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    Chapter 15   

 Visualizing GO Annotations                     

     Fran     Supek      and     Nives     Škunca     

  Abstract 

   Contemporary techniques in biology produce readouts for large numbers of genes simultaneously, the 
typical example being differential gene expression measurements. Moreover, those genes are often richly 
annotated using GO terms that describe gene function and that can be used to summarize the results of 
the genome-scale experiments. However, making sense of such GO enrichment analyses may be challeng-
ing. For instance, overrepresented GO functions in a set of differentially expressed genes are typically 
output as a fl at list, a format not adequate to capture the complexities of the hierarchical structure of the 
GO annotation labels. 

 In this chapter, we survey various methods to visualize large, diffi cult-to-interpret lists of GO terms. 
We catalog their availability—Web-based or standalone, the main principles they employ in summarizing 
large lists of GO terms, and the visualization styles they support. These brief commentaries on each soft-
ware are intended as a helpful inventory, rather than comprehensive descriptions of the underlying algo-
rithms. Instead, we show examples of their use and suggest that the choice of an appropriate visualization 
tool may be crucial to the utility of GO in biological discovery.  
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1      Introduction 

 We have entered the era of massive data sets in biology. A variety 
of experimental and computational techniques can produce read-
outs for many genes—or whole genomes—simultaneously. 
Moreover, we can also assign rich functional annotations to most 
of the genes of interest. Such a wealth of data is accompanied with 
challenges in interpretation. 

 In this chapter, we focus on methods that visualize long lists of 
Gene Ontology (GO) terms [ 1 ]. The methods we survey take as 
input a fl at list of GO terms, often accompanied by some user- 
supplied measure of statistical signifi cance or importance. 
Visualization methods summarize such lists to distil the most rele-
vant information. Finally, these methods produce various styles of 
visualization that can aid interpretation. 
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 First, we examine the challenges related to understanding large 
lists of GO terms; second, we provide a systematic overview of the 
published methods that address these challenges; third, we discuss 
different visualization styles these methods use; and fourth, we 
give usage examples for a selection of these tools.  

2    Understanding Large Lists of Genes and Their Gene Ontology Labels 

 A classical example of a large biological dataset are gene expression 
measurements by RNA-Seq, which monitor the genome-wide 
changes in transcriptional regulation between experimental condi-
tions. Typically, tens or hundreds of genes will be upregulated or 
downregulated in response to a particular treatment. This indicates 
that a systems-level change in the experimental model has occurred, 
which may be described by examining the common properties of 
the genes whose expression was altered. Do these genes participate 
in the same metabolic or signaling pathways? Do they perform 
similar biochemical functions? Do their protein products co- 
localize in the cell? Formally, such sets of genes are subjected to 
statistical tests for enrichment for various functional categories [ 2 ]. 
The gene functions tested are typically described by Gene Ontology 
(GO) terms [ 3 ], although alternatives such as KEGG Pathways or 
CORUM protein complexes can be used. 

 Of note, such GO enrichment analyses are by no means restricted 
to experiments measuring changes in gene expression, nor to experi-
mental data in general. Any list of genes for which interpretation is 
sought can be described using enriched GO terms and it could, for 
instance, derive from comparative genomics. In particular, one could 
perform an evolutionary analysis to look at biological roles of gene 
families that have expanded in a certain eukaryotic lineage, e.g., [ 4 ]. 
Similarly, a researcher may wish to describe the overall functional 
repertoire in a newly sequenced genome, while comparing to exist-
ing genomes of related organisms. 

   As Chap.   3     [ 5 ] describes, the GO is a hierarchical structure, wherein 
the individual terms can have not only multiple descendants, but 
also multiple parents; more formally, GO is a directed graph; the 
basic version of the GO is also a directed  acyclic  graph (Chap.   3     1  
[ 5 ]; Fig.  1 ). This complex structure, along with its large size—the 
GO has thousands of nodes—make it challenging to display the 
part(s) of the GO of interest. For instance, a list of GO terms found 
to be enriched in a gene expression experiment could be concen-
trated in one part of the GO graph.

   A further complication is that such lists of interesting GO terms 
tend to be large, meaning that many different biological processes or 
molecular functions may appear to be affected in the experiment. 

1
   http://geneontology.org/page/download-ontology 

2.1  Challenges 
in Interpreting Lists 
of Enriched GO Terms
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One reason for this is that the GO itself is designed and developed to 
describe nuances in gene function as exhaustively as possible; conse-
quently, many of the GO terms will be partially redundant. For instance, 
many of the genes participating in “translation” (GO:0006412) are 
also structurally a part of “ribosome” (GO:0005840). 

 In addition to the inherent redundancy of the GO, responses of 
biological systems to experimental perturbation often genuinely 
involve coordinated activity of many related and/or overlapping 
subsystems. For example, replicating cells facing DNA damage may 
upregulate “nucleotide-excision repair” (GO:0006289) to help fi x 
the lesions, but at the same time resorting to “error-prone transle-
sion synthesis” (GO:0042276) to ensure DNA replication fi nishes.  

   GO term enrichment analyses often result in lists of signifi cant 
GO terms that are both long and redundant, hampering interpre-
tation. Various methods to visualize such lists may help investiga-
tors spot dominant trends in the data, leading to novel biological 
insight. Such visualizations mostly operate by different ways of 
grouping and displaying similar GO terms together, wherein the 
structure of the GO defi nes what is similar and what is not (see 
 semantic similarity analysis  below). In its simplest form, this 
involves displaying a part of the GO hierarchy with the GO terms 
of interest highlighted and their parent–child relationships 
shown. Displaying also the user-supplied experimental data may 
help prioritize which GO terms, among many similar ones, are of 
higher interest. 

 We suggest that having an unbiased way to algorithmically 
organize GO terms derived from experimental data helps prevent 
unintentional biases in interpretation. If unaware of the overall 
semantic structure in the set of signifi cant GO terms, the investigator 
may pick one or two GO terms in the list that “make sense,” in 
terms of fi tting with their expectations. By visualizing the interre-

2.2  Visualizing 
the GO to Facilitate 
Insight and Avoid 
Biases

  Fig. 1    A subset of the Gene Ontology Directed Acyclic Graph (DAG) for the GO 
term “vesicle fusion” (GO:0006906). The GO is a DAG: terms are nodes, while the 
relations are edges. Two main relation types between terms are “is_a” and 
“part_of.” More specifi c terms are found deeper in the graph. Thus, if a gene 
product is annotated with a GO term, it is by defi nition also annotated with all the 
parent terms of that GO term       
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lationships between the GO terms alongside the statistical support 
for each in the experimental data could help avoid focusing on 
outlying—and perhaps spurious—results. In addition, one could 
be made aware of the common pitfall where one GO term is cho-
sen, while other similarly statistically supported terms are ignored. 
Finally, and very importantly, a good visualization is also an effec-
tive means of presenting summaries of scientifi c results, whether in 
papers, presentations or posters.   

3    Overview of the GO Visualization-Related Tools 

 Here we systematize and describe the currently available tools for 
visualizing sets of GO annotations. Additionally, we highlight three 
of these tools in more detail. The tools and the underlying meth-
ods they implement can be classifi ed thusly:

    1.     Interactive GO browsers.  Tools for interactively browsing the 
entire GO and also the genes known to be annotated with 
chosen GO terms. Importantly, these do not take into account 
a user-supplied set of annotations of interest, e.g., derived from 
an enrichment analysis of experimental data. Visualization is 
typically not emphasized and not confi gurable. See AmiGO 
[ 6 ] and QuickGO [ 7 ]. Of note, OLSVis [ 8 ] can display other 
biomedical ontologies in addition to the GO.   

   2.     Network visualization tools.  These are not particular to the 
GO, but can display any kind of graph, including the GO or a 
part thereof. The visualization options are highly confi gurable; 
however, since these tools were not designed specifi cally for 
GO, they tend to be more complicated to use. See Cytoscape 
[ 9 ], Gephi [ 10 ], and Pajek [ 11 ].
   (a)    Of note, there are Cytoscape plugins specialized for han-

dling groups of GO terms: EnrichmentMap [ 12 ] and 
BINGO [ 13 ].    

      3.     GO visual overlays.  Tools that can visualize an interesting sub-
set of the GO, and display some additional data about each 
shown GO term. Typically, this involves coloring the GO terms 
by the enrichments or p-values determined from user-supplied 
gene lists (these tools tend to also perform the GO enrichment 
analysis). They display the terms arranged by parent–child rela-
tionships, in a tree-like visual layout. Examples include GOrilla 
[ 14 ], GRYFUN [ 15 ], GOFFA [ 16 ], and SimCT [ 17 ].
   (a)    In addition to the GO, similar tools are available which can 

highlight the individual members in displayed KEGG 
pathways [ 18 ]; the pathways can also be shown in a KEGG 
BRITE functional hierarchy with FuncTree [ 19 ].    

      4.     Semantic similarity analysis.  Tools that examine the semantic 
similarity (redundancy) between various GO terms, including 
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those that are not linked by direct parent–child relationships. 
The similarities are used to organize a set of interesting GO 
terms into clusters and/or graphs, while simultaneously allow-
ing highly redundant terms to be fi ltered out. The user can 
supply enrichments or p-values to prioritize results. 
Implemented in REVIGO [ 20 ] and RedundancyMiner [ 21 ].
   (a)    Some provisions for this are made in g:Profi ler [ 22 ], which 

collapses similar GO terms.   
  (b)    The Ontologizer [ 23 ] can perform a statistical test for 

enrichment that accounts for the parent–child redundancy 
[ 24 ] prior to visualizing results.    

      5.     Emerging methods.  These may involve display of the trends 
underlying a group of GO terms in a so-called “tag cloud” 
(with text in various colors and sizes), or in a tree map (a hier-
archical organization of colored tiles), as in REVIGO [ 20 ] or 
GOSummaries [ 25 ]. Additionally, several tools now support 
the display of multiple GO enrichment analyses side-by-side; 
see BACA [ 26 ] or GOSummaries. SimCT [ 17 ] can display 
subtrees of other biomedical ontologies in addition to the GO.      

4    Case Studies with Selected Tools 

  GOrilla  [ 14 ] is a Web-based tool that can take two types of input: 
either a ranked list of genes or two lists, one with the target genes and 
the other with the background genes. As output, GOrilla produces a 
visualization that indicates which terms are signifi cantly enriched. 

 We focus here on the enrichment analysis that takes a ranked 
list of genes. Briefl y, the null hypothesis is that the occurrences of 
a GO term at various points in the ranked list are equiprobable. 
Lower  p -values indicate a higher confi dence for a GO term to be 
enriched towards the top of the list. 

 As an example analysis, we downloaded a dataset of transcrip-
tion profi ling by microarray of human peripheral blood 
 mononuclear cells after a treatment with  Staphylococcus aureus  and 
incubation for different lengths of time [ 27 ], obtained from the 
Gene Expression Atlas [ 28 ] at   http://www.ebi.ac.uk/gxa/
experiments/E-GEOD-16837    . In the GOrilla Web interface 
(  http://cbl- gorilla.cs.technion.ac.il/    ), we set the p-value threshold 
to 10 −3 , and the remaining settings were the defaults in the tool. 

 The display is shown in Fig.  2 . Based on the color of the boxes, 
the user can visualize which GO terms are enriched, and the con-
necting lines describe their relationship to other terms in the GO 
graph.

    REVIGO  [ 20 ] analyzes large lists of signifi cant GO terms and 
removes the redundant terms, in order to further narrow the search 
to a set of nonredundant and highly signifi cant GO terms. Briefl y, 
REVIGO creates clusters of GO terms that are semantically similar, 
and selects one representative for each cluster. 

Visualizing GO Annotations
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 One possible input for REVIGO is a list of GO terms with the 
associated p-values, such as the output list from GOrilla. 
Alternatively, REVIGO can take as input any other list of GO terms, 
with or without associated numerical values, and provide various 
styles of visualization. First, a scatterplot that distributes the GO 
terms, represented as bubbles, in a 2D space that will put two GO 
terms closer together if they are more semantically similar. Second, 
an interactive graph that connects the user-supplied set of GO terms 
based on the structure of the GO hierarchy. Third, a TreeMap 
where terms are clustered and clusters displayed as colored tiles. 
Fourth, REVIGO provides a word cloud that highlights the most 
frequent keywords in the names and descriptions of the GO terms. 

 To perform the analysis, we used the setting in GOrilla to 
automatically forward its GO term enrichment results as a query 
to the REVIGO tool. In REVIGO, we used the default settings. 

  Fig. 2    A visualization of the Biological Process Gene Ontology annotations using GOrilla. The dataset used is a 
microarray transcription profi ling of human peripheral blood mononuclear cells after treatment with 
 Staphylococcus aureus  (Expression Atlas dataset ID E-GEOD-16837). The GOrilla settings were left at default 
values:  p -value threshold of  p  < 10 −3 , organism  Homo sapiens  and running mode “single ranked list”       

Fig. 3 (continued) while its size refl ects the generality of the GO term in the UniProt-GOA database. ( b ) The 
table view shows the list of all the input GO terms: those shown in the scatterplot are written in regular font, 
while those labeled as redundant by REVIGO are shown in  gray italics        
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  Fig. 3    Visualizations of Biological Process GO annotations using REVIGO: scatterplot and table views. The data-
set used was imported from GOrilla (see legend of Fig.  2 ). We used the default settings of the REVIGO tool. 
( a ) The scatterplot view visualizes the GO terms in a “semantic space” where the more similar terms are 
positioned closer together [ 20 ]. The color of the bubble refl ects the p-value obtained in the GOrilla analysis, 

 



  Fig. 4    Visualizations of Biological Process GO annotations using REVIGO: TreeMap ( a ), interactive graph ( b ) and 
word cloud views ( c ). The dataset used was imported from GOrilla (see legend of Fig.  2 ). We used the default 
settings of the tool       
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The results are shown in Figs.  3  and  4 . The various visualization 
styles highlight the GO terms that are enriched in the input 
dataset.

     RedundancyMiner  [ 21 ] is another tool that focuses on non-
redundant terms in a large list of enriched GO terms, producing a 
Clustered Image Map (CIM) as a result. It is a part of a larger 
pipeline: RedundancyMiner relies on GOminer input and on CIM 
miner for visualization. In particular, RedundancyMiner performs 
Fisher’s exact tests for each pair of GO terms in the datasets, calcu-
lating whether the two sets of genes annotated with these GO 
terms are overlapping. A symmetrical matrix of these p-values is 
subsequently analyzed to arrive to a set of GO terms that are most 
independent, and therefore least redundant. 

 To perform the analysis, we started with the same fi le as 
for the two tools described above. First, we generated two fi les 
using a custom Python script: (1) a fi le containing all the genes 
in the array and (2) a fi le containing the genes that are over or 
underexpressed, labeled with “1” or “−1,” respectively. Of note, 
Python is not necessary for RedundancyMiner and these fi les 
could be generated otherwise. Second, we put these fi les as input 
for the GOminer tool (  http://discover.nci.nih.gov/gominer/
GoCommandWebInterface.jsp    ). We selected the databases that 
contain  Homo sapiens  data and as the organism we set  H. sapi-
ens . The remaining parameters were the defaults in the tool. 
Third, we used the resulting folder as the working folder for 
RedundancyMiner and we ran the analysis in default mode. Finally, 
we visualized the resulting CIM fi le using cimMiner [ 29 ], avail-
able at   http://discover.nci.nih.gov/cimminer/home.do    , in single 
matrix mode. 

 Results of our example analysis are shown in Fig.  5 . Even with 
the stringent threshold of requiring the log 2  fold change greater 
than 5, similar trends in signifi cant GO terms are visible as shown 
with the remaining two tools.

5       Choice of Visualization 

 Above, we have outlined some of the currently available software 
tools that can visualize a set of GO terms. We have also argued that 
a good visualization is an effective means of discovering underlying 
trends in the data in an unbiased fashion; an appropriate visual dis-
play is also imperative when communicating the results to others. 
The question of which software tool to apply should be addressed 
keeping these goals in mind. A related yet distinct question is which 
specifi c visualization method to choose. Here, we give a summary 
of the available options. Of note, the authors of this text are also the 
developers of REVIGO [ 20 ], a versatile visualization tool, which 
implements several of the approaches listed below.
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    1.     Graphs/networks.  The GO graph consists of  nodes  (here, Gene 
Ontology terms) and  edges  (here, parent–child relation-
ships), which connect the nodes and which have directional-
ity. Nodes and edges can have multiple attributes that can be 
visualized. For instance, the enrichment of a GO term in a 
user’s experiment may be shown as a color of a node (Fig.  2 ). 
Importantly, the spatial arrangement of the nodes on the 
fi nal plot is called a  layout , and is often created to suggest 
related clusters of nodes by placing similar nodes closer 
together. Such approaches are reviewed and demonstrated 
by Merico et al. [ 30 ]; tools like Cytoscape [ 9 ] support a vari-
ety of visual layouts.
   (a)    A special case of a layout is a tree-like display that high-

lights the ‘levels’ in the Gene Ontology and the parent–
child relationships between terms (e.g., Fig.  2 ). These 
levels (determining the  depth  of a node in the graph) are 
often used as a measure for how general the GO term is. 
However, this may be misleading in some instances—for 
example, the Molecular Function ontology is more shal-
low than the Biological Process ontology—and we there-
fore recommend the use of the  information content  (IC) 
measure [ 31 ] for this purpose. This is defi ned as the negative 

  Fig. 5    A visualization of a set of Biological Process GO annotations using RedundancyMiner. The dataset used 
is a microarray transcription profi ling of human peripheral blood mononuclear cells after treatment with 
 Staphylococcus aureus . For this visualization, we focus on genes that had log2 fold change greater than 5       
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logarithm of the relative frequency of the respective term 
annotations in some underlying database, such as the 
UniProt-GOA [ 32 ].    

      2.     Semantic similarity space.  Various mathematical methods mea-
sure the semantic similarity between pairs of GO terms, such as 
SimRel [ 33 ]; see ref.  34  for a review. If the fi rst term in a pair 
is a direct parent, child or sibling of the second term, their 
semantic similarity will be very high. However, also the more 
distantly related terms will show some degree of similarity, as 
long as they reside in a common branch of the GO tree struc-
ture. Many such pairwise similarities within a group of GO 
terms can be processed by a projection technique, such as  prin-
cipal components analysis  (PCA) or  multidimensional scaling . 
The resulting plots preserve as much of the original pairwise 
distances as possible, while showing all supplied GO terms in a 
two- dimensional plane. The main visualization in REVIGO is 
based on this approach (Fig.  3a ).   

   3.     Treemaps.  Hierarchical diagrams consisting of tiles subdivided 
into smaller tiles. Treemaps are good for interactive explora-
tion, as they can be ‘zoomed in’ by clicking a tile and revealing 
fi ner levels of subdivisions. Here, tiles can be GO terms and 
the subdivisions their child terms. The tile sizes may corre-
spond to some measure of importance of GO terms to the 
user, such as enrichment or p-values. REVIGO has an imple-
mentation of this visualization approach (Fig.  4b ).   

   4.     Word clouds.  A display with text shown in various sizes and pos-
sibly colors. Here, the individual words or short phrases may be 
the names of the GO terms or some keywords associated to the 
GO terms. The text size/color may convey the importance to 
the user (enrichment), or in some instances generality of a GO 
term (see  information content  above). This visualization method 
is implemented in GOSummaries and REVIGO (Fig.  4c ).   

   5.     Clustered Heatmaps.  Two-dimensional grids of values, wherein 
the rows and/or columns are clustered to reveal the ‘block 
structure’ in the data. Clustered heatmaps are often used for 
showing high-dimensional data in biology, but rarely so for 
GO terms. In fact, this could be done to show the GO terms’ 
similarity based on what genes are annotated to them, or on 
the terms’ semantic similarity (which is defi ned by the struc-
ture of the GO graph). An example implementation can be 
found in RedundancyMiner (Fig.  5 ).    

  In addition to the above, many of the tools specializing in GO 
enrichment testing (or in other analyses of large-scale biological 
data) often come bundled with visualizations that include GO as 
an important context. Examples include the Bioconductor pack-
ages GOexpress, GOfunction and GOSim. In addition, it is often 

Visualizing GO Annotations



218

possible to customize such displays in more detail by manually 
passing the GO data to a dedicated visualization software, such as 
the  ggplot2  package [ 35 ] in R, or to  gnuplot  software. For example, 
a specialized software to draw treemaps can be made to display GO 
enrichments from a biological experiment via a script that prepares 
the data in a correct format [ 36 ]. REVIGO will draw bubble charts 
where the GO terms are displayed in a semantic similarity space 
[ 20 ], and it can export a  ggplot2  script which is further customiz-
able for e.g., font sizes, colors, and line styles; it can similarly export 
a graph to be further customized in Cytoscape.  

6    Concluding Remarks and Outlook 

 In summary, we outline several tools that biologists can use to visual-
ize sets of Gene Ontology terms and uncover novel and interesting 
trends in their experimental data. We anticipate that the future will 
bring even more massive biological data sets, which will have several 
consequences. First, the lists of interesting GO terms will grow in 
length, as larger sample sizes afford more statistical power to detect 
associations. Therefore, refi nements of the existing approaches that 
address redundant GO terms [ 20 ,  21 ] will come in useful. Second, 
the visualization software will need to deal with more than a single 
list of enriched GO terms. While some current tools can display such 
results from multiple experiments side-by- side, e.g. BACA [ 26 ], 
tools will be needed that can integrate such lists and extract patterns 
across them. Finally, while GO is a prominent example of an ontol-
ogy used by biologists, it is far from the only one [ 37 ]—over 100 
biomedical ontologies exist that describe environments, phenotypes, 
and chemical entities ( see  Chap. 19) [ 38 ]. We foresee substantial 
developments in the tools that can summarize and visualize results of 
various biological experiments in the context of such emerging 
ontologies.     
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