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Zero-lag synchronization and bubbling in delay-coupled lasers
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We show experimentally that two semiconductor lasers mutually coupled via a passive relay fiber loop exhibit
chaos synchronization at zero lag, and study how this synchronized regime is lost as the lasers’ pump currents
are increased. We characterize the synchronization properties of the system with high temporal resolution in
two different chaotic regimes, namely, low-frequency fluctuations and coherence collapse, identifying significant
differences between them. In particular, a marked decrease in synchronization quality develops as the lasers enter
the coherence collapse regime. Our high-resolution measurements allow us to establish that synchronization loss
is associated with bubbling events, the frequency of which increases with increasing pump current.
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I. INTRODUCTION

Chaos synchronization is a prevalent phenomenon in
coupled nonlinear systems [1,2]. Because coupling signals
travel at finite speeds, synchronization tends to arise at
a nonzero lag. This occurs for instance in two mutually
coupled semiconductor lasers [3]. Zero-lag (isochronous)
synchronization despite coupling delays can be induced in
different ways, e.g., by adding self-feedback to the two coupled
systems [4], driving them with a third common oscillator [5],
or using a relay element between them. This relay can either
be active (i.e., with its own dynamics, like a third laser) [6,7] or
passive (like a semitransparent mirror in the laser case) [8,9].

Much effort has been devoted to observe and quantify chaos
synchronization. In particular, the effect of coupling topology
on the synchronization properties of coupled oscillators has
been thoroughly studied [10–15]. It has been shown, for
instance, that symmetric values of coupling (and feedback)
strengths and delay times favor synchronization [12,13]. One
of the main reasons of the interest in chaos synchronization,
especially in lasers, is the possibility to use this phenomenon
as a method for chaos-based communication schemes and
key-exchange protocols [8,16–19]. Message recovery in such
schemes depends on synchronization of the communicating
lasers, as recovery is not possible from a nonsynchronized
state.

Some studies have quantitatively addressed the question of
how synchronization is lost in coupled chaotic systems under
the influence of noise or as control parameters are varied
[20–25]. However, studies that investigate the mechanisms
behind the loss of synchronization are rare, especially from an
experimental viewpoint. Parameter changes frequently modify
the underlying dynamics of the coupled elements, and these
alterations are bound to affect the way synchronization is lost.
There are two major mechanisms for synchronization loss
of nearly identical coupled oscillators: Transverse instability
of the synchronization manifold due to a blow-out bifurca-
tion [20,21] and attractor bubbling [21–23,25]. A transition
through a blow-out bifurcation is characterized by intermittent
desynchronization events, a behavior that is called on-off
intermittency [23,26,27]. Below the blow-out bifurcation there

exists a transition in which invariant sets in an otherwise trans-
versely stable synchronization manifold lose their transverse
stability. This so-called bubbling bifurcation is present when
varying a key parameter of the coupled system, often the
coupling strength. The bubbling regime exhibits intermittent
desynchronization events, similar to on-off intermittency.

Bubbling events are induced by noise and/or parameter
mismatch and, as mentioned above, can be attributed to
transversely unstable periodic orbits embedded in the stable
synchronization manifold [22,25,28]. The local instability
forces the system’s trajectory to temporarily leave the syn-
chronization manifold until resynchronization occurs. In the
case studied here, bubbling is predominantly induced by
unstable antimodes. Delay-coupled Stuart-Landau oscillators
and Kuramoto oscillators exhibit similar saddle points [29],
and thus similar behavior can be expected. Bubbling has been
found in several different types of system: lasers [23,30],
electronic circuits [31,32], biological cells [33], and different
generic oscillators (see, e.g., Ref. [22]).

In this work we intend to connect the overall synchroniza-
tion quality with the occurrence of desynchronization events
attributed to the bubbling phenomenon. Our quantitative exper-
imental approach uses two mutually delay-coupled semicon-
ductor lasers exhibiting zero-lag synchronization as a model
system. In the absence of coupling the lasers have a stable
intensity output. Chaotic behavior of the lasers is induced by
time-delayed feedback [34] and/or delayed mutual coupling
of the lasers [3,35]. Instantaneous coupling may also lead
to instabilities [36]. High-temporal-resolution measurements
will reveal that the loss of synchronization, which arises as
the lasers are pumped further away from threshold, is due to
bubbling and will help us uncover a relation between the char-
acter of the bubbling and the type of chaotic regime exhibited
by these lasers. A previous theoretical work by some of
us [25] has shown that for rather small coupling strengths
transverse instability exists in the system considered here. For
larger coupling strengths the attractor remains transversely
stable, but shows bubbling. Since we focus on bubbling
as a desynchronization mechanism, we therefore choose a
comparably large coupling during our experimental studies.
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FIG. 1. (Color online) Schematic experimental setup (top panel).
PC: polarization controller, PD: fast photodetector, OC: optical
coupler, OI: optical isolator. Lower panel: (a) Experimental time
series of synchronized fast intensity dynamics in the coherence
collapse regime. A short desynchronization event is highlighted. The
pump current corresponds to 1.25Ithr, with Ithr being the solitary
lasing threshold. (b) Corresponding normalized intensity difference
(synchronization error).

The observed desynchronization behavior in our experiment
is in agreement with the theoretical findings [25].

II. EXPERIMENTAL SETUP

Our experimental setup is depicted in Fig. 1. The fiber-based
setup consists of two similar discrete mode semiconductor
lasers (Eblana Photonics), operating at a nominal wavelength
of λ ≈ 1540 nm and coupled symmetrically via a relay
fiber loop. This loop functions as a semitransparent mirror,
accounting for symmetric feedback and coupling with equal
delay times. This coupling relay leads to chaotic behavior in
both lasers, as well as to isochronal synchronization of their
outputs. Due to the 50/50 optical coupler used to combine
both laser outputs in the loop, we have identical feedback
and coupling strengths. The absence of asymmetries in the
coupling provides near-optimal synchronization conditions
[12,13]. By autocorrelation analysis the feedback and coupling
delay in our setup was determined to be τ = 73 ns. The
chosen coupling strengths ensure that we avoid the regime
of transverse instability due to a blow-out bifurcation [25].

The spectral characteristics of the two lasers were adjusted
by tuning their temperature, in order to ensure zero spectral
detuning (i.e., maximum overlap of the optical spectra). The

laser temperatures and pump currents were controlled by a
Thorlabs PRO8000 laser controller with accuracies �T =
±0.01 ◦C and �Ip = ±0.01 mA. Polarization controllers were
used to adjust the polarization for polarization-maintained
feedback and optimum coupling. An optical isolator ensured
a single propagation direction in the fiber loop, to avoid
interference effects. We measured the laser outputs by using
fast Miteq Dr-125G-A photodetectors with 13 GHz bandwidth,
whose outputs were recorded by a LeCroy WaveMaster 816Zi
oscilloscope with an analog bandwidth of 16 GHz and a
sampling rate of 40 GS/s. With such a high time resolution we
can resolve the fast dynamics on a picosecond time scale, and
observe and distinguish very short intervals of synchronization
or unsychronized behavior with unprecedented detail. Because
both lasers are very well matched, we neglect parameter
mismatch or detuning as the principal reason for bubbling.

III. ZERO-LAG SYNCHRONIZATION

We analyze the synchronization behavior of the coupled
lasers in a current range of Ip = 12–17 mA, which corresponds
in our case to ∼1.0–1.5 times the solitary lasing threshold
Ithr. With our setup we are able to achieve high-quality
zero-lag synchronization, as shown in the high-resolution time
traces of Fig. 1(a), corresponding to the coherence collapse
regime. The plot depicts near-perfect synchronization, with
one distinct short desynchronization event (bubbling event)
clearly visible in the intensity difference (i.e., synchronization
error) [Fig. 1(b)].

In the current range studied here the coupled system may
exhibit two different dynamical regimes [37]: low-frequency
fluctuations (LFFs) and fully developed coherence collapse
(CC). The LFF regime is characterized by a slow time scale
associated with the global dynamics on the mode ellipse.
It manifests itself in the intensity dropouts, followed by
a subsequent intensity buildup until the next dropout. The
dropouts coincide with large spectral jumps toward the vicinity
of the solitary laser mode. During the buildup process, the
laser’s dynamics drift through several optical modes. This
chaotic itineracy almost monotonically tends toward higher
intensities [38]. The dropout occurs when the laser’s trajectory
gets close to the stable manifold of an antimode, which
corresponds to a saddle point [39]. This antimode also
corresponds to a transversely unstable mode of the laser’s
chaotic attractor. In the CC regime, in contrast, the global
dynamics occurs on a faster time scale. The dynamics of the
laser in the CC regime exhibits more frequent critical events
with transversely unstable antimodes, and thus more frequent
subsequent bubbling events. Here we compare the different
synchronization dynamics in the two regimes.

We can quantify the degree of synchronization between the
two time series by using the cross-correlation at zero lag C =

〈[I1(t)−〈I1〉][I2(t)−〈I2〉]〉√
〈[I1(t)−〈I1〉]2〉〈[I2(t)−〈I2〉]2〉 , where 〈·〉 denotes time averaging.

To further account for the fast dynamical fluctuations we
integrate and normalize the synchronization error over shifting
windows of one delay time τ and calculate its mean value
χ = 〈 1

τ

∑
τ

|I1−I2|
〈I1+I2〉 〉. These quantifiers are shown in Fig. 2 for

increasing applied currents of the two lasers (equal currents,
keeping zero spectral detuning). As the currents are increased,
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FIG. 2. (Color online) Cross-correlation at zero lag (black
circles), fraction of the sliding cross-correlation above the correlation
threshold of Cthr = 0.5 (red squares), and mean integrated synchro-
nization error χ (blue diamonds), respectively, vs the applied pump
current and the pump current normalized with respect to Ithr.

the zero-lag cross-correlation (black circles) decreases, and
correspondingly the mean integrated synchronization error
(blue diamonds) increases, almost linearly. In what follows we
intend to understand why synchronization deteriorates with
increasing pump current and how that loss is related to the
change of dynamical regime (from low-frequency fluctuations
for Ip ∼ 12 mA to coherence collapse for Ip ∼ 17 mA).
Figure 1(b) shows that the instantaneous synchronization error
is subject to short bursts that correspond to desynchronization
events. To account for the synchronization dynamics, we calcu-
late a sliding-window cross-correlation (SLCC), in which the
standard cross-correlation coefficient at zero lag is calculated
over a shifting window of 1 ns width, and advance the window
by four sampling steps (0.1 ns) at a time. In that way we obtain
a time trace of (local) cross-correlation values. A significant
drop of the sliding cross-correlation (below a threshold Cthr)
means that a desychronization event has occurred. We can then
quantify the fraction of synchronized dynamics with respect to
the total length of the SLCC time series. This fraction decreases
with pump current, similarly to the zero-lag cross correlation,
as shown in Fig. 2.

IV. SYNCHRONIZATION LOSS DUE TO BUBBLING

In the LFF regime, intensity dropouts occurring simul-
taneously in the two lasers can be interpreted as purely
deterministic events, arising from the dynamics of the coupled
system. In some cases, on the other hand, noise can lead
to a dropout in only one laser. Then synchronization is
lost, and the other laser is affected by the dropout only
after the propagation delay τ , then undergoing a dropout
itself. After this second event, the lasers resynchronize [3].
Figures 3(a) and 3(b) depict a time trace that shows one
such desynchronization episode. The figure also compares
the long-term behavior of the sliding cross-correlation [Fig.
3(c)] with the corresponding output intensity time traces
[Fig. 3(a)] in the regime of low-frequency fluctuations. The
figure shows that the desynchronization events in the LFF
regime indeed coincide with intensity dropouts at the end

FIG. 3. (Color online) Synchronization of LFF dynamics. Output
intensity time series of the two lasers (a, b) and corresponding sliding
cross-correlation (c, d) for a long time interval (a, c) and a magnifica-
tion in time (b, d). The intensity time series were vertically shifted for
better visibility. The applied pump current was Ip = 12 mA, which
is closely above the solitary thresholds of both lasers.

of each LFF cycle, in agreement with previous numerical
results [25]. As mentioned above, the dropouts of both lasers
usually occur with a relative time shift of τ , resulting in
desynchronization events of that length [Fig. 3(d)]. Between
the desynchronization events the synchronization level is very
high, with SLCC being higher than 0.95 in our experiments.

In the case of coherence collapse, which arises for higher
pump currents, the synchronization dynamics are very differ-
ent, due to the fact that the overall dynamics differ substantially
from the LFF behavior [Fig. 4(a)]. In particular, there is
no slow time scale like the one associated with the power
dropouts in the LFF regime. Concurrently, the ejections of the
trajectory due to unstable antimodes are more frequent and
much shorter than in the LFF case, with a duration of the
order of 1 ns. The desynchronization events are associated

FIG. 4. (Color online) Synchronization in the coherence collapse
regime. Output intensity time series of the two lasers (a, b) and
corresponding sliding cross-correlation (c, d) for a long time interval
(a, c) and a magnification in time (b, d). The intensity time series
were vertically shifted for better visibility. The pump current was
Ip = 16 mA ≈ 1.3Ithr.
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FIG. 5. Normalized distributions of the sliding cross-correlation
coefficients for six different pump currents. The histograms have
401 bins.

with the ejections and therefore have a comparable duration
and the same frequency [Figs. 4(c) and 4(d)]. The intervals of
synchronized behavior also exhibit, as in the LFF regime, a
high correlation with values of SLCC higher than 0.95. The
high temporal resolution of the measurements allows us to
resolve the fast synchronization dynamics with good accuracy
[Figs. 4(b) and 4(d)]. The results shown in Figs. 3 and 4 allow
us to infer that the average deterioration of synchronization
that is observed with increasing pump current (Fig. 2) is due to
an increase in the frequency of desynchronization (bubbling)
events. The value of the SLCC (measuring the instantaneous
correlation) during synchronized time intervals, however, does
not change much with increasing current. This is quantified in
Fig. 5, which shows the normalized SLCC distribution for six
pump current values. The normalization is done such that the
integral over all 401 bins equals 1. The histograms cluster in
two qualitatively different groups, being bimodal for the low
currents corresponding to the LFF regime (12 and 13 mA)
and characterized by a single, broad and asymmetric peak for
higher currents. The lower peaks in the SLCC distributions
for the two LFF cases (12 and 13 mA) are dips to negative
correlation that occur at the LFF-power dropouts. As for the
coherence collapse regime, although the distributions broaden
significantly with increasing current, they still clearly peak
at a correlation close to 1. Consequently we conclude that
intervals of high-level synchronization still occur even for
large pump currents: A global decrease in synchronization
would shift the distribution maxima in Fig. 5 toward lower
correlation values. This conclusion is supported by calculating
the fraction of time, during which synchronized dynamics
persists, as depicted in Fig. 2. We chose Cthr = 0.5 as syn-
chronization threshold for the SLCC, guided by the bimodal
LFF distributions of Fig. 5. Even though this value is chosen
arbitrarily, a different threshold changes the slope of the curve
only slightly, but the overall monotonic behavior persists.

V. BUBBLING STATISTICS

Given that the correlation level within the synchronized
intervals does not diminish with the pump current, but the

FIG. 6. Histograms of the interevent intervals (left) and the
bubbling duration (right) for pump currents Ip = 14–17 mA. A
bubbling event is considered to occur when the SLCC decreases below
a value Cthr = 0.5. We also introduce a threshold for a minimum
event duration �Tthr = 0.5 ns, and a minimum interevent interval
IEIthr = 0.5 ns below which two isolated desychronization events are
considered part of a single, longer one.

average synchronization quality does, the bubbling events must
become more frequent as the dynamics transitions from the
LFF to the CC regime. This can already be inferred from a
comparison between Figs. 3(c) and 4(c), but a more systematic
quantification is needed. To that end, we now statistically
quantify the duration of bubbling events and the time between
consecutive events (interevent intervals [IEIs]). Figure 6 shows
the corresponding histograms for Ip = 14–17 mA. For input
currents Ip = 12 mA and Ip = 13 mA, which result in LFF
dynamics, only 7 and 20 events were captured, respectively.
As mentioned above, these are usually relatively long events
(∼τ in duration) which are isolated, the IEIs being of the
order of microseconds. Therefore, we present only bubbling
histograms for the CC regime.

The IEI distributions shown in the left panels of Fig. 6
reveal that bubbling events become more closely spaced
(the distribution decays faster to 0) with increasing current;
relatively isolated events become continuously more rare
with increasing Ip. The bubbling durations (right panels) are
not much affected by a change in current. Nevertheless, for
increasing current, fewer of the longer events are captured. The
enhancement of a bubbling duration of 1 ns can be considered
a numerical artifact, caused by the choice of a window size of
1 ns for the computation of the SLCC.

VI. CONCLUSION

In summary, we have experimentally achieved high quality
zero-lag synchronization of two mutually injected fiber-
coupled semiconductor lasers, with correlation coefficients
higher than 0.95 in the synchronized regime. Our high-
resolution measurements have revealed general differences
between the synchronization dynamics of the low-frequency
fluctuation and the coherence collapse dynamical regimes.
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Using a sliding cross-correlation measurement, we have
identified distinct desychronization events, which are inter-
preted as bubbling events. The bubbling phenomenon is
seen to be responsible for the decline of synchronization
with increasing current, with the desynchronization events
becoming more frequent, especially with the transition from
LFF to the CC regime. Meanwhile, the synchronized intervals
maintain their high correlation level. In that way, our mea-
surements associate, via bubbling, synchronization loss with
changes in the underlying chaotic dynamics of the coupled
system.

Excursions away from the synchronization manifold
are detrimental to all application schemes relying on
synchronization. This applies especially to chaotic optical

communication. Noise-induced desynchronization events will
strongly affect the efficiency of bidirectional schemes and
thus must be taken into consideration for applications. Our
results may therefore be helpful for future studies of these
chaos communication concepts and key exchange protocols.
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[24] C. M. González, C. Masoller, M. C. Torrent, and J. Garcı́a-

Ojalvo, Europhys. Lett. 79, 64003 (2007).
[25] V. Flunkert, O. D’Huys, J. Danckaert, I. Fischer, and E. Schöll,
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