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Abstract. This paper analyzes the robustness of the estimate of a

positive productivity shock on hours to the presence of a possible unit root in

hours. Estimations in levels or in first differences provide opposite conclusions.

We rely on an agnostic procedure in which the researcher does not have to

choose between a specification in levels or in first differences. We find that a

positive productivity shock has a negative impact effect on hours, as in Francis

and Ramey (2001), but the effect is much more short-lived, and disappears after

two quarters. The effect becomes positive at business cycle frequencies, as in

Christiano et al. (2003), although it is not significant.
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1. Introduction

According to Real Business Cycles models, hours worked should rise after a positive

permanent shock to technology. However, the empirical validity of this theoretical

implication has been questioned in the recent literature. For example, Gali (1999)

identifies technology shocks as the only shocks that have an effect on labor produc-

tivity in the long run, and estimates a persistent decline of hours in response to a

positive technology shock. As Gali (1999) points out, this result is more consistent

with the predictions of a New Keynesian model than those of standard Real Busi-

ness Cycle models. Other papers have reached similar conclusions (see for example

Shea (1999) and Francis and Ramey (2001)), which spurred a line of research aimed

at developing general equilibrium models that can account for this empirical finding

(see for example Uhlig (2003), Francis et al. (2003) and Gali and Rabanal (2004)).

In a recent paper, Christiano Eichenbaum and Vigfusson (2003) challenge these

empirical results. Using the same identifying assumption as Gali (1999), Christiano

et al. (2003) find evidence that a positive technology shock drives hours worked up,

not down. It seems that the estimated effects of technology shocks crucially depend

on whether the empirical analysis is specified in levels or in differences. In fact, Gali

(1999), Shea (1999) and Francis and Ramey (2001) specify hours in first differences

and report that hours worked fall after a positive technology shock. On the other

hand, Christiano et al. (2003) use hours in levels and report that hours worked

increase. In Christiano et al. (2003) words: “the difference must be due to different
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maintained assumptions. As it turns out, a key culprit is how we treat hours worked”.

Whether hours worked is a stationary or an exactly integrated process is then a

key assumption in the current debate on the effects of technology shocks on business

cycles. However, it is practically difficult to choose between specifications in levels

or in first differences on the basis of unit root tests, because of their low power.

Pesavento and Rossi (2003) show that, in the presence of a root close to unity, impulse

response function estimates and confidence bands that rely on unit root pretests have

bad small sample properties (in terms of median unbiasedness and coverage rates).

Impulse responses based on VARs estimated in levels or first differences have bad

coverage properties as well, unless the true data generating process is not persistent

(in which case levels are appropriate) or it has an exact unit root (in which case first

differences are appropriate).

We provide empirical evidence based on an agnostic empirical estimation proce-

dure proposed by Pesavento and Rossi (2003). The estimation is agnostic in that it

does not impose either a unit root or stationarity. These authors show that their

method is robust to the presence of highly persistent processes and, thus, it is ap-

propriate if the researcher aims at analyzing the effect of technology shocks on hours

worked without making assumptions on the order of integration of the series. We find

that a positive productivity shock has a negative impact effect on hours worked, but

this effect disappears more quickly than in Francis and Ramey (after only 2 quarters),

and it becomes quickly positive.
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2. Methodology

Let the data generating process (hereafter DGP) be:

(I −ΦL)wt = ut t = 1, 2, ...T (1)

where wt = [ nt ft ]
0 is a (2 × 1) vector of variables, where nt is the log of per

capita hours worked in the business sector and ft is average labor productivity. ut is

a (2× 1) stationary and ergodic moving average sequence:

ut = Θ(L)�t , (2)

�t is a martingale difference sequence with covariance matrix Σ, Θ(L) ≡
∞P
i=0
ΘiLi ,

Θ0 = I, I is the (2× 2) identity matrix and Ω1/2 ≡ Θ(1)Σ1/2 is invertible.

Note that (1) and (2) are simply another way of writing a VAR, in terms of the

roots rather than in the usual linear expression with lagged endogenous variables.

This representation is convenient for our purposes because it distinguishes the long-

run dynamics, captured by Φ, from the short-run dynamics, described by Θ(L). In

fact, to allow a unit root in ft and high persistence in nt, we let Φ =

 ρ 0

0 1

, where
ρ is close to one in a sense made precise below.

The objects of interest are the structural shocks, denoted by ηt, which are related



4

to the VAR residuals �t by the following relationship:

ηt = A0�t (3)

We let ηt = [ ηmt ηzt ]
0 where {ηzt } and {ηmt } denote, respectively, the sequence

of technology and non-technology shocks. Following Gali (1999), we identify the

technology innovation as the only shock that can have a permanent effect on produc-

tivity. This long-run identification imposes a lower triangular structure to Θ (I)A0

that allows the identification of the technology shock.

Let us first provide some intuition about how our “agnostic” method works by

discussing what our method would deliver at long horizons. As in Pesavento and

Rossi (2003), we use a local-to-unity asymptotic theory to improve the asymptotic

approximation to highly persistent processes in small samples. That is, we model the

largest root associated to hours, ρ, as local-to-unity:

ρ = 1+
1

T
c (4)

To obtain better asymptotic approximations to IRFs in small samples, we also assume

that the lead time of the impulse response function, h, is a fixed fraction of the sample

size:

h

T
→

T→∞
δ (5)
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Note that, because of assumption (5), the method works very well at horizons (h)

that are large relative to the available sample size, which is what we refer to as “long

horizons”.

Considering the two assumptions (4) and (5) together, we have that:

ρh →
T→∞

ecδ.

Pesavento and Rossi (2003) show that the IRF of the effect of a technology shock,

ηzt , on nt can be approximated by

∂nt+h
∂ηzt

' ecδi01Θ (1)A0i2 (6)

where is denotes the s − th column of the m ×m identity matrix. This provides a

simple, closed-form formula for the IRFs at long horizons as a monotone increasing

function of c. This formula can easily be used to construct confidence intervals for

the IRF at long horizons.1

To construct IRFs that are valid at short horizons as well, which is what we do

in this paper, the method is implemented in practice as follows. (i) We construct a

confidence interval for c (denoted by (cL; cU )) by inverting the acceptance region of a

unit root test for hours. One can potentially use any unit root test; in this paper, we

use the Augmented Dickey Fuller (ADF) test and Hansen’s (1995) CADF test. In our

1Simply use (6) to obtain the confidence interval as follows: (ecLδi01 bΘ (1) bA0i2; ecU δi01 bΘ (1) bA0i2),
where “hats” denote estimated values.
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case, the estimated ADF test statistic is -2.068. Thus, directly from Stock’s (1991)

Table A1, p. 455-6, inverting the ADF test delivers a confidence interval for c equal

to (−13.73, 2.411). (ii) We run a VAR in quasi differences, (I − Φ̂L)wt,2 to estimate

Θ (L), and construct a 95% confidence interval forΘ (L)A0 by using a standard Monte

Carlo simulation method (see Hamilton (1994) and Lutkepohl (1993) for details),

where A0 has been identified as above. More in detail, the confidence interval for

Θ (L)A0 is obtained by simulating a confidence interval for Θ (L), and for every value

belonging to the confidence interval we estimate A0 that satisfies the identification

restriction, which we then use to obtain a confidence interval for Θ (L)A0. (iii) For

every horizon, we calculate a confidence interval for [i01Θ (L)A0i02] at the relevant

horizon, call it (Lh, Uh). For example, at horizon h = 1 this confidence interval is

(−0.435, 0.096). (iv) Finally, the Bonferroni confidence interval for the response of

hours to a technology shock is
¡
ecLδLh, e

cUδUh

¢
. In the example for h = 1, since

ecLδ = 0.881 and ecUδ = 1.023, we have that the confidence interval for the IRF is

(−0.383, 0.098) .3 While confidence bands constructed in this way have good coverage

2The quasi-differences are obtained by taking the residuals of a VAR(1). In our empirical appli-

cation, bΦ = µ 0.986 0.002
−0.009 0.995

¶
. As pointed out by a referee, since the estimated value of ρ (0.986)

is very close to one, quasi-differencing gives very similar results to first differencing at short horizons.
3The last two steps are equivalent (by monotonicity) to the following proceedure. For a given

horizon h = [δT ], for each point on a grid within the confidence interval for ΘiA0, construct two new
sequences by multiplying each of the points in the confidence intervals by ecLδ and ecU δ respectively,
call these sequences ecLδ ΘiA0 and ecU δ ΘiA0. The overall confidence interval for the IRF of hours
to a productivity shock at horizon h is then obtained as the minimum over the first sequence and the
maximum over the second sequence: (min ecLδ i01ΘiA0i2; max i01e

cU δ ΘiA0i2). By the Bonferroni
inequality, the confidence interval should have a coverage of at least 90% at each horizon h. Because
exponential functions are always positive, this procedure gives the same result as the procedure
described in the main text. Intuitively, relative to simply using (6) with a consistent estimate of
Θ (I) as described in a previous note, step (ii) adds information on the sampling variability of the
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properties at short horizons and are robust to the presence of a root close to unity,

this comes at the cost of being pointwise and conservative (see Pesavento and Rossi

(2003)).4

In the empirical section we also report results by using Wright’s (2000) method.

The latter method is implemented by steps (i)-(iv) above, but replacing step (ii) with

the following (ii’): Θ (L)A0 is re-estimated conditional on every value of c within a

grid over (cL, cU ) — not only at the extremes, like we do. According to Pesavento and

Rossi (2003), asymptotically the estimate of Θ (L) is consistent anyway, and we gain

in computational simplicity and smaller confidence bands. In our empirical section,

we also report IRFs obtained from standard VAR using nt both in levels and first

differences. To estimate the confidence bands in both VARs, we simulate the IRF

distribution under a normality assumption with 1000 Monte Carlo replications.

3. Empirical results

We use the same data as in Christiano et al. (2003), where per capita hours are

measured as the natural logarithm of hours worked in the business sector divided

by a measure of the working population. Productivity is measured as the natural

logarithm of output per hour in the business sector. Data are quarterly observations

short run parameters, Θ (L), thus improving the performance of the method at short horizons.
4Pesavento and Rossi (2003) investigate a variety of methods, all of which have good coverage.

These methods build on the inversion of the following test statistics: ADF as in Stock (1991),
Elliott, Rothemberg and Stock (1995), Elliott and Stock (2001), Elliott and Jansson (2001) and
Elliott, Jansson and Pesavento (2003). While we report results based on ADF and CADF only, our
results are qualitatively robust to the use of the other methods mentioned above.
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from 1948:1 to 2001:4 and are ultimately taken from the DRI Economics Database.5

As in the previous literature, we identify innovations to technology as the only shocks

that have a permanent effect on the level of labor productivity. Figures 1 and 2

report the 90% confidence intervals and the estimated responses of per capita hours

to a one standard deviation positive shock to productivity by using either a VAR

in differences or a VAR in levels.6 Results from the VAR estimated in differences

(Figure 1) are very similar to the results in Gali’ (1999) and Francis and Ramey

(2001): hours worked show a negative and persistent response to a technology shock

in the short run. According to point estimates, the negative effect persists for one

year (4 quarters). Eventually, the effect becomes positive in the long run (although

not significantly different from zero). When the VAR is estimated by using hours in

levels, our results indicate that the initial response of hours is positive, although not

significantly different from zero. The response is positive and statistically significant

after one quarter, and for roughly twenty quarters.

INSERT FIGURES 1 AND 2

5The mnemonics for business labor productivity, business hours and the civilian population over
the age of 16 are, respectively: LBOUT, LBMN and P16. We thank Christiano et al. for the data.

6The IRF are multiplied by 100 so a value of 0.10 correspond to a response of 0.10%. Following
the cited literature, we include a constant, but not a time trend. We focus on a bivariate VAR
with hour worked and the productivity measure. As in Francis and Ramey (2001) and in Christiano
et al. (2003), we do not expect our results to change if we include additional variables. We use 4
lags (chosen by the BIC criterion) in order to compare our results directly to Francis and Ramey
(2001) and Christiano et al. (2003). Results are robust to different lags (e.g. 1 to 6) if we use
quasi-differences to estimate the short-run dynamics.
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Table 1 shows that indeed hours are a persistent process. The table provides

both results on unit root tests on hours and empirical evidence on the magnitude

of the persistence by using various methods to construct confidence intervals for

the largest root. The methods are: Stock (1991) median unbiased method, Elliott,

Rothemberg and Stock (1996), Elliott and Jansson (2001), and Hansen (1995). Stock

(1991) method is implemented as follows: first, we calculate the Augmented Dickey

Fuller (ADF) test statistic for the time series process of hours with 4 lags; then, by

using the “inversion” Table A1, p. 455-6 in Stock (1991), we recover the confidence

interval for the largest root. Confidence intervals for the other methods are obtained

in a similar fashion, although in the latter cases the inversion table may depend

on nuisance parameters and, thus, needs to be calculated by the researcher for the

specific database.

According to Stock (1991) method, the largest root is between 0.93 and 1.01, with

a median estimate equal to 0.98. With such a persistent process is not surprising that

almost all the tests are not able to reject a unit root at 5% level (note that CADF

test rejects at 10%).
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Table 1: Unit root tests on per capita hours.

Unit root 5% Largest Root

Test statistic Critical value Median estimate 95% Confidence interval

ADF test -2.068 -2.88 0.977 (0.929; 1.015)

PT test 23.192 3.17 1.003 (0.988; 1.022)

EJ test 16.857 3.34 0.999 (0.982; 1.021)

CADF test -2.437 -2.65 0.971 (0.925; 1.007)

CADF∗ test -3.072 -2.54 0.951 (0.897; 0.997)

Unit root tests are as follows: “ADF” is the Augmented Dickey Fuller t-test; “PT” is

Elliott, Rothemberg and Stock (1996) test. “EJ” and “CADF” are, respectively, Elliott and

Jansson (2003) and Hansen (1995) tests, that use information on the stationary covariate,

the first difference of productivity. The ADF, PT and EJ tests are implemented with 4 lags,

whereas the CADF test is implemented both with 4 lags and 4 leads (CADF) and with 4 lags

(CADF∗). Note that all tests reject when the test statistic is smaller than the critical value.

Given that unit root tests do not strongly support the presence of a unit root, it

may not be desirable to take a stand on whether the process has a unit root or not.

Kilian and Chang (2000) and Pesavento and Rossi (2003) show that, in the presence

of large roots, the coverage rates of confidence intervals for impulse response functions

constructed from VARs in first differences or levels can be bad in finite samples. The
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intuition is that a model that imposes a root equal to one when one of the variables

is not I(1) is mis-specified. On the other hand, in small samples, a model in levels

underestimates the largest root and the persistence of shocks. These apparently

small mistakes and biases become extremely important at medium to long horizons,

where the difference between stationary and non-stationary processes becomes more

and more important. As a result, VARs in levels and first differences have a very

small probability of containing the true impulse response function, almost zero. Unit

root pretests do not solve the problem, as the actual coverage of impulse response

bands obtained after a pretest can be quite different from the nominal one (due to

the low power of unit root tests against persistent alternatives). Furthermore, even if

the tests reject a unit root, asymptotic approximations that rely on highly persistent

regressors are expected to provide better approximations in small samples. Thus,

we use Pesavento and Rossi (2003) “agnostic method” to estimate median unbiased

impulse response functions and their confidence bands, which does not require the

researcher to choose between the two specifications. By using the local to unity

parametrization, we model the persistency of the process as a function of the location

parameter c (see the previous section for details), which measures how close to unity

the largest root of the process is.

Figure 3 reports results for the “agnostic method”. It shows a negative and

very short-lived impact effect, which is very much in accordance with the findings

of Francis and Ramey (2001). The negative effect lasts only two quarters, less than



12

in Francis and Ramey (2001), and it is significant on impact. At business cycle

frequencies, the median point estimate of the impulse responses is positive, although

not significantly different from zero. The confidence bands show that the effect is

very likely to be positive at long horizons and at business cycle frequencies (between

6 quarters and 8 years). Comparing our median unbiased estimate of the response

with that of VARs in differences, we find some evidence that the medium and long

horizon effect is more positive and slightly larger in magnitude. On the other hand,

the effect that we estimate is also more persistent than that obtained from VARs in

levels. Finally, for comparison, Figure 4 reports results obtained by using Wright-

style (2000) methods.7 The results are similar, except that the confidence bands are

larger. We also checked the robustness of the results to the use of Hansen’s (1995)

unit root test, which exploits information on stationary covariates, and we find very

similar results (see Figure 5).8

INSERT FIGURES 3 TO 5

Our results are also similar to those obtained by using Anderson and Rubin (1949)

robust confidence intervals and reported in Vigfusson (2004), p. 11-12. In fact, Vig-

fusson (2004) finds that, in a bivariate VAR estimated in levels, the impact response

7The method originally proposed by Wright (2000) is univariate. We apply a method which is in
spirit very much similar to his, but it is extended to a multivariate VAR with one large root.

8 In unreported simulations, we found that the results for the Hansen’s (1995) test are robust to
whether the CADF test is estimated with both leads and lags (as in Figure 5) or with lags only. We
also found that the results are robust to the use of other methods to construct confidence intervals
for a unit root, like the Elliott, Rothemberg and Stock (1996) PT test and the Elliott and Jansson
(2003) test.



13

of hours to a one-standard deviation shock can be negative (the confidence interval

is (-0.05, 0.11) percent) and becomes more positive at business cycle frequencies (the

confidence interval is (0.05,0.27) percent after six quarters). In the present paper (see

our Figure 3), the “agnostic” estimation shows an impact effect that is negative, but

the upper bound of the confidence interval is very close to zero; in addition, after 5-6

quarters the confidence interval becomes more shifted towards positive values, which

is very much in line with what Vigfusson (2004) finds.

4. Conclusions

This paper analyzed the robustness of the estimate of the effect of a positive produc-

tivity shock on hours worked to the presence of a possible unit root in hours. While

the literature focused on the cases in which hours are estimated either in levels or in

first differences (a sort of “atheist” view), we rely on an “agnostic” procedure in which

the researcher does not have to choose between the two specifications. We found that

a positive productivity shock has a negative impact effect on hours, as in Francis and

Ramey (2001), but the effect is much more short-lived than previously found, and

disappears after only two quarters. The effect then becomes positive at business cycle

frequencies, as in Christiano et al. (2003), although it is not significantly different

from zero.

Our empirical evidence extends the results in Christiano et al. (2003) in an

important and crucial way. In their framework, the level specification implies that the
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first difference specification is mis-specified while the difference specification implies

that the level specification is correctly specified. The latter follows from the fact that

the level VAR allows for a unit root. While this is true at very short horizons, this

does not need to hold at horizons that are large relative to the sample size, where the

possibly downward biased estimate of the root becomes important. The importance

of these biases depends on the economic problem at hand and on the particular

parameters that the researcher faces. Our results show that neglecting this effect

may lead to very different economic results in measuring the effects of productivity

shocks.

Possible alternative estimation methods include Bayesian methods, as described

in Sims and Uhlig (1991). While we do not attempt to pursue this approach in the

present paper, a thorough investigation of the performance of Bayesian methods in

constructing confidence bands for impulse responses is provided in Kilian and Chang

(2000).
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Figure 1. Estimation in differences

Figure 2. Estimation in levels

Figures 1 and 2 show the estimated IRF (solid line) and IRF confidence bands
(dotted line) of hours worked to a one percent standard deviation increase in the
productivity shock. The model is a VAR in differences in Figure 1 and in levels in
Figure 2.
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Figure 3. Agnostic estimation

Figure 4. Wright method

Figures 3 shows the estimated IRF confidence bands of hours worked to a one
percent standard deviation increase in the productivity shock. Results based on
Pesavento and Rossi (2003) method robust at short horizons. Figure 4 shows the
IRF estimate and the confidence bands that we obtain by applying a method similar
to Wright (2000).
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Figure 5. Agnostic estimation CADF

Figure 5 shows the IRF estimate and the confidence bands that we obtain by applying
a method based on Hansen (1995) test.
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