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ABSTRACT IN ENGLISH: 

The purpose of this project is to calibrate the Hull-White model using data on at-

the-money payer swaptions and Artificial Neural Networks (ANN) for 100 different 

combinations of expiries (𝑇0) and tenors (𝑇𝑛 – 𝑇0). The calibration of the model 

parameters 𝑎 and 𝜎 is done in the following way: (i) first, we use market swap 

interest rates to generate 10,000 combinations of (𝑇0, 𝑇𝑛, 𝑎, 𝜎); (ii) then, we 

calculate swaption prices for each of these combinations using a closed-form 

function derived from the Hull-White (one factor) model in the form of 

𝐹: (𝑇0, 𝑇𝑛, 𝑎, 𝜎)  →  𝑃𝑟𝑖𝑐𝑒; (iii) we use ANN to learn the inverse mapping 

relationship (𝐹−1: (𝑇0, 𝑇𝑛, 𝑃𝑟𝑖𝑐𝑒)  →  (𝑎, 𝜎)); (iv) we use swaptions market prices 

as arguments for 𝐹−1 to find calibrated 𝑎 and 𝜎 for each expiry and tenor. Finally, 

we use the calibrated parameters to calculate the theoretical Hull-White prices 

and compare these prices with the prices observed in the market. The results 

show that the prices generated are very close to the ones observed in the market, 

suggesting that the ANN is an effective method for calibrating the model 

parameters accurately. 

ABSTRACT IN SPANISH: 

El objetivo de este proyecto es calibrar el modelo de Hull-White utilizando datos 

sobre at-the-money payer swaptions y Redes Neuronales Artificiales (ANN por 

sus siglas en inglés) para 100 combinaciones diferentes de vencimientos (𝑇0) y 

“tenors” (𝑇𝑛– 𝑇0). La calibración de los parámetros 𝑎 y 𝜎 del modelo se realiza de 

la siguiente manera: (i) en primer lugar, utilizamos los tipos de interés swap del 

mercado para generar 10,000 combinaciones de (𝑇0, 𝑇𝑛, 𝑎, 𝜎); (ii) a continuación, 

calculamos los precios de las swaptions para cada una de estas combinaciones 

utilizando una función de forma cerrada derivada del modelo de Hull-White (un 

factor) en forma de 𝐹: (𝑇0, 𝑇𝑛, 𝑎, 𝜎)  →  𝑃𝑟𝑒𝑐𝑖𝑜; (iii) utilizamos ANN para aprender 

la relación inversa (𝐹−1: (𝑇0, 𝑇𝑛, 𝑃𝑟𝑒𝑐𝑖𝑜)  →  (𝑎, 𝜎)); (iv) utilizamos los precios de 

mercado de las swaptions como argumentos de 𝐹−1 para encontrar 𝑎 y 𝜎 

calibrados para cada vencimiento y tenor. Por último, utilizamos los parámetros 

calibrados para calcular los precios teóricos de Hull-White y los comparamos con 



los precios observados en el mercado. Los resultados muestran que los precios 

generados son muy próximos a los observados en el mercado, lo que sugiere 

que el ANN es un método eficaz para calibrar con precisión los parámetros del 

modelo. 
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Abstract

The purpose of this project is to calibrate the Hull-White model using data on at-the-
money payer swaptions and Artificial Neural Networks (ANN) for 100 different combina-
tions of expiries (T0) and tenors (Tn − T0). The calibration of the model parameters a
and σ is done in the following way: (i) first, we use market swap interest rates to generate
10,000 combinations of (T0, Tn, a, σ); (ii) then, we calculate swaption prices for each of
these combinations using a closed-form function derived from the Hull-White (one factor)
model in the form of F : (T0, Tn, a, σ) −→ Price; (iii) we use ANN to learn the inverse
mapping relationship (F−1 : (T0, Tn, P rice) −→ (a, σ)); (iv) we use swaptions market
prices as arguments for F−1 to find calibrated a and σ for each expiry and tenor. Finally,
we use the calibrated parameters to calculate the theoretical Hull-White prices and com-
pare these prices with the prices observed in the market. The results show that the prices
generated are very close to the ones observed in the market, suggesting that the ANN is
an effective method for calibrating the model parameters accurately.
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1 INTRODUCTION

1 Introduction

Short rate models are used to describe the dynamics of the interest rate. Under this class
of models, interest rates, such as the Euro Interbank Offered Rate (EURIBOR), are de-
fined as an Ito process with drift and volatility terms. Among the most common short rate
models, the Hull-White (one factor) model stand out for its capacity to fit the data. It is an
extension of the Vasicek model, in which the interest rate converges to a long-term mean
θ(t) at a mean reversion speed defined by a constant parameter a and constant volatility σ.
As can be seen in the plot below, the 12-Month EURIBOR appears to follow an Ito process.

Figure 1: 12-Month EURIBOR

Practitioners use short rate models to price interest rate derivatives, such as swap-
tions. Model calibration is the process in which a pricing model parameters are adjusted
to fit real market data. For the Hull-White (one factor) model used to price swaptions
calibration implies tuning parameters a and σ to best describe quoted values in the market.

Artificial Neural Networks (ANN) have been commonly used in the financial industry
for option pricing. An ANN can learn the mapping of an option price as a function of
certain set of parameters, identifying properties and exogenous factors, particular to a
certain pricing model. Learning the inverse of the mapping of the price function can be
used to adjust the model parameter to the observed market option prices.

In this project we calibrate Hull-White model and compare the theoretical prices with
the ones observed in the market. We begin by generating 10,000 prices for different
parameters and use an ANN to learn the inverse mapping of the prices and parameters.
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2 CONCEPTS REVIEW

Once we have the model estimated, we fit the market prices to get what would be the
corresponding parameters. Finally, we use the corresponding parameters to calculate what
would be the theoretical prices they would yield and we compare with the ones observed
in the market.

2 Concepts review

2.1 Interest Rate Swap Agreements

Interest rate swap contracts - that for simplicity will be referred to as simply “swaps” - are
agreements in between two counterparties to exchange payments or cash flows. Whereas
one counterpart pays a fixed rate, the other pays a floating rate. In the Eurozone, one of
the most common floating rates is the Euro Interbank Offered Rate (EURIBOR). In this
framework, it is important to define that the “payer” of a swap contract is the one that
pays the fixed rate, while the “receiver” is the one that receives it and pays the floating rate.

This way, a swap contract is defined by the dates in which it makes the payments.
Throughout this project we will refer to these payment dates by T0, T1, T2,...,Ti−1, Ti,
Ti+1,..., Tn−1, Tn, where n is the Tenor of the swaption contract in case payments are
made yearly, explained in more detail below.

At every payment date Ti, the cash flow of a payer swap is then given by

(f
Ti−1,Ti

Ti−1
−K)δN

Where f
Ti−1,Ti

Ti−1
is the forward (floating) rate that refers to the period in between Ti−1

and Ti, K is the fixed rate, N is the nominal value, and δ = Ti − Ti−1. Now, it is
straightforward to write the value at time t of a payer swap as zero coupon bonds P as

Πp(t) = N

(
PT0
t − PTn

t −Kδ

n∑
i=1

PTi
t

)

As a swap agreement is a “symmetrical” contract, the value of a receiver swap contract
(Πr(t)) is the negative of the payer swap value. That is:

Πr(t) = −Πp(t).

2.2 Swaptions

Swap contracts, as explained above, are agreements between two entities to exchange cash
flows over a period of time. An option on a swap contract is known as swaption. These
are non-standardized contracts that are traded over-the-counter (OTC). According to the
report by Skantzos and Garston [2019], the monthly trading volume of swaptions in 2018
was around 1 trillion USD. A European swaption gives the holder the right to enter into
a certain interest rate swap at a expiry. The length of the underlying swap contract is
known as tenor. That is, the swaption is an option that expires when the underlying swap
contract starts. This moment is called expiry and is referred to T0. The tenor of the swap
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2.3 Hull-White (one factor) Model 2 CONCEPTS REVIEW

contract is given by Tn − T0.

A European payer swaption gives the holder right to enter a swap contract where
he/she will pay a fixed interest rate and will receive a floating one. Therefore, a payer
swaption will only be exercised at maturity if the floating rate is greater than the fixed
one. A European receiver swaption gives the holder right to enter a swap contract where
he/she will pay a floating interest rate and receive a fixed one. It will only be exercised
at maturity if the fixed rate is greater than the floating one. For at-the-money (ATM)
swaptions, the holder is indifferent whether to exercise or not.

Finally, the price of a payer swaption at time t < T0 can be derived from the value of
swap contracts and Black’s formula, which yield the following relation:

Swaption(t) = Nδ

(
n∑

i=1

pTi
t

)
(Rswap(t)Φ(d1(t))− Φ(d2(t)))

Where Φ(x) is the cumulative distribution function (CDF) of the normal distribution,

d1(t) =
ln

Rswap(t)
K + 0.5σ2

t (T0 − t)

σt

√
T0 − t

,

d2(t) = d1(t)− σt

√
T0 − t,

and σt is the implied volatility.

2.3 Hull-White (one factor) Model

In their seminal paper, Hull and White [1990] provide an extension of the Vasicek Model,
the Hull-White model (HW), in which the interest rate follows the stochastic differential
equation:

dr = a(
θ(t)

a
− r)dt+ σdWt (1)

Where θ(t) is the time dependent reversion level, a is a the speed of reversion parameter
and σ the volatility. Both a and σ are constant and for a given time (t) the parameter
theta θ is calculated from today’s term structure:

θ(t) =
δF (0, t)

δt
+ aF (0, T0) +

σ2

2a
(1− e−2at) (2)

Where F (0, T0) is the forward rate computed at today’s term, T0 is the expiry of the
option, and the δ is the size of the steps, which in our case represent one year.

2.4 Model calibration

The process by which a model’s parameters are adjusted to best describe the real market
prices is called calibration. This process is of central importance when considering the

5



2.5 Artificial Neural Networks (ANN) 2 CONCEPTS REVIEW

usability of a model. While in practice, the speed with which a model can be calibrated is
of central importance, this aspect is beyond the scope of this work. In terms of the HW,
the calibration process implies adjusting the parameters a and σ to best describe market
prices, since the mean reverting parameter θ(t) can be characterized with available market
information as described in equation (2).

2.5 Artificial Neural Networks (ANN)

ANN models consist on a supervised learning method where the algorithm does not assume
any kind of distribution in advance. The ANN tries to adjust its behavior to the data
used in the training phase using a large number of parameters, being totally focused on
the prediction results.

Figure 2: ANN

The architecture of the ANN references the human brain functionality having neurons
that are connected between each other sending “signals” in order to process information
received (inputs) and generate an action/prediction (output) having in the middle hidden
layers that correspond to how the inputs are translated into outputs, but these don’t have
a specific meaning.

In the case of the ANN algorithm, each input is the argument of an activation function
and is attributed a weight. These weights will be chosen in order to minimize the loss
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3 LITERATURE REVIEW

function. For instance, trying to minimize the mean squared error (MSE).

This search of the “best” weights is called learning and is computed by starting with
a random weight for each neuron that is adjusted using a methodology (in our case is
back-propagation) which consists of the calculation of the gradient descent of the cost
function for each instance of the weights and re-assigning the weights.

3 Literature Review

One of the first papers to introduce the concept of Artificial Feedforward Neural Networks
(AFNN) and how useful this method can be was Hornik et al. [1989]. In this seminal
work, the authors show what is now known as the Universal Approximation theorem.
The theorem states that this method (AFNN) can approximate any function, as long as
it is uniformly continuous in compact set and the number of nodes can increase arbitrarily.

Due to the fact that these methods are computationally demanding, they gained much
more relevance recently, with the development of computers with a significantly increase
in processing power. The method is applied in a wide range of areas, including finance.
According to Hamid and Iqbal [2004], the most common uses of ANN in finance are
mostly concerning pricing and financial distress prediction, which together would account
to roughly 45% of all the studies until their paper’s publication in 2004. More recent
examples of works that use ANN for pricing financial derivatives are Liu et al. [2019], who
also uses the method for computing implied volatilities, and Ferguson and Green [2018],
that also makes a guide about how to use deep neural networks in finance. Ruf and Wang
[2019] also provide a comprehensive review of the literature on the applications of ANN
in option pricing, hedging and model calibration. Starting from the 1990s, practitioners
have used ANN to price options and several papers in the academic literature have been
wrote on the subject.

If on one hand, using ANN for pricing financial assets and its derivatives is not nec-
essarily new, on the other hand the literature on the use of ANN for model calibration is
more recent. For instance, in a pioneering paper, Abu-Mostafa [2001] uses ANN to cali-
brate the Vasicek model. Andreou et al. [2010] propose an ANN that calibrates parametric
models.

While these papers introduced techniques based on ANN to calibrate the option pricing
models, the work done by Hernandez [2016] helped renew the interest in model calibration
with ANN. Hernandez presents a method to calibrate models using ANN. He tests his ap-
proach with the Hull-White model for over three years of daily quotes of swaption contracts
of 12 expiries and 13 tenors. The main argument presented by the author is the gain in
velocity in the calibration process by using ANN. Several papers have followed Hernandez
pioneering work. McGhee [2020] use ANN to calibrate the SABR model, by pointing out
that this method can be about 10,000 faster than the commonly SABR Approximation.
Liu et al. [2019] use ANN to calibrate stochastic volatility under Heston Bates models,
proposed by Bates [1996]. Stone [2020] used ANN to calibrate rough volatility models.
Bayer et al. [2019] provide an ANN method for calibrating rough volatility models. Thorin

7



4 METHODOLOGY

[2021] uses ANN to obtain calibrated SABR parameters.

Gurrieri et al. [2009] describe several strategies for the calibration of one factor model
Hull-White. They give the closed-forms for exact pricing using explicit integrals of the
model parameters and propose parametric forms for the mean reversion a and volatility
σ. Moreover, they provide closed-form formulas for payer swaption prices that we use
in this paper and we introduce in the Methodology section. The approach is to express
the price of a payer swaption as a weighted-average of zero-coupon bonds options. This
idea, in turn, was first proposed by Jamshidian [1989] and is known as the Jamshidian’s
decomposition.

4 Methodology

In this section we describe the methodology we followed to calibrate Hull-White model.

4.1 Swaption Pricing

We used the Black’s Formula to obtain the market prices of swaptions. Black’s formula
is a derivation of the Black Scholes formula, in which the underlying asset is a swap. It
is a model used to price swaptions with information available from the market: implied
volatility σ and yield curve PT0

0 ...PT1
T0

...PTn

T0
. Interest swap rates and implied volatilities

are from EUR ATM payer swaptions from April 29, 2022 and were downloaded from
financial data provider Refinitiv.

4.1.1 Yield curve and T-bond prices

We start by obtaining annual interest swap rates for 10 years.

Figure 3: R Swaps against Maturity

As it is possible to see in Figure 3, the yield curve is upward sloping, in which the yield
of the bonds increases as a function of their maturity.
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4.1 Swaption Pricing 4 METHODOLOGY

The next step is to calculate the T-bond prices. Knowing that size of the steps δ =
δ(Ti, Ti+1) is 1, we start by defining the T-bond prices as follows:

PTn

T0
=

1−R(Un)δ
∑n

i=1 P
Ti

T0

1 +R(Un)δ
=

1−R(Un)
∑n

i=1 P
Ti

T0

1 +R(Un)

Where R(Un) correspond to the swap interest rate at tenor n. As proposed by Wilmott
[2007], we also assume that PT0

0 = e−rT0 , where r is 0.118% (EURIBOR 12 months from
April 29, 2022). The resulting prices of the T-bond are shown in Figure 4.

Figure 4: T Bond Prices against Maturity

4.1.2 Implied volatility

Next, we obtain the implied volatilities for ATM payer EUR swaptions for 10 expiries and
10 tenors. The implied volatility is the volatility implied by the option prices observed
in the market. Usually, swaptions are priced in terms of implied volatilities instead of in
dollar or euro amounts. As it possible to see in Table 1 and Figure 5, implied volatility is
greater for short tenors and expiries.
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4.1 Swaption Pricing 4 METHODOLOGY

1 Yr 2 Yr 3 Yr 4 Yr 5 Yr 6 Yr 7 Yr 8 Yr 9 Yr 10 Yr
1 Yr 115.32 118.30 113.25 110.97 109.40 108.48 107.17 105.51 103.56 101.40
2 Yr 115.57 114.51 110.12 106.87 103.54 103.33 102.41 100.94 99.12 97.13
3 Yr 110.71 108.71 105.29 102.32 99.12 98.58 97.51 96.00 94.20 92.27
4 Yr 104.49 102.19 100.21 98.03 95.64 94.45 93.08 91.52 89.81 87.96
5 Yr 98.97 96.86 95.41 93.85 92.24 90.80 89.39 87.91 86.37 84.68
6 Yr 93.66 92.44 91.14 89.75 88.31 87.09 85.87 84.60 83.26 81.81
7 Yr 89.27 88.33 87.15 85.92 84.65 83.64 82.59 81.51 80.36 79.15
8 Yr 86.48 85.57 84.39 83.18 81.90 81.08 80.18 79.21 78.18 77.10
9 Yr 83.66 82.91 81.68 80.52 79.28 78.63 77.86 77.00 76.08 75.13
10 Yr 80.09 80.38 78.76 77.72 76.75 76.26 75.62 74.88 74.06 73.24

Table 1: Implied Volatilities by Expiry (rows) and Tenor (columns)

Figure 5: Implied Volatility Surface
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4.2 Hull-White price simulation 4 METHODOLOGY

4.1.3 Black’s formula

Next, we use Black’s formula introduced in Concepts review to derive market prices. The
price of a payer swaption at time t = 0 is given by the following expression:

Swaption(0) = NPT0
0 (1− PTn

T0
)(Φ(d1(0))− Φ(d2(0))) (3)

Where d1,2(0) = ± 1
2σ(0)

√
T0

In Figure 6 it is possible to observe that the swaption prices increases with respect to
expiry, while remain relatively similar with different tenors.

Figure 6: Market prices

4.2 Hull-White price simulation

Having obtained the market prices, we now generate 10,000 swaption prices with their
respective pair of parameters a and σ under the Hull-White model for different expiries
and tenors. In order to do so, we must get to a close-form equation for the swaption price,
as a function of σ, a, expiry (T0) and tenor (Tn − T0).

The approach to price swaptions through HW is to construct a portfolio of options
of zero coupon bonds that replicate the payoffs of a swaption contract. The price of the
resulting portfolio must be equal to the price of the swaption, otherwise arbitrage oppor-
tunities would be created.
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4.2 Hull-White price simulation 4 METHODOLOGY

The price of the bond is given by:

Xi = eA(T0,Ti)−B(T0,Ti)r
∗

(4)

Where B(T0, Ti), A(T0, Ti) are given by:

B(T0, Ti) =
1− e−a(Ti−T0)

a
(5)

A(T0, Ti) = ln(PTi

T0
) +B(T0, Ti)r −

σ2

4a
B(T0, Ti)

2(1− e−2aT0) (6)

and r∗, is the solution of:

n∑
i=1

cie
A(T0,Ti)−B(T0,Ti)r

∗
= 1 (7)

Where:

ci = R(Ui) and cn = 1 +R(Un) (8)

Next, for calculating the prices of a European put option (ZBP) that matures at time
T0 on a zero-coupon bond maturing at time t, we have that:

ZBP (T0, Ti, Xi) = XiP
T0
0 N(d1)− PTi

0 N(d2) (9)

with:

d1 =
ln(

XiP
T0
0

P
Ti
0

)

σp
+

σp

2
and d2 =

ln(
XiP

T0
0

P
Ti
0

)

σp
− σp

2
(10)

And σp is calculated in order to calculate d1 and d2 in the form of:

σp = σ

√
1− e−2aT0

2a
· 1− e−a(Ti−T0)

a
(11)

Finally, the Hull-White price for the payer swaption is given by:

Swaption(T0, Tn, a, σ) =

n∑
i=1

ciZBP (T0, Ti, Xi)

Swaption(T0, Tn, a, σ) = ZBP (T0, Tn, Xn) +

n∑
i=1

R(Ui)ZBP (T0, Ti, Xi) (12)

Now that we have a closed-form equation for the payer swaptions under Hull-White,
we can generate multiple prices for the different expiries and tenors by sampling different
as and σs.
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4.3 Neural Network model 4 METHODOLOGY

We generate 10,000 values of HW prices with a and σ ranging from 0.01 to 0.35. The
densities of the prices the real market data and the randomly simulated prices can be seen
in the figure below.

Figure 7: Densities of HW randomly generated prices vs. market prices

4.3 Neural Network model

Now that we have a function that maps payer swaption prices from the arguments (T0, Tn, a, σ),
that is F : (T0, Tn, a, σ) −→ Price, we want to build an ANN that learns the inverse map-
ping of this function. That is, that learns the relationship: F−1 : (T0, Tn, P rice) −→ (a, σ).

To do so, we implement the framework provided by Ferguson and Green [2018] for the
calibration problem. This way, we construct an ANN model consisting of three inputs
(Price, Expiry and Tenor), going through one hidden layer containing 4 nodes and having
as an output two nodes (a and σ).

These parameters provided by the neural network correspond to the ones that mini-
mize the MSE according to the algorithm.

The learning method chosen was back-propagation, the optimizer was Adaptive Mo-
ment Estimation (Adam), the number of epochs where the results converge was 100, and
the size of the hidden layer was 4 nodes plus a constant. The figure below shows the final
ANN estimated.

13



4.3 Neural Network model 4 METHODOLOGY

Figure 8: Architecture of ANN model

In this figure, it is possible to observe the different weights of the ANN by looking at
the thickness of each arrow connecting the neurons. Being the thicker the more weight as-
signed by the neural network, it is possible to affirm that the price its the most important
input for the model.

Once the neural network is trained using the data simulated by the Hull-White model,
it is possible to estimate the a and σ corresponding to each expiry and tenor of the market
prices.

With these parameters calculated, the Hull-White price is once again calculated using
the calibrated parameters a and σ, in order to verify the accuracy of the results. The closer
the market prices are from the Hull-White prices generated by the a and σ estimated, the
better the calibration.
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5 RESULTS

5 Results

After estimating the inverse mapping function with the ANN, we predict what would be
the pairs of (a, σ) for each tenor and expiry in the sample. Having this, we calculate the
theoretical HW prices from the calibrated model and we plot its surface together with the
initial market price surface. The closer these two surfaces are from each other, the better
the calibrating method. The results can be seen below:

Figure 9: Market surface vs. HW calibrated prices

With a simple visual inspection, one can see that the results are very close to the ones
observed in the market. However, one might question whether this result is simply due
to a similarity in the generated prices and the observed. That is, maybe for the range of
a and σ we used, the closed-form equation for the HW prices generate most of the prices
around the same ones observed. In this case, the ANN would not be very useful. We
address this question by plotting below the histograms of the (i) market prices, (ii) the
randomly generated HW prices, and (iii) the ANN-calibrated prices:

15



5 RESULTS

Figure 10: Histograms of the (i) market prices, (ii) the randomly generated HW prices,
and (iii) the ANN-calibrated prices

It is evident that the ANN plays an important role in approximating the generated
prices to the market prices. The similarity in between the histogram of the market data
and the calibrated prices is a good indication of the power of this method.

Finally, the difference in between the two surfaces is shown in the heat map of the
MSEs as a function of tenor and expiry below.
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6 DISCUSSION AND FUTURE RESEARCH

Figure 11: Heat map of the MSEs

It is possible to observe how the error is relatively small across all the combinations of
expiry and tenor. The worst fit is for tenor equal 10 and expiry equal 3.

6 Discussion and Future research

In this project, we used Artificial Neural Networks (ANN) to learn the inverse mapping
of the Hull-White (one factor) model for pricing swaptions. This result allowed us to
calibrate the model’s parameters for each pair of expiry and tenor, using data from EUR
payer swaptions. With the newly calibrated model, we were able to calculate what would
be theoretical prices for each of these contracts and compare it with the ones observed in
the market.

Despite the fact that we used data that referred to a single day, we managed to derive
a good approximation of the market prices. This result shows the power of the Universal
Approximation theorem of ANNs and of the method itself. It also implicitly validates the
usefulness and the widespread use of the Hull-White (one factor) model.

Naturally, this presents some limitations. For instance, the data availability and its
usage limits our parameters calibration. This leads to a good fitting of the model for the
specific date we used, which does not necessarily translate into a model that can be used to
predict prices in the future. Therefore, future work may want to address this matter by ex-
panding this analysis to use implied volatility from a range of dates, instead of a single day.
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Additionally, further research could assess the relative performance of the ANN with
numerical methods. Such method comparison should focus on the precision and speed of
the calibration process. The Newton-Rapshon is a numerical method commonly used in
the industry and could be used as a benchmark. It is a calibration method used to find
the root of a function with only one variable. Therefore it is commonly used to calibrate
the Black-Scholes model, since the model has only one parameter: the implied volatility.
In this setting, the calibration problem is to find the implied volatility that makes the
theoretical price of an option equal to the one observed in the market. It is however possible
to use this method to calibrate models of more than one parameter. Nevertheless, the
calibration of the parameters cannot occur simultaneously. In terms of the HW model, the
implementation of the Newton-Rapshon method would imply calibrating one parameter
while having the other fixed.
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