.g. notes with similar timbre). By building a 
decision tree based on the inter-note features of the notes of a 
performer, we intend to obtain a classifier which predicts what 
type of notes a performer performs in a particular musical 
context.  

C. Evaluation 
We evaluated the induced classifiers by performing standard 
test set validation in which a percentage of the melody 
fragments are held out in turn as test data while the remaining 
data is used as training data. When performing the validation, 
we leave out the same number of melody fragments per class. 
In order to avoid optimistic estimates of the classifier 
performance, we explicitly remove from the training set all 
melody fragment repetitions of the hold out fragments. This is 
motivated by the fact that musicians are likely to perform a 
melody fragment and its repetition in a similar way. Thus, the 
applied validation procedure, in addition to holding out a test 
example from the training set, also removes repetitions of the 
example.  

V. CASE STUDY 
Important forms of performance in Western tonal music 
include performing music following a score, performing 
music by heart, performing improvised melodies, and playing 
by ear. With exception of the first form of performance, in the 
other forms of performance there is no notation (e.g. score) 
available. The task of identifying performers using the 
expressive information in their performances is only realistic 
if we consider performances for which we do not have the 
score the musician followed to produce the performance. Thus 
the question is: how to characterize the events in an expressive 
performance in order to capture their intra-note features and 
the musical context in which they appear? Our approach to 
this question is to study the intra-note features of an 
expressive performance by analyzing each note in a 
performance and building a performance alphabet of events, 
and by mapping the musical context in which the note appears 
to the symbols in the alphabet. In this way, we are able to 
describe a performance as a sequence of symbols in the 
performance alphabet and to characterize the musical context 
in which these symbols appear. A second question is: how to 
use this characterization in order to identify a musician in a 
new performance? Our approach to this question is to encode 
the new performance as a string of symbols in the 
performance alphabet and then to compare this string with the 
sequence of symbols each performer is expected to play.  
    In this section we present a case study on identifying 
performers from their playing style. We consider a set of 
monophonic recordings performed by reading a music score. 
Note that the availability of the score allows a complete 
analysis of the musical context of each performed note and 
enables us to establish a very complete mapping from this 
context to particular expressive transformations. However, in 
order to obtain a unified methodology (in other case studies 
the score of the performance may not necessarily be available) 
we decided to discard the information provided by the score. 

A. Monophonic Performances 
Training data. The training data used in this case study are 
monophonic recordings of four Jazz standards (Body and 
Soul, Once I loved, Like Someone in Love) performed by three 
different professional saxophonists in a controlled studio 
environment. For each note in the training data, its inter-note 
and intra-note features were computed. 

Results. We segmented each of the performed pieces in short 
and long phases for each performer. The length of the 
obtained phrases and long phrases ranged from 5 to 12 notes 
and 28 to 40 notes, respectively. The expected classification 
accuracy of the default classifier (one which chooses 
randomly one of the three performers) is 33% (measured in 
correctly classified instances percentage). In the short phrase 
case, the average accuracy and the accuracy obtained for the 
most successful trained classifier was 97.03% and 98.42%, 
respectively. In the long phrase case, the average accuracy and 
the accuracy obtained for the most successful trained classifier 
was 96.77% and 98.07%, respectively. The correctly 
classified instances percentage for each learning method is 
presented in Table 1. Clearly, the results for short and long 
phrases are statistically significant which indicates that it is 
indeed feasible to train successful classifiers to identify 
performers from their playing style using the considered intra-
note and inter-note features. It must be noted that the 
performances in our training data were recorded in a 
controlled environment in which the gain level was constant 
for each performer. Some of the features (e.g. attack level) 
included in the intra-note description of the notes take 
advantage of this property and provide very useful 
information in the learning process. This recording 
requirement is not realistic in a general setting where we may 
obtain performances recorded under very different 
circumstances.  

1-
note 

Short-
phrase 

Long-
phrase 

Decision Trees 37.43 95.17 95.87 
Support Vector Machines 41.50 97.50 96.58 
Artificial Neural Networks 39.87 97.50 95.69 
k-Nearest Neighbor 31.23 97.50 96.58 
Bagging (decision trees) 38.67 98.42 98.07 
Boosting (decision trees) 39.48 95.17 96.21 
Voting (decision trees, 
SVM, ANN, 1-NN) 

42.78 97.50 97.27 

Stacking (decision trees, 
SVM, ANN, 1-NN) 

44.92 97.50 97.93 

Table 1: Classification accuracy for the 1-note, short-phrase 
and long-phrase cases (in correctly classified instances 

percentage) 

B. Discussion 
The difference between the results obtained in the case study 
and the accuracy of a baseline classifier, i.e. the classifier 
guessing at random, indicates that the intra-note and inter-note 
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features presented contain sufficient information to identify 
the studied set of performers, and that the machine learning 
methods explored are capable of learning performance 
patterns that distinguish these performers. It is worth noting 
that every learning algorithm investigated (decision trees, 
SVM, ANN, k-NN and the reported ensemble methods) 
produced significantly better than random classification 
accuracies. This supports our statement about the feasibility of 
training successful classifiers for the case study reported. 
However, note that this does not necessary imply that it is 
feasible to train classifiers for arbitrary performers. 
    We have selected three types of musical segment lengths: 1-
note segments, short-phrase segments, and long-phrase 
segment. As expected, evaluation using 1-note segments 
results in poor classification accuracies, while short-phrase 
segments and long-phrase segment evaluation results in 
accuracies well above the accuracy of a baseline classifier. 
Interestingly, there is no substantial difference in the 
accuracies for short-phrase sand long-phrase segment 
evaluation which seems to indicate that in order to identify a 
particular performer it is sufficient to consider a short phrase 
segment of the piece, i.e. the identification accuracy does not 
increase substantially by considering a longer segment. 

VI. CONCLUSIONS

In this paper we focused on the task of identifying 
performers from their playing style using note descriptors 
extracted from audio recordings. In particular, we 
concentrated in identifying Jazz saxophonists and explored 
and compared different machine learning techniques for this 
task. We characterized performances by representing each 
note in the performance by a set of intra-note features 
corresponding to the internal structure of the note, and a set of 
inter-note features representing the context in which the note 
appears. We presented successful classifiers for a three-class 
classification task: identifying saxophonists in monophonic 
performances. The results obtained indicate that the intra-note 
and inter-note features presented contain sufficient 
information to identify the studied set of performers, and that 
the machine learning methods explored are capable of 
learning performance patterns that distinguish these 
performers. We are currently extending our approach to 
performance-based performer identification in polyphonic 
multi-instrument audio recordings. 
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