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Abstract 

This study explores geometric compression of linguistic data across languages in multilingual 

language models using the Europarl corpus, focusing on three models: BLOOM, XLM-

RoBERTa, and Mistral. We estimate the intrinsic dimension (ID) of hidden representations at 

each layer to quantify geometric compression. In Transformer-based LMs, the last hidden 

representation arises from a series of intermediate representations computed through a number 

of identical modules. Our analysis reveals that the ID of these representations is significantly 

smaller than the ambient dimension, with distinct compression patterns across languages. 

Languages from the same family exhibit similar ID amplitudes, suggesting that shared 

linguistic properties impact the dimensionality of model representations. Additionally, we find 

that the model’s performance on a language correlates with the ID amplitude at the first high-

dimensionality phase, indicating that the learned linguistic properties influence compression. 

These findings complement those found in other studies, bringing new insights to our 

understanding of how state-of-the-art LLMs process and compress linguistic data in different 

languages. 

Keywords: LLMs, Transformers, multilingual LMs, geometric compression, intrinsic 

dimension. 
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1. Introduction 

Language models (LMs) have revolutionized the field of natural language processing 

(NLP), demonstrating unprecedented capabilities in understanding and generating human 

language. These state-of-the-art models, which are based on the Transformer architecture, need 

to distill vast amounts of linguistic information into workable representations. A crucial aspect 

of this process is the concept of geometric compression, which can be quantified using intrinsic 

dimension (ID) estimators. Intrinsic dimension can be understood as the minimum number of 

variables required to faithfully capture the essential features of the data. Understanding this 

compression can offer insights into the internal workings of language models and their ability 

to process and represent different types of linguistic data. 

Although Transformer-based language models achieve remarkable performance, our 

understanding of their inner workings and the nature of the information they retain remains an 

open question. The hidden representation in LLMs arises from a series of intermediate 

representations processed through a sequence of identical blocks, resulting in a succession of 

vector spaces that are dimensionally uniform but geometrically diverse. 

In particular, recent studies have shown that the ID of the hidden representations is 

significantly reduced compared to their extrinsic dimension (Valeriani et al., 2023). Typically, 

hidden layers in large language models exhibit dimensions of approximately 2048 or more, 

while the intrinsic dimension is usually less than 50. This notable compression demonstrates 

that large language models are highly effective in extracting the essential features of the input 

data into a much reduced subspace. 

Moreover, this compression has been shown to vary across the layers of the transformer, 

suggesting that different layers contribute differently to the overall processing dynamics of the 

model (Valeriani et al., 2023). Cheng et al. (2023) further revealed that the ID profile of LLMs 
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changes depending on the domain of the text being processed, suggesting that the semantic 

content has an impact on compression. 

Despite these advances, a gap remains in our understanding of how LLMs handle 

linguistic data from multiple languages, particularly in multilingual settings. Most research has 

focused on monolingual models or single-language datasets, leaving a significant gap in our 

knowledge of multilingual LLMs. This study aims to fill this gap by measuring and analyzing 

the intrinsic dimension of the hidden representations computed by multilingual language 

models across various languages. We aim to build upon previous work and offer insights into 

the compression patterns of LLMs on different linguistic data. In particular, if ID profiles vary 

across discourse domains, given the diversity and complexity of human languages, what 

should be expected when the model processes text from a single specific domain but in 

several languages? 

In order to approach this issue, we use the Europarl corpora (Koehn, 2005), which 

contains transcriptions of European Parliament proceedings in a number of European 

languages. This provides a convenient dataset that covers one specific discourse domain: 

parliamentary debates. We further process1 the corpus and generate various semantically 

aligned datasets in several languages. We then use the Maximum Likelihood Estimator (MLE) 

to quantify the intrinsic dimension of the hidden representations at each layer of three models: 

the multilingual models BLOOM and XLM-RoBERTa, and the latest-generation Mistral 

model. 

Our findings confirm that the intrinsic dimension of the representations in the analyzed 

multilingual LLMs is significantly smaller than their ambient dimension, consistent with 

previous research. We find that Transformer-based multilingual LLMs exhibit distinct levels 

of compression when processing texts from different languages. The intrinsic dimension 

 
1 The code used for this study is available at github.com/ederruiz98/compression-multilingual-LMs 

https://github.com/ederruiz98/compression-multilingual-LMs


 

3 

profiles exhibit similar patterns across different languages, suggesting that syntax and script do 

not have an impact on ID. However, we observe that languages within the same family tend to 

have similar ID amplitudes, which implies that compression is similar when processing text in 

closely related languages with shared linguistic properties. Additionally, we find that the 

performance of XLM-R on a language (measured via perplexity) and the ID amplitude at the 

first high-dimensionality phase are correlated. These results suggest that the linguistic 

properties learned by the models influence the dimensionality of their representations. 

Regarding the structure of this paper, we first present the research question and state 

two hypotheses, followed by a reasonably comprehensive section devoted to the background 

and related work. In this section, we devote the Language Modeling section purely to the 

background, covering chronologically from word embeddings to neural language models and, 

later on, transformers. We then present multilingual models, previous studies and foundations 

of the geometry of representation in these models, and Indo-European languages. Next, we 

describe the methodology used in depth, and conclude by presenting and discussing our results, 

followed by an outline of the limitations of this study and the potential lines of future research. 

2. Research Question and Hypotheses 

Toward this objective, we formulate the following research question: 

RQ: Does geometric compression of LLMs vary across languages? In particular, what 

are the compression patterns of a LLM when processing texts from various languages? 

We quantify geometric compression by estimating the intrinsic dimension of the hidden 

representations computed by the model. Since training in transformers is usually auto-

regressive and they are composed of identical self-attention blocks, the vector representation 

of the last token of the input sequence is the one used for the prediction of the next token. 
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Moreover, this last hidden representation is the one that encodes all the contextual information, 

so here is where all the necessary information to be used for the prediction is gathered. We 

replicate the experiment with a masked language model (XLM) and also used the last token 

representation in order to be comparable with the auto-regressive models (BLOOM and 

Mistral)2. 

Accordingly, two hypotheses are put forward: 

H1: LLMs demonstrate distinct compression patterns when processing texts from diverse 

languages. 

H2: The ID amplitude of languages from the same family will share similarities. 

3. Background and Related Work 

 In this section we outline the fundamental concepts underlying current language model 

architectures and their representations, from neural networks to Transformer-based language 

models. We also provide a review of previous research on data compression of language 

models, presenting a coherent outline of recent research and the state of the art. 

3.1. Language Modeling 

3.1.1. Word Embeddings 

In order for a machine learning model to process any type of linguistic data, it must be 

first transformed into vectors, or word embeddings. These are essentially representations of 

words in a vector space. Word embeddings are based on distributional semantics, which is the 

area that studies both theories and methods for quantifying semantic similarities between 

 
2 A possible alternative is to compute the ID on the concatenation of all the tokens of the input sentences. However, 

this would have required much more computing resources. 
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linguistic elements, taking into account their distributional properties in large linguistic 

corpora. The core idea of distributional semantics can be summarized in the so-called 

distributional hypothesis: “linguistic elements with similar distributions have similar 

meanings”. That is to say, words that are used and appear in the same contexts tend to convey 

similar meanings. The British linguist John Rupert Firth popularized this underlying idea that 

a word is defined by its companies. 

The statement of meaning by collocation and various collocabilities does not involve the 

definition of word-meaning by means of further sentences in shifted terms. Meaning by 

collocation is an abstraction at the syntagmatic level and is not directly concerned with the 

conceptual or idea approach to the meaning of words. One of the meanings of night is its 

collocability with dark, and of dark, of course, collocation with night. This kind of mutuality 

may be paralleled in most languages and has resulted in similarities of poetic diction in 

literatures sharing common classical sources. (Firth, 1957) 

This idea can be put into practice in a straightforward way: if we can access meaning 

through context, then the key issue is to capture information from the context and include it in 

the representation of the word itself. This may be carried out by means of count-base methods, 

which involves the manual incorporation of data derived from global corpus statistics, and by 

means of prediction-based methods. Probably, the most remarkable example of the latter is 

Word2Vec, where word vectors are learned by training them to predict their contexts (Mikolov, 

Chen, et al., 2013; Mikolov, Sutskever, et al., 2013). It operates iteratively by scrolling through 

a text. At each stage it focuses on a word and its context words according to the specified 

context window, and calculates the probabilities of occurrence of each context word, adjusting 

the vectors each time to approximate those probabilities. Some of the most noteworthy pre-

trained vectors are those of GloVe, which resemble count-based methods in that they obtain 

information from global corpus statistics, but also prediction-based methods, since word 

vectors are learned by means of gradient descent rather than dimensionality reduction 

(Pennington et al., 2014). 
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Despite their usefulness, traditional word embeddings also present challenges. One 

notable issue is their static nature. For instance, they do not account for polysemy, where the 

one single word may have more than one meaning based on the context. Recent advancements 

in contextual embeddings, such as CoVe3 (McCann et al., 2017) and ELMo4 (Peters et al., 

2018), address this limitation by generating dynamic word representations that vary with 

context. 

3.1.2. Neural Language Models 

Language models basically predict the probability of a sequence of tokens. Statistical 

language models estimate the probability distribution of a sequence of words by computing the 

probability of a given word occurring based on its preceding words (Dauphin et al., 2017). 

Thus, the probability of a token sequence is: 

𝑃(𝑦1, … , 𝑦𝑛) =∏𝑃(𝑦𝑡|𝑦1, … , 𝑦𝑡−1)

𝑛

𝑡=1

 

Traditionally, n-gram language models estimate the probability distribution by 

extracting global statistics from a corpus first (Kneser & Ney, 1995; Chen & Goodman, 1999). 

They assume the Markov property, i.e., that the probability of a word depends solely on a fixed 

number of preceding words (Voita, 2020). Formally, the assumption is as follows: 

𝑃(𝑦𝑡|𝑦1, … ,  𝑦𝑡−1)  =  𝑃(𝑦𝑡|𝑦𝑡−𝑛+1, … ,  𝑦𝑡−1) 

 
3 CoVe are context vectors that are learned by using the encoder from a model trained for machine translation. 

Since these encoders first need to process the source sentence to be able to provide its translation into another 

language, the encoder’s vector representations inevitably need to contain some contextual information. As CoVe 

represents words in context and GloVe represents individual words, McCann et al., (2017) proposed to use both 

of them together, which resulted in a noticeable improvement in most common NLP tasks. 

4 Instead of using the vector representations from the encoder of a machine translation model, those of a 

language model could also be used. Such is the case of ELMo (Peters et al., 2018). The architecture is 

straightforward, comprising two-layer language models in both forward and backward directions, providing 

each token with contextual information from both left and right. 
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For instance, in a trigram model (n=3), the probability of a word happening once the 

previous words have happened is equal to the probability of that word happening once the 

previous two words have happened: 

𝑃(𝑦𝑡|𝑦1, … ,  𝑦𝑡−1)  =  𝑃(𝑦𝑡|𝑦𝑡−2,  𝑦𝑡−1) 

When generating text with n-gram language models, one quickly realizes that the model 

uses a very short context, a small number of tokens. That is precisely the main drawback of 

these models, their limited context understanding. 

Later, it was shown that language models based on neural networks performed much 

better than classical n-gram models (Bengio et al., 2003; Józefowicz et al., 2016). In contrast 

to the latter, neural models do not define formulas from global statistics, but rather train a neural 

network to predict them. Conceptually, neural language models undertake two primary tasks: 

1) Contextual encoding. Firstly, they encode the preceding context into a vector 

representation. The manner in which the models handle this is specific to their 

architecture. Two noteworthy examples are Recurrent Neural Networks or RNN 

(Mikolov et al., 2010) and Convolutional Neural Networks or CNN (Dauphin et al., 

2017). 

2) Token probability prediction. Subsequently, the model generates a probability 

distribution for the next token from the vector representation of the context. 
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Figure 1: General Pipeline of a Neural Language Model Regardless of the Model Architecture. 

Note. From Voita, E. (2020, September). NLP Course For You. https://lena-

voita.github.io/nlp_course.html 

The vector h is of size d, and it is the contextual representation made by the neural network. 

This d-sized vector is transformed linearly from size d to size |V| (vocabulary tokens). Finally, 

the softmax operation is applied to the |V|-sized vector so the vector representation of the 

context is transformed into a probability distribution. 

A key feature of these neural networks is that the contextual representation is fixed. 

This presents a major dual problem. On the one hand, conversion of the entire sentence to a 

single vector by the encoder is highly challenging. Since the potential number of sentences and 

meanings is infinite, the process of conversion to a single vector is a compression process in 

which information is lost. On the other hand, at each stage of the text generation process certain 

parts of the context become more important than others, but the decoder is only provided with 

a single fixed context representation. 

https://lena-voita.github.io/nlp_course.html
https://lena-voita.github.io/nlp_course.html
https://lena-voita.github.io/nlp_course.html
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Therefore, the solution is somewhat straightforward: allowing the model’s decoder to 

assign different importance or weights to each part of the context at each stage of the process. 

In line with this idea, the attention mechanism is presented in 2016 (Bahdanau et al., 2016). 

Now, the encoder provides representations for each and every token in the context, rather than 

a single compressed representation of the whole context. There are several functions to 

compute the attention score at every stage. Two of the most remarkable ones are the bilinear 

function or Luong attention (Luong et al., 2015), and the multi-layer perceptron or Bahdanau 

attention, presented in the original paper (Bahdanau et al., 2016). 

3.1.3. Transformers 

Once the attention mechanism was introduced, it was only a year later that the 

Transformer was presented, a model whose architecture is based purely and exclusively on 

attention mechanisms (Vaswani et al., 2017). Now, the interaction process between the encoder 

and the decoder no longer relies on recurrences or convolutions, but only on attention 

mechanisms. These models became the state of the art and remain so to this day (including 

some modifications), not only because they perform considerably better than previous recurrent 

neural networks, but also because they are enormously more efficient and, consequently, faster 

(Radford et al., 2018; Al-Rfou et al., 2018; Kaplan et al., 2020). 

In classical neural networks, intuitively, the encoder processes word by word, which 

means that sometimes the exact meaning of a word cannot be known until a larger part of the 

context has been encoded. On the contrary, in a Transformer encoder the tokens are interacting 

with one another all at the same time, continuously updating representations, which greatly 

speeds up this process. The decoder works in a similar way, with a self-attention mechanism5, 

 
5 Self-attention takes place between representations of the same nature (for instance, between tokens at the same 

state, or between all the states of the encoder at one particular layer). 
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allowing tokens to interact with each other, and also making use of the states of the encoder. 

When tokens interact with each other via an attention mechanism, extra information of the 

context is collected, thus updating their own representation. These processes take place 

simultaneously, not one by one. However, today, encoder-decoder architectures are no longer 

used in favor of decoder-only architectures. 

 

Figure 2: Overview of a Transformer’s Model Architecture. 

Note. From Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., 

Kaiser, Ł. ukasz, & Polosukhin, I. (2017). Attention is All you Need. In I. Guyon, U. V. 

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances 

in Neural Information Processing Systems (Vol. 30). Curran Associates, Inc. 

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845

aa-Paper.pdf 

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
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By way of synthesis of the overall process, tokens interact with each other in the encoder, thus 

updating their representations, whereas in the decoder tokens update their representations by 

interacting with previously generated tokens and the source. Apart from the attention and self-

attention mechanisms, two other main elements can be highlighted: the feed-forward network 

and residual connections. The feed-forward network takes the information collected by the 

attention mechanism and processes it. After this, residual connections simply add the input6 to 

the output, a very simple mechanism but one that facilitates flow and allows the simultaneous 

use of several layers. 

Previous architectures were strongly dependent on the task for which they were used, 

i.e., the architecture of each model was different depending on which task they were intended 

for. On the contrary, one of the advantages of Transformers is that they are independently pre-

trained and their architecture remains intact during fine-tuning. This framework is known as 

transfer learning, as one single architecture can be fine-tuned on different tasks. 

For instance, GPT is a Transformer-based left-to-right language model composed of a 

Transformer decoder with 12 layers (Radford et al., 2018). As it can be seen in Figure 3, the 

architecture of the model remains the same at the fine-tuning stage, while the input data is fed 

differently depending on the objective task. Later, successive generations of GPT were 

released, with different model sizes for each generation, and modifications to the 

hyperparameters and training dataset (Radford et al., 2019; Brown et al., 2020; Achiam et al., 

2023). 

 
6 It is important to note that the vector representation of each input token is the result of the sum of the 

representation of the token itself and its position. Previously, only the representation of the token was needed. 

This is due to the fact that the Transformer is unaware of the positions of the input tokens, since it does not have 

recurrence or convolution mechanisms, but only attention mechanisms. 
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Figure 3: GPT’s Transformer Architecture and Input Transformations for Fine-Tuning on 

Several Tasks. 

Note. From Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving 

Language Understanding by Generative Pre-Training. 

https://api.semanticscholar.org/CorpusID:49313245 

Another Transformer-based language model that is worth noting is BERT, which uses 

a Transformer’s encoder (Devlin et al., 2019). If GPT was a left-to-right language model, 

BERT is bidirectional. In GPT’s Transformer decoder, each token can interact only with 

previous tokens, so the final representations from the final layer only encode preceding context. 

In contrast, BERT uses another pre-training approach: Masked Language Modeling (MLM). 

This target is different in that the model is able to look at the entire context, left and right7, but 

some tokens are masked out (usually replaced with a special token), and the goal is to predict 

the original tokens. 

 

 
7 ELMo representations also know about both left and right contexts, but this required concatenating the 

representations of two unidirectional models, a forward and a backward one. 

https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
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3.2. Multilingual Models 

For all the aforementioned reasons, transformers became, and are nowadays, the state-

of-the-art architecture for language models. The introduction of ELMo, and later on GPT and 

BERT, resulted in the popularization of pre-trained language models for initial setup for further 

fine-tuning on downstream tasks. Thereafter, newer and improved models have been 

developed, often employing different pre-training strategies (Lewis et al., 2019; Liu et al., 

2019; Raffel et al., 2019; Zhang et al., 2019). 

It has been empirically shown that the size of a model and its performance are positively 

correlated (Hestness et al., 2017; Kaplan et al., 2020). Models tend to perform better the larger 

they are. This is referred to as scaling language models, and it involves scaling both the model 

parameters and the computational load during training. This positive tendency is usually 

maintained under different variations in the hyperparameters. 

This finding has led to scaling models up, and new models have become progressively 

larger. Consequently, the increasing costs of training large language models have meant that 

only large companies and organizations with substantial capital investment can afford to do so, 

which in turn translates into a certain reticence to release open-source models. These 

circumstances and the fact that most of the research community has been somewhat deprived 

of participating in the development of state-of-the-art models has had major consequences. 

Among the most notable ones, and the one that is relevant here, is the fact that the vast majority 

of LLMs are trained predominantly in English (Scao et al., 2022). 

Thus, most language models are only functional in English. Others have been trained 

with more languages, yet LLMs are usually trained on a relatively low number of languages, 

especially neglecting low-resource languages. To overcome this problem and with the goal of 

democratizing LLMs, hundreds of researchers collaborated and released the BigScience Large 
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Open-science Open-access Multilingual Language Model (BLOOM) (Scao et al., 2022). 

Another noteworthy multilingual model is XLM-RoBERTa (Conneau et al., 2019), which 

significantly outperforms the multilingual mBERT. 

The latest generation of language models is still primarily trained in English, but also 

starts to reach decent performances in other languages. Two examples of these models are 

ChatGPT, which is a sister model to InstructGPT (Ouyang et al., 2022), and Mistral (Jiang et 

al., 2023). However, we can only hypothesize so to a certain extent, because neither model is 

open-source and we do not know what dataset they have been trained on. 

In this experiment we use the multilingual models BLOOM and XLM-RoBERTa, and 

the latest-generation model Mistral (Jiang et al., 2023). The specific features of these models 

are detailed in the methodology section. 

3.3. The Geometry of Representation in Transformers 

3.3.1. Intrinsic Dimension of the Representation Space 

With the proliferation of high dimensional datasets from areas like speech analysis, 

image processing, and genetic research, there is a need for effective analysis methods. Many 

of these datasets have numerous features, which in the area of machine learning was once 

believed to be the curse of dimensionality. However, real-world datasets present regularities 

and certain patterns that give rise to strong correlations between their features (Valeriani et al., 

2023). These concentrations of measure phenomena were discovered at the end of the 

nineteenth century, but it was not until the beginning of the twenty-first century that it was 

evidenced that the correct understanding and handling of these phenomena would turn the 

previous curse into what some authors call the blessing of dimensionality, especially in machine 

learning (Gorban & Tyukin, 2018). 
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One approach, termed Manifold Learning, assumes this hypothesis, i.e. it assumes that 

these high dimensional datasets typically exist close to a low dimensional manifold. To put it 

another way, most high dimensional data from the real world lie along the vicinity of a low 

dimensional manifold, although everything occurs within a high dimensional space. This 

underlying hypothesis is often referred to as the Manifold Learning Hypothesis or simply 

Manifold Hypothesis (Narayanan & Mitter, 2010; Fefferman et al., 2013). 

While data are typically represented by high-dimensional vectors, they can often be 

effectively represented in spaces with fewer dimensions without sacrificing information 

integrity. Such simplification, known as dimensionality reduction, is often crucial for 

algorithms to function effectively. Consequently, numerous techniques for reducing 

dimensionality have been introduced recently (Campadelli et al., 2015). Generally, this is the 

manner of quantifying the so-called geometric compression of a data representation in a neural 

network (Cheng et al., 2023). In this context, a key issue is determining the least number of 

variables required to faithfully capture a system’s significant features. This minimal number is 

referred to as the Intrinsic Dimension (ID) of the data manifold. “A dataset’s intrinsic 

dimension (ID) is the dimensionality of the manifold approximating the data and can be 

described as the minimum number of coordinates that allow specifying a data point 

approximately without information loss” (Valeriani et al., 2023). 

However, estimating the ID may be challenging from a statistical point of view. In 

particular, there are two known problems that ID estimators usually face: the curvature of the 

manifold and the local variations of the density of the data points (Ansuini et al., 2019). 

Traditionally, the methods for estimating ID are classified into global and local methods 

(Campadelli et al., 2015). Global ones operate under the premise that the dataset is distributed 

across a single geometric object, determining its dimensionality by considering the dataset as 
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a whole. Conversely, local ID estimators focus on calculating the ID for individual data points 

within their respective neighborhoods and subsequently formulate a global estimate by 

combining these local measurements (Cheng et al., 2023). 

Two well-known examples of global estimators are TwoNN (Facco et al., 2017) and 

those based on Principal Component Analysis or PCA (Jolliffe, 2002). Local estimators, 

however, have been shown to obtain a better global estimate of the intrinsic dimension (Carter 

et al., 2010), as they work better at high dimensions. Moreover, Cheng et al., (2023) tested 12 

different ID estimators, both global and local. Based on their results, we use the Maximum 

Likelihood Estimator (MLE) (Levina & Bickel, 2004) due to its optimal performance. MLE is 

a local estimator based on the application of the maximum likelihood principle between close 

neighbor distances. 

3.3.2. Compression in Transformer-Based Language Models 

As discussed earlier, language models based on the Transformer architecture have 

become the standard choice for current language models for a broad range of NLP tasks. 

Despite their outstanding performance, little do we know about their underlying functioning 

and the type of information they retain. The input representation in large transformer models 

is processed through a series of identical modules, thereby generating a succession of vector 

spaces that, although dimensionally consistent, differ significantly in their geometric structure. 

In particular, Valeriani et al. (2023) discovered that the ID of the hidden representations 

is significantly lower than the extrinsic dimension of the model’s hidden layers. For instance, 

while the hidden layers typically have dimensions in the order of 2048 or more, the ID is often 

around 50. This substantial compression suggests that LLMs are highly efficient in distilling 

the essential features of the input data into a much smaller subspace. Moreover, further insights 

from Cheng et al. (2023) have revealed that different models with different extrinsic hidden 
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dimensions compress data into similar ranges of ID. They also found that the ID of the 

representations is 2 orders of magnitude smaller than their ambient dimension, in line with the 

results of other studies. 

Just like humans, the generation of coherent text does not have to do with the prior 

memorization of all possible combinations of words or tokens, but rather with the extraction of 

a finite number of certain rules and vocabulary that allow the production of that potentially 

infinite number of utterances (Cheng et al., 2023). This is directly related to the previously 

described manifold hypothesis: language models exhibit a high dimensionality, but it can be 

reduced to a minimum number of parameters that allows to span the entire space. There have 

even been attempts to apply this same concept to languages themselves, offering an approach 

to compute the dimensionality of discourse (Doxas et al., 2010). 

Thus, one of the cornerstones of the performance of language models is their ability to 

compress information. In recent years, much research has been devoted to this process of data 

compression. For instance, the geometric properties of the representations across the layers of 

a transformer have been studied, and it has been found that these representations evolve 

similarly whether the transformer has been pre-trained with a dataset of protein sequences, for 

tasks regarding protein language, or one of images, for tasks regarding image reconstruction 

(Valeriani et al., 2023). In the results they provide, some changes in compression are also 

observed across layers and phases, suggesting that the representations evolve through the layers 

in different phases. Hence, this compression is not uniform across layers: each layer contributes 

differently to the overall compression. 

Also, the form and extent of data compression has been linked to adaptability to NLP 

tasks (Cheng et al., 2023). In particular, they show that higher compression is positively 

correlated with ease of adaptation to different tasks. Their results also demonstrate that the ID 
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profile changes depending on the domain of the text being processed. Moreover, they find that 

the removal of linguistic structure (e.g., by permuting words or constructing sequences with 

the same words but in random order) increases the intrinsic dimension and perplexity of data 

representations. This suggests that it is precisely the linguistic structure that allows such 

compression. In its absence, compression diminishes. 

Further insights from Cheng et al. (2024) reveal that the first high-ID phase corresponds 

to the first full linguistic abstraction, and that an earlier occurrence of this phase predicts a 

better model’s performance. They also find that this first peak is notably reduced when the 

model processes random text. 

3.4. The Indo-European Family of Languages and Linguistic Typology 

In this study we aim to explore geometric compression in multilingual LMs applied on 

languages primarily from the Indo-European family. The term Indo-European is normally used 

to refer to the Indo-European family of languages, which exhibit similarities that are often 

attributed to the fact that there was an earlier shared progenitor language called Proto-Indo-

European (Anthony & Ringe, 2015). The discovery of phonetic similarities among words with 

identical meanings across various Indo-European languages suggests the presence of a Proto-

Indo-European antecedent (Mallory & Adams, 2006). 

The 21 languages of the Europarl dataset (Koehn, 2005), which are the ones analyzed 

here, are divided into language families and branches as follows: 

● Indo-European family: 

○ Romance: French, Italian, Spanish, Portuguese, Romanian. 

○ Germanic: English, Dutch, German, Danish, Swedish. 

○ Slavic: Bulgarian, Czech, Polish, Slovak, Slovene. 
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○ Baltic: Latvian, Lithuanian. 

○ Hellenic: Greek. 

● Finno-Ugric family: Finnish, Hungarian, Estonian. 

Almost all languages belong to the Indo-European family of languages, but they fall 

into 5 different branches. On the other hand, Finnish, Hungarian and Estonian are the only 

languages that do not have an Indo-European origin, but instead belong to the Finno-Ugric 

family of languages. 

Languages are grouped into branches and sub-branches by their history, studying their 

origins, their common antecedents, etc. In short, this classification results in the genealogical 

tree of languages. However, languages belonging to the same group not only are related 

historically, but this very fact means that they are languages with many linguistic properties in 

common. Indo-European languages exhibit shared elements in their basic lexicon and 

grammatical affixes, where the forms of these elements across languages can be systematically 

explained through specific phonetic rules. 

Linguistic typology is concerned with analyzing, comparing and classifying languages 

according to their common characteristics of structure and form, regardless of their history. 

Fruitful classifications based on a structural characteristic are those that result in groups and 

subgroups of languages that share other characteristics as well (Trask, 2007). Probably the best-

known classification is that of word order. It was proposed by Joseph Greenberg in 1963, and 

is based on the order of the basic syntactic constituents (Velupillai, 2012). It mainly deals with 

the relative order of subject, object, and verb. 

For instance, languages structured with a Subject-Object-Verb (SOV) order typically 

exhibit certain syntactic characteristics: modifiers tend to appear before their corresponding 

head nouns, auxiliary verbs follow the main verbs, postpositions are used instead of 
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prepositions, and nouns often have an extensive case system. Conversely, languages with a 

Verb-Subject-Object (VSO) order generally display the opposite features: modifiers come after 

nouns, auxiliary verbs precede the main verbs, prepositions are used instead of postpositions, 

and nouns lack a case system (Trask, 2007). 

Consequently, the Indo-European languages, besides having a common ancestor, share 

linguistic features such as word order. Almost all Indo-European languages exhibit a SVO 

pattern. In terms of word order, the 21 analyzed languages are classified as follows (Dryer, 

2013): 

● SVO: French, Italian, Spanish, Portuguese, Romanian, English, Danish, Swedish, 

Bulgarian, Czech, Polish, Slovak, Slovene, Latvian, Lithuanian, Finnish, Estonian. 

● No dominant order: Dutch, German, Greek, Hungarian. 

It can be seen how the only Indo-European languages that do not follow the SVO 

scheme are Dutch, German and Greek, and this is not even because they have a different word 

order, but because they have no dominant word order at all. On the other hand, among the three 

languages belonging to the Finno-Ugric family, Hungarian does not have any dominant order 

either, but Finnish and Estonian also follow an SVO pattern. 

For the purpose of this research, and without going into too much detail, it makes sense 

to study the compression of language models in various languages by considering the families 

and subfamilies of these languages, since these groups bring together languages with linguistic 

characteristics in common. 
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4. Methodology 

Our objective is to explore geometric compression of linguistic data across languages 

in multilingual language models. To do so, we use MLE to quantify the intrinsic dimension of 

the hidden representations at each layer of three different models on multiple datasets in various 

languages. 

4.1. Models 

The selected models and versions are the multilingual models BLOOM 3B (Scao et al., 

2022) and XLM-RXL 3.5B (Goyal et al., 2021), and Mistral 7B (Jiang et al., 2023). The 

differences they present and which are detailed below make this a broader experiment so that 

it is not limited to a very specific type of model. 

As said before, BLOOM is an open-access LLM released in 2022. It is trained to output 

text based on a prompt; therefore, it is a causal language model. “BLOOM is a 176 billion 

parameter language model trained on 46 natural languages and 13 programming languages that 

was developed and released by a collaboration of hundreds of researchers” (Scao et al., 2022). 

This is indeed the essential feature of BLOOM, the fact that it is a multilingual model at its 

core, already from the pre-training phase, making use of a carefully curated dataset in a wide 

variety of languages. Data curation was taken as a fundamental part of the process and therefore 

a multitude of researchers with linguistic knowledge of these languages collaborated in order 

to avoid making mistakes previously made in automated data curation processes. Here we use 

the variant with 3B parameters, not the full 176B one. 

XLM-RoBERTa, or simply XLM-R, is a Transformer-based masked language model 

pre-trained on 100 languages. In particular, we use the XL variant. Unlike BLOOM, XLM-R 

is not an autoregressive model, as it was pre-trained with the MLM objective. This introduces 
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a variation, as this allows the model to learn representations in a bidirectional manner. Also, 

masked language models have been shown to be effective at cross-lingual transfer (Conneau et 

al., 2019). Regarding the training dataset, they built it using several dumps of CommonCrawl 

in 100 languages. The variant we use here, XLM-RXL 3.5B, is pre-trained on the same dataset, 

and has 3.5 billion parameters (Goyal et al., 2021). 

Finally, Mistral is not an open-source model, so we do not have all the details about 

how it was trained, namely the training data or the optimization process. It certainly works for 

more languages than only English, but there is a huge difference in performance in English 

with respect to other languages. Technically, it is not a multilingual model, or at least it is not 

specifically designed for a multilingual setting. It is a fairly well-balanced model regarding 

performance and efficiency. In fact, when it was released at the end of 2023, this model with 7 

billion parameters outperformed “the best open 13B model (Llama 2) across all evaluated 

benchmarks, and the best released 34B model (Llama 1) in reasoning, mathematics, and code 

generation” (Jiang et al., 2023). 

4.2. Datasets 

Previous research has shown that LLMs demonstrate distinct compression patterns 

when processing texts from diverse domains, such as Wikipedia articles, tweets, or code 

snippets (Cheng et al., 2023). As we are trying to see if LLMs also exhibits distinct ID profiles 

when processing texts from various languages, it is important that the different datasets 

processed by the model are semantically aligned, i.e. their domain is the same and, ideally, 

their content is also identical. 

For this purpose, the Europarl corpus is a convenient dataset (Koehn, 2005). This 

compilation contains the records of proceedings from the European Parliament, beginning in 

1996. Originally, the corpus was conceived as training data for statistical machine translation. 
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For this reason, the corpus comprises subcorpora in 21 languages of European Union member 

countries. Furthermore, these subcorpora are structured into pairs of languages. They also 

performed document alignment, extracting and mapping parallel chunks of text. Finally, for 

each of the languages the text was split into sentences. 

Because of these reasons, the Europarl corpus is perfectly suited for our purpose. First, 

the domain in all subsets of the corpus is the same: European parliamentary debates. Moreover, 

it also meets the second requirement, as the subsets, which correspond to each language pair, 

are semantically aligned. 

4.3. Datasets Preprocessing 

The selected and extracted subsets from the Europarl corpus were subjected to a 

preprocessing procedure. The purpose of this preprocessing is to structure the datasets in a 

convenient way to be processed by the model and to be able to properly estimate the ID at each 

layer. First, all language pairs were extracted from the corpus, with the objective of creating 

one dataset per pair, as we need the dataset to be semantically aligned. From this point on and 

for each language pair, the preprocessing phase consisted of the following main steps: 

1) Randomly extract 20,000 sentences from the dataset. 

Some languages in the dataset have more than 2 million sentences. Cheng et al. (2023) also 

studied the convergence of ID estimators, and their results show that all ID estimates start to 

converge at around 10,000 sequences. For computational efficiency, we chose to randomly 

extract 20,000 sentences. This way we are also above the convergence threshold of the ID 

estimates. In addition, as some languages tend to have longer words (such as German or 

Finnish), this translates into fewer words per sentence. Thus, by doing this random extraction 

we make sure there is a certain margin while ensuring the validity of the results. Moreover, by 
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performing the extraction of sentences from the original language-pair dataset, we ensure the 

dataset is semantically aligned within the language pair. 

2) Preprocess sentences. 

First, we add a period at the end of the sentences that lack one8. Once this is done, we 

concatenate all the sentences into a single string. Finally, we split the string by words. 

3) Process sentences and convert them into 20-word lines. 

Once the sentences are concatenated and divided by words, the objective is to transform them 

into lines of equal length. These lines with the same number of words are the input sequences 

that will be processed by the model. Thus, from the extracted sentences, we created lines of 20 

words each. Cheng et al. (2023) found that short sequences give inconsistent results when 

estimating ID, often resulting in lower dimension, but very long sentences have no impact 

whatsoever on ID estimation. 

Finally, it is important to keep spaces at correct places. For instance, the model encodes 

differently “the” and “[space]the”: “the” may be a fragment of a word (e.g. “ma-the-matics”), 

while “[space]the” is either the word “the” or the first fragment of a word (e.g. “the-sis”). 

Bearing this in mind, we make sure that the lines never end with a space, but rather with an 

actual token. If the line is already 20 words long but the sentence is not over yet, we start the 

next line where we left off in the sentence but adding a space at the beginning. Naturally, if the 

end of the sentence coincides with the end of the line, the next line starts normally, straight 

with the first token of the sentence. 

 
8 In the original dataset, some sentences lack a period. This raises a problem for our purpose because the period 

indicates the end of a sentence, and its absence interferes with the way the model processes sentences (a 

sentence without a period will merge with the beginning of the next sentence). Therefore, we first add the period 

in case any of the randomly extracted sentences do not have it. 
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By way of illustration, the reader can refer to Appendix A, where 5 sample pairs of 

sentences extracted from the original en-es (English-Spanish) Europarl subcorpus are 

displayed, just as they appear originally. Below them are the same sentences in their final form 

after the described preprocessing, exactly as they appear in our final datasets for the en-es 

subcorpus (one for English and one for Spanish). Moreover, the algorithm used for 

preprocessing the datasets is provided as a single function in pseudo-code in Appendix B. The 

whole Python file, as well as the ones used for extracting the hidden representations and for 

computing the intrinsic dimension are available at github.com/ederruiz98/compression-

multilingual-LMs. 

5. Results and Discussion 

We find that the intrinsic dimension of the representations of linguistic data is notably 

smaller than the ambient dimension. This is consistent with the results of previous research, 

such as with pre-trained models on protein sequences and images (Valeriani et al., 2023), and 

also on linguistic data (Cheng et al., 2023). In particular, the ambient dimension of 

representations in the models BLOOM 3B and XLM-RXL 3.5B is D = 2560 for both of them, 

while for Mistral 7B it is D = 4096. In contrast, our ID estimate of representations at any given 

layer does not surpass 30 at the maximum peak in BLOOM, 40 in XLM-R, and 50 in Mistral. 

Our main results show that Transformer-based multilingual LLMs exhibit distinct 

compression patterns when processing texts from different languages. Although the ID profile 

does not seem to change depending on the language, the ID amplitude does. In particular, we 

find that the ID amplitude is similar in languages that belong to the same family or branch, 

suggesting that the linguistic properties learned by the model and shared between related 

languages affect the dimensionality of the representations. Additionally, we find that the 

https://github.com/ederruiz98/compression-multilingual-LMs
https://github.com/ederruiz98/compression-multilingual-LMs
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performance of XLM-R on a language and the ID amplitude at the first high-dimensionality 

phase are correlated. 

For the analysis of the results, it is necessary to take into account the languages present 

in the datasets with which the models were pre-trained on. In this case, among the 21 languages 

of the Europarl dataset, BLOOM includes English, French, Portuguese, and Spanish, XLM-R 

all 21, and we do not know with certainty about Mistral. For this reason, the focus is on XLM-

R and Mistral in cases where the analysis involves several languages from different families. 

A. ID profile is similar across languages. 

The way ID changes across different layers illustrates the sequential process by which 

Transformers compress and decompress linguistic representations. Although the ID profiles 

differ from one model to another, we can see the same three phases found in previous studies 

with models pre-trained on protein sequences and images (Valeriani et al., 2023) and with 

models pre-trained on linguistic data (Cheng et al., 2023). This can be seen in Figure 4 and in 

the line plots with languages divided by families (Appendix C). In particular, we can 

distinguish a first peak that reaches a local maximum, a second plateau or relative minimum 

phase, and one last (slight) ascent phase that usually ends with a reconstruction phase with a 

short descent of the ID. 

The ID profile of Mistral representations show a more drastic increase than the other 

models in the first peak. Moreover, it reaches the highest maximum ID value among the three. 

These facts make sense because, compared to the other analyzed models, the ambient 

dimension of Mistral representations is almost twice as large. 
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Figure 4: Average ID estimation for each layer on the English dataset with BLOOM 3B (left), 

XLM-RXL 3.5B (middle), and Mistral 7B (right). 

B. ID amplitude is similar among languages from the same family. 

We observe that languages from the same family or branch exhibit a similar range of 

ID values (see Appendix C). This suggests that the model’s learned linguistic properties, 

common among related languages, have an impact on the dimensionality of the representations. 

In Figures 5 and 6, we observe that the Slavic language branch and the Finno-Ugric 

language family are particularly well distinguished. One aspect to note about these is that the 

ID profile is flatter than with other languages, and this holds for both XLM-R and Mistral. The 

model representations for both language groups reach a lower dimensionality. In addition, the 

ID profile of the Finno-Ugric family languages is slightly flatter than the Slavic languages one. 

In contrast, although the Germanic and Romance language branches also form two 

distinct groups, the range of ID values is greater than for the previous cases. This is especially 

observed with Mistral, where the Germanic languages are more dispersed, mostly explained by 

the fact that the ID in English reaches much higher values. As Mistral has been (presumably) 

mostly trained on English, this result suggests that the ID on one language is impacted by the 

LM’s performance on that language (as we will show later). 
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 Moreover, results from Valeriani et al. (2023) revealed that the semantic information is 

best expressed at the end of the first peak, and Cheng et al. (2024) found that the end of the 

first peak is where the language model reaches a full representation of the semantics and the 

syntax. We can see more clearly the relation between the language families and the ID 

amplitude at that point, which for XLM-R is around layer 10 and for Mistral around layer 14. 

 

Figure 5: Average ID estimation for each layer on each family of languages (averaged across 

languages within each family) with XLM-RXL 3.5B. 
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Figure 6: Average ID estimation for each layer on each family of languages (averaged across 

languages within each family) with Mistral 7B. 

 

Figure 7: Average ID estimation for each layer on all languages (grouped by family) with 

XLM-RXL 3.5B. 
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Figure 8: Average ID estimation for each layer on all languages (grouped by family) with 

Mistral 7B. 

 

Figure 9: Average ID estimation at the first high-dimensionality phase (layer 10) on all 

languages (grouped by family) with XLM-RXL 3.5B. 
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Figure 10: Average ID estimation at the first high-dimensionality phase (layer 14) on all 

languages (grouped by family) with Mistral 7B. 

C. ID profile is flat on languages not present in the training dataset. 

Besides these results, it is interesting to see what happens when the model processes 

text from a language that was not present in its training dataset. Since we do not know the 

Mistral training dataset and the XLM-R training dataset includes all the languages we analyzed, 

we can examine the situation when BLOOM processes text from languages in which it was not 

trained. We get a similar ID profile for the 4 languages that were in its training dataset (English, 

French, Portuguese, and Spanish). However, the ID profile is much flatter and the first peak is 

severely reduced in those languages the model was not trained on (see Appendix D). This is 

coherent with Cheng et al. (2024) results, where they show that the first peak (corresponding 

to the first high dimensionality phase) is notably reduced when the model processes random 
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text. In these terms, text in an unknown language is similarly processed by the model as random 

text (permutations of words, altered word order, etc.). 

D. The ID profile is not or very little impacted by the syntax nor the script. 

As it can be seen in Figures 5 to 8, the ID profile remains almost the same for all 

languages: they present the same phases with similar lengths. This occurs both with languages 

of different but related branches (such as Indo-European languages) and with distant languages 

(such as Finnish and Spanish, for example). Moreover, the ID profile for Bulgarian is similar 

to that of other Slavic languages, although Bulgarian is the only language that uses Cyrillic 

script. The rest of the analyzed languages use Latin script. 

For these reasons, the syntax and the script of the linguistic data do not have a 

significant impact on the ID profile, suggesting that these do not play a significant role in the 

dimensionality of the hidden representations computed by the model. In contrast, as the datasets 

are semantically aligned, we can conclude that the semantic content is one of the factors that 

determine the ID profile, which is consistent with the results of Cheng et al. (2023), who found 

different ID profiles for different datasets under the same model. 

E. Dataset size and ID are not correlated. 

Looking at Figures 9 and 10, it appears that languages associated to the lowest IDs are 

the ones that could be described as low resource languages (e.g. Hungarian, Finnish, etc.). It is 

fair to expect that the size of a language in the training dataset is directly correlated with the 

ID amplitude at the end of the first peak. It is intuitive to think that if a model has been more 

heavily trained in one language than in another, the number of minimum parameters needed to 

span the vector space of representations in that language will be greater, which could also 

predict performance in that language. In fact, this is usually the case in rather extreme cases. 
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For instance, it is likely that in the Mistral training dataset there was much more English than 

any other language, and this is precisely reflected in Figure 8, where it can be seen how the ID 

reaches much higher values, attaining a higher overall dimensionality. It also happens with 

XLM-R, where the English training dataset is by far the largest (55,608M tokens) and it is the 

language that gets the highest ID at the first peak. 

That being said, we do not have information about Mistral training data, but we do have 

the XLM-R training dataset sizes divided by languages. We obtain that, for XLM-R, p-value 

is 0.88, quite above the standard threshold of 0.05, concluding that there is no statistically 

significant correlation between dataset size and ID amplitude at layer 10 (cf. Figure 11). 

However, transferability across languages could be affecting the results. XLM has been trained 

on 100 different languages. Hence, it is possible that, beyond the dataset size of individual 

languages, interactions between languages have an impact on the ID. 

 

Figure 11: Correlation between dataset size (in GiB) and ID at layer 10 with XLM-RXL 3.5B. 

We find no statistically significant correlation between the two. 
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F. Performance and ID of the first peak are correlated. 

Perplexity (PPL) is a measure that indicates how good a language model is at next-

token prediction. A low PPL means that the model is good at next-token-prediction on the 

dataset. We do find a statistically significant negative correlation between PPL and ID at the 

end of the first peak in XLM-RXL (cf. Figure 12)9, meaning that when the model performs well 

on a language (indicated by low PPL), the ID the first peak will be higher. On the contrary, if 

the PPL is high on a language, meaning that the model does not perform well on that language, 

the ID at the first peak will be lower and the whole ID profile will be flatter10. 

 

Figure 12: Pearson correlation between PPL and ID at layer 10 with XLM-RXL 3.5B. We find 

PPL and ID at layer 10 to be correlated. 

 
9 XLM-R is a masked language model; therefore, it is not possible to use the standard measure of perplexity. 

Instead, we used a variant called pseudo-perplexity (Salazar et al., 2020) 

10 We observe the opposite trend with Mistral: we get that PPL and ID at layer 14 are correlated. This is probably 

due to the fact that Mistral has not been trained on multiple languages, making cross-languages comparisons not 

trivial. See results in Appendix E. 
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Figure 13: Perplexity computed on our dataset per each language with XLM-RXL 3.5B. 

G. Multilingual LMs demonstrate strong cross-lingual transfer abilities. 

At a closer look, a number of insights into XLM-R transfer abilities can be drawn from 

Figures 12 and 13. Interestingly, Swedish is one of the languages in which the model performs 

best, according to the PPL measures on our dataset. However, the Swedish training dataset is 

only 77.8M tokens, being one of the languages with the lowest representation in the XLM-R 

training dataset11. Such behavior may probably be attributable to the model’s transfer abilities. 

In fact, XLM-R is a multilingual masked language model (MLM), and models trained with the 

MLM objective have been shown to be effective at cross-lingual transfer (Conneau et al., 

2019). 

 
11 Note that this size is very small. Other typically low-resource languages have much more representation in 

the training dataset. For instance, Georgian, Esperanto, and Icelandic datasets are, respectively, 469M, 157M 

and 505M tokens. Swedish is indeed minimally represented in XLM-R training dataset. 



 

36 

This assumption is reinforced in this case because even though Swedish is significantly 

underrepresented in the training dataset, other Germanic languages do comprise a large part of 

the tokens of the training dataset. Namely, English, German, and Danish datasets are, 

respectively, 55608M, 10297M, and 7823M tokens. In this scenario, the model could infer 

certain rules and linguistic properties from other Germanic languages, learning features shared 

with Swedish from closely related languages. This fact would explain why Swedish perplexity 

is so low even though it comprises a minimal portion of the training dataset. 

  Moreover, according to our PPL measures, Finnish is the worst performing language. 

However, XLM-R training dataset has 6730M Finnish tokens, a rather high number compared 

to the rest of the languages in the training dataset, and especially to languages which the model 

performs better on. Finnish belongs to the Finno-Ugric language family, which also includes 

Estonian and a few minority languages from the Baltic Sea area, so it is a rather isolated branch 

of languages. In the same scenario as before, this could explain the model’s poor performance 

in Finnish. 

6. Limitations and Further Research 

This study provides some valuable insights into the impact that languages have on the 

geometric compression of representations in transformer-based multilingual language models. 

Moreover, some of our results complement those obtained in previous studies on the topic 

(Valeriani et al., 2023; Cheng et al., 2023; Cheng et al., 2024), since we aim to build upon these 

novel findings and provide a more fine-grained analysis based on them. However, this study 

also presents certain limitations that should be taken into account in order to correctly 

contextualize the results obtained and to define future lines of research. The following primary 

limitations can be highlighted: 
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A. Model diversity. 

Our study is limited to three specific models: BLOOM 3B, XLM-RXL 3.5B, and Mistral 

7B. Each of these models has distinct characteristics and training datasets, which may influence 

their behavior and performance. BLOOM and XLM-R are explicitly designed for multilingual 

contexts, whereas Mistral is not specifically optimized for multiple languages. In addition, the 

pre-training objective is also different, as BLOOM is a causal LM and XLM-R is a masked 

LM. This lack of uniformity in model design and training can affect the comparability of results 

across models. However, this was also our intention, since introducing this diversity meant that 

we avoided making the scope of the research too narrowly focused, which could prevent the 

results from being generalizable. 

Future research should include a broader range of multilingual language models, 

including those specifically designed for multilingual settings and others that are not. This 

would provide a more comprehensive understanding of how different model architectures and 

training objectives affect geometric compression across languages. In addition, it would be 

ideal if situations like Mistral’s, where the training dataset is unknown, could be avoided in the 

future. However, this is not always possible, as the best performing LMs are usually not open-

source. 

B. Limited range of languages. 

Although the Europarl corpus is well-suited for our study due to its aligned multilingual 

data, it only covers European languages. For this reason, the majority of the languages analyzed 

belong to the Indo-European family of languages, with the exception of Finnish, Hungarian 

and Estonian, which belong to the Finno-Ugric family. 
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Expanding the dataset to include non-European languages, especially distant languages, 

would test the robustness and generalizability of the findings. This could also include languages 

with non-Latin scripts, since all the analyzed languages use Latin script, with the exception of 

Hungarian, which uses Cyrillic script. This is also a limitation, as we find that Cyrillic script in 

Hungarian does not introduce any ID variability, but it would be interesting to check if this 

holds true for other scripts and for a wider range of languages. 

C. Domain diversity. 

The Europarl corpus contains only European parliamentary proceedings. This is not 

necessarily a drawback, since we wanted a semantically aligned dataset on one specific 

discourse domain. However, replicating the experiment on other specific domains would 

provide robustness to the generalizability of the results. 

D. Fine-grained linguistic analysis. 

Finally, although we have tried to keep the interference of uncontrolled parameters to 

a minimum, it would be valuable to carry out very specific research that further reduces 

uncontrolled parameters. For instance, by comparing closely related languages and making 

datasets that introduce little variability in terms of linguistic properties (numerous probes to 

test specific linguistic features have already been proposed), it would be possible to study in 

more detail which linguistic features are actually learned by the model and have an impact on 

geometric compression. 
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7. Conclusion 

In this study, we explored the geometric compression of linguistic data across multiple 

languages in multilingual language models. In particular, we did so by estimating the intrinsic 

dimension (ID) of hidden representations across the layers of three different models: BLOOM, 

XLM-RoBERTa, and Mistral. For this purpose, we needed a semantically aligned dataset, in 

order to avoid interference and study only the language variable. In order to obtain a dataset in 

the correct form for our analysis, we performed a specific preprocessing on the Europarl corpus, 

which was already a convenient corpus for our needs. This way, we were able to analyze the 

ID profiles for various languages, providing insights into how these models compress 

information and handle the same semantic content in different languages. 

Our results are aligned with those obtained in previous studies. Specifically, we get that 

the ID of the representations computed by the models are 2 orders of magnitude inferior to the 

extrinsic dimension, which reinforces the idea that language models compress large amounts 

of linguistic data into their basic parameters in much smaller vector spaces. However, we 

extend these insights into the field of multilingual LLMs, revealing distinct compression 

patterns when these models process texts in different languages. 

One key finding is that while the ID profile remains largely consistent across languages, 

the ID amplitude varies, particularly among distant languages. This suggests that (1) the syntax 

and the script do not have an impact on the ID profile, but semantic content does, and (2) the 

model infers certain linguistic properties that results in similar ID amplitude among closely 

related languages. For instance, languages from the Slavic and Finno-Ugric families exhibit 

flatter ID profiles with lower dimensionality, whereas Germanic and Romance languages 

display greater ID values. 
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Another significant finding is the correlation between model performance, as measured 

by perplexity (PPL), and ID amplitude at the first peak. For XLM-R, higher ID at the first high-

ID phase correlates with better performance on next-token prediction, indicating that the model 

performs better on languages with higher. This relationship, however, is not present in Mistral, 

likely due to differences in training data and model architecture (causal vs. masked LMs). We 

also find strong cross-lingual transfer abilities in XLM-R. In this case, we find that languages 

poorly represented in the training dataset perform well, as long as there are similar languages 

(of the same branch or family) that are also present in the training dataset. 

In summary, our study sheds light on the compression process of multilingual LLMs, 

building upon previous work and offering some insights into how they handle linguistic data. 

Our findings emphasize the relevance of linguistic properties and features in shaping the 

geometric compression patterns of Transformer-based multilingual LMs. Finally, future 

research may address the limitations of this study and help with the potential generalizability 

of these results. 
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Appendix A 

Datasets Preprocessing: Examples From the Original and the Final Datasets 

5 elements from the original en-es Europarl dataset: 

{ “en”: “My intention with these proposals to adjust agricultural prices is to send a clear 

message to the European farming community. I want to assure them that this House intends to 

defend their legitimate interests at a particularly difficult time when doubt is creeping in among 

farmers, particularly the younger ones.”, “es”: “Con las propuestas de adaptación de los precios 

agrícolas he querido enviar una señal fuerte al campesinado europeo para confirmarle que este 

Parlamento defiende sus intereses legítimos en una época especialmente difícil en la que las 

dudas asaltan a los profesionales, principalmente a los jóvenes.” } 

{ “en”: “As this directive is implemented in Greece, if someone is treated in a psychiatric clinic 

even for a single day, the clinic is obliged to inform the police and the police the Ministry for 

Traffic, with the consequence that the licence is revoked immediately.”, “es”: “En aplicación 

de esta directiva, en Grecia sucede que, cuando alguien está en tratamiento, aunque sea por 

solo un día, en una clínica psiquiátrica, ésta tiene la obligación de informar a la policía, y la 

policía, a su vez, al Ministerio de Tráfico, lo cual lleva a la privación inmediata del permiso.” 

} 

{ “en”: “And look what is happening: the number is rising all the time.”, “es”: “Y hete aquí: la 

cifra sigue aumentando.” } 

{ “en”: “The final version of the draft agenda for the present part-session as drawn up by the 

Conference of Presidents at its meeting of 17 February pursuant to Rules 130 and 131 of the 

Rules of Procedure has been distributed.”, “es”: “Se ha distrubuido el proyecto definitivo del 

orden del día del presente período parcial de sesiones, de acuerdo con lo aprobado por la 

Conferencia de Presidentes, en su reunión del jueves 17 de febrero pasado, y de conformidad 

con los artículos 130 y 131 del Reglamento.” } 

{ “en”: “The characteristic picture in Greek families with students finishing high-school is that 

in the evening, when the father or mother get home from work, the 17- or 18-year-old child sits 

there reciting the book to them from memory, because self-testing is not good enough.”, “es”: 

“La imagen característica de los estudiantes que finalizan el instituto en las familias griegas es 

por la noche, cuando el padre y la madre regresan del trabajo y el chico de 17 o 18 años se 

sienta y les recita la lección de memoria. Porque él mismo no debe controlarse.” } 

  

Same 5 elements as they appear in our English en-es dataset after preprocessing: 

My intention with these proposals to adjust agricultural prices is to send a clear message to the 

European farming community. 
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I want to assure them that this House intends to defend their legitimate interests at a particularly 

difficult time when 

 doubt is creeping in among farmers, particularly the younger ones. As this directive is 

implemented in Greece, if someone is 

 treated in a psychiatric clinic even for a single day, the clinic is obliged to inform the police 

and the 

 police the Ministry for Traffic, with the consequence that the licence is revoked immediately. 

And look what is happening: the 

 number is rising all the time. The final version of the draft agenda for the present part-session 

as drawn up 

 by the Conference of Presidents at its meeting of 17 February pursuant to Rules 130 and 131 

of the Rules 

 of Procedure has been distributed. The characteristic picture in Greek families with students 

finishing high-school is that in the evening, 

 when the father or mother get home from work, the 17- or 18-year-old child sits there reciting 

the book to 

 them from memory, because self-testing is not good enough. […] 

  

Same 5 elements as they appear in our Spanish en-es dataset after preprocessing: 

Con las propuestas de adaptación de los precios agrícolas he querido enviar una señal fuerte al 

campesinado europeo para confirmarle 

 que este Parlamento defiende sus intereses legítimos en una época especialmente difícil en la 

que las dudas asaltan a los 

 profesionales, principalmente a los jóvenes. En aplicación de esta directiva, en Grecia sucede 

que, cuando alguien está en tratamiento, aunque 

 sea por solo un día, en una clínica psiquiátrica, ésta tiene la obligación de informar a la policía, 

y la 

 policía, a su vez, al Ministerio de Tráfico, lo cual lleva a la privación inmediata del permiso. 

Y hete aquí: 

 la cifra sigue aumentando. Se ha distrubuido el proyecto definitivo del orden del día del 

presente período parcial de sesiones, 
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 de acuerdo con lo aprobado por la Conferencia de Presidentes, en su reunión del jueves 17 de 

febrero pasado, y 

 de conformidad con los artículos 130 y 131 del Reglamento. La imagen característica de los 

estudiantes que finalizan el instituto 

 en las familias griegas es por la noche, cuando el padre y la madre regresan del trabajo y el 

chico 

 de 17 o 18 años se sienta y les recita la lección de memoria. Porque él mismo no debe 

controlarse. 
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Appendix B 

Datasets Preprocessing: Algorithm in Pseudo-Code 

    FUNCTION process_sentences(sentences) 

     # Add a dot at the end of sentences if there isn't one already 

     FOR EACH sentence IN sentences 

         IF sentence DOES NOT END WITH punctuation THEN 

             APPEND '.' TO sentence 

         ENDIF 

     ENDFOR 

  

     # Concatenate all sentences into a single string 

     concatenated_sentences = CONCATENATE sentences WITH " " 

  

     # Split concatenated sentences into words 

     words = SPLIT concatenated_sentences BY " " 

  

     # Initialize variables 

     lines = EMPTY LIST 

     line = "" 

  

     # Create lines with 20 words each 

     FOR EACH word IN words 

         IF COUNT OF words IN line < 20 THEN 

             APPEND word TO line 

         ELSE 

             REMOVE trailing space FROM line 

             APPEND line TO lines 

             line = word + " " 

         ENDIF 

     ENDFOR 

  

     # Append the last line if it is not empty 

     IF line IS NOT EMPTY THEN 

         APPEND line TO lines 

     ENDIF 

  

     RETURN lines 

 

    END FUNCTION 
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Appendix C 

Figures: ID at Each Layer on All Languages (Grouped by Family) With XLM-R and 

Mistral 

 

Figure C.1: Average ID estimation for each layer on all languages (grouped by family) with 

XLM-RXL 3.5B. 
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Figure C.2: Average ID estimation for each layer on all languages (grouped by family) with 

Mistral 7B. 
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Appendix D 

Figures: ID Estimation for Each Layer on Indo-European Languages Divided by 

Branch With BLOOM 

 

Figure D.1: Average ID estimation for each layer on Germanic languages with BLOOM 3B. 
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Figure D.2: Average ID estimation for each layer on Romance languages with BLOOM 3B. 

 

Figure D.3: Average ID estimation for each layer on Balto-Slavic languages with BLOOM 3B. 
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Appendix E 

Figure: Pearson Correlation Between PPL and ID at Layer 14 With Mistral 

 

 

Figure E.1: Pearson correlation between PPL and ID at layer 14 with Mistral 7B. We find 

PPL and ID at layer 14 to be negatively correlated. 

 

 


