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Abstract 

The process by which the brain develops from a smooth surface at early weeks of gestation to a 

folded surface with sulci and gyri at the neonatal stage is still an unsolved question. Despite the 

hypotheses proposed by several theories, the lack of large data at different developmental stages 

and limitations in computational resources have made it difficult to develop mechanical models 

of brain growth to better understand which mechanisms control the cortical folding process and 

test different hypothesis about the most relevant factors guiding this phenomenon. An additional 

challenge is to work with finite-element meshes (FEM) in this application, due to the large 

deformations undergone in brain development that can generate overlapping elements, which 

hamper obtaining the correct solutions and prevent the simulations to converge. Thus, meshless 

modelling techniques could give a solution to that issue since they are based on particles, not 

requiring node connectivity and being robust against complex mechanisms such as brain 

folding. The main goal of this TFG is setting the first steps that could allow modelling cortical 

folding through meshless methods. To do so, a Smoothed Particle Hydrodynamics (SPH) 

environment built for modelling cardiac mechanical motion was adapted in order to incorporate 

the mechanical equations that describe the gyrification process. Then, the results were assessed 

by making a comparison with the current FEM-based implementations in simplified synthetic 

scenarios. 
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Preface 

 

Brain develops from a smooth surface into a highly folded structure during the foetal stage. This 

process, also known as gyrification, is considered complex and not well understood. Alterations 

during it can lead to severe neurodevelopment growth abnormalities. While 10% of children are 

affected by neurodevelopment alterations, one third of all disorders will be diagnosed after 

birth, which limits the time for their intervention. Therefore, there is a need for further 

understanding the brain cortical folding process. 

Different hypotheses have been postulated so as to explain which are the mechanisms that drive 

gyrification. These theories have proposed that the skull constraints the brain’s growth and 

generates a compressive force that folds the brain’s surface, that two axons wired together can 

pull connected brain surface regions together or that complex genetic pathways generate a 

differential tissue growth that end up in the formation of folds. However, although any of these 

hypotheses exclude the others, the one that is considered as more likely is a differential growth 

between the cortex and subcortical layers. If the cortex is assumed to grow faster than the 

subcortical layers, a compressive force is generated and thereby folds are formed. 

Gyrification has been studied in experimental setups to measure various physical parameters 

and, in some cases, they are coupled with computational modelling. These numerical 

approaches are becoming a powerful predictive tool that can propose new insights to better 

comprehend the brain’s folding process. Mesh-based methods are the most used ones for their 

maturity and robustness. Nevertheless, they are not optimal for modelling high deformations, 

which are a feature encountered in gyrification and prevent obtaining the correct simulation. 

Thus, mesh-free techniques, overcoming these limitations by using unconnected particles 

representing the geometry, have the potential to be used for studying the brain’s cortical folding 

process. However, such techniques have never been used in this context. 

In this project, a framework for the study of cortical folding in the context of brain development 

through meshless methods is presented. A pre-processing pipeline for generating synthetic 

meshless models together with the adaptation of a mesh-based gyrification biomechanical 

model so as to be used in a meshless environment have been developed.  
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1. INTRODUCTION 

1.1. Foetal brain development 

 
Brain development in foetal stage, which lasts during three trimesters, involve, in broader terms, 

the formation of a complete network composed of millions of neurons and connections from a 

slim cell layer [1]. As such, this process is generally regarded as complex, and structural 

abnormalities can appear in some cases during development. Neurodevelopment growth 

alterations will have an impact on the affected children’s quality of life, showing impairments 

on basic physical, psychological, sensory, cognitive, speech and language skills [2]. Nowadays, 

10% of children are affected by neurodevelopmental abnormalities [3]. Still, one third of all 

neurological disorders will only be detected during childhood [4], limiting the time window for 

possible interventions. Thus, only two thirds of them are diagnosed before birth. Therefore, 

there is a need for developing tools that allow a better understanding of how the normal foetal 

brain develops and why abnormal neurodevelopment appears in some cases. 

During the second and third trimesters of pregnancy (weeks 16-40), the prenatal human brain 

undergoes a folding process that leads the initial smooth brain’s surface becoming a highly 

convoluted structure [5]. This allows to augment the brain’s surface to volume ratio [6], which 

is often correlated with brain function and disorders in this folding process can cause severe 

neurological disorders. Gyrification allows the formation of gyri (folds) and sulci (valleys) 

patterns. It has been observed that this process also follows some ordered steps (Figure 1). 

Primary folds appear the earliest and correspond to the major ones, which have been found to be 

conserved among species and place important landmarks [7].  These primary folds are 

subsequently divided and form secondary folds, which are generally conserved among 

individuals of the same species. Finally, third order folds are formed, which are unique for each 

individual and happen almost randomly [8]. 

 

 

 

 

 

 

 

Figure 1: Representation of the stages of cortical folding. Image from [6]. 
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Although gyrification needs the action of mechanical forces, the mechanisms that drive folding 

still remain uncertain. Different hypotheses have been postulated to explain which mechanisms 

control the cortical folding process [6] (Figure 2). On the one hand, it has been theorized that 

the skull applies a constraint for brain’s expansion, which generates a compressive force on its 

surface that produces the brain’s buckling and folding [9]. However, this idea has been 

generally disregarded as it has been shown that a skull’s presence is not needed for the 

generation of folding patterns [10] and the skull’s size will also be growing to allow the brain’s 

development. 

Axonal tension is generated when two axons wired together pull strongly connected cortical 

regions together [11]. Van Essen [12], following the observation that prenatal lesions affecting 

long-distance cerebral connections caused alterations in the folding patterns [13], proposed a 

model in which it was hypothesised that the tension between near-located cortical areas could 

generate a tangential force that induced the buckling of specific surface areas. The presence of 

said tensile stress has been experimentally demonstrated by different studies [11][14], and tested 

as a cortical folding driving force. Nevertheless, in the mentioned studies it was also concluded 

that axonal tension is not directed across developing gyri. However, this hypothesis needs 

further development, as the sole presence of tension between axons might have an impact in 

other processes, such as in the modulation of folds’ shape [15][11]. 

The general brain development process, as in any other organ of the body, is orchestrated by 

complex genetic pathways that direct diverse processes such as cell proliferation, differentiation 

or migration [16]. During cortical folding, these patterns of gene expression might participate in 

the brain’s surface buckling [17]. Therefore, it is believed that a phenotype associated to a 

specific gene expression might generate a differential tissue growth during tissue proliferation 

between surface areas, which finally conclude in the formation of cortical folds [18]. This 

genetic patterning is also contemplated as the reason why the primary and secondary folding 

processes are mostly conserved, since the cortical locations at which they appear are preserved 

[19]. In order to study the differences in the genetic expression between these proliferation 

patterns, microarray techniques were used so as to compare the transcriptome of cell progenitors 

in potential gyri in front of potential sulci in ferrets [20]. This analysis allowed the authors to 

identify thousands of differentially expressed genes between these two regions, further 

supporting the role of genetic patterning during gyrification.  
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Another hypothesized driver for gyrification, and also contemplated as the most likely one, is a 

differential growth between the cortical and subcortical layers [21]. The tangential expansion of 

the cortical layer with respect to the subcortical ones, which is produced since the grey matter is 

assumed to grow faster than the white matter layer, generates a compressive force that could 

induce mechanical instabilities that result in the buckling of the cortex [22]. It also has been 

shown that gyrification is determined by several physical parameters such as the primary 

geometry [23], the initial cortical thickness [24] or the relative growth between layers [25]. One 

property in which several authors have come to different conclusions, and might indicate the 

complexity of assessing the in vivo physical aspects of cortical folding, is the stiffness of both 

cortical and subcortical layers. On the one hand, some studies have suggested that white matter, 

found in the subcortical layer, is actually softer than gray matter initially, but stiffens over time 

[26], which indicates that there is a change of tissues’ physical properties during gyrification. 

On the contrary, Xu et al. [11] found that the mechanical properties in both cortical and 

subcortical regions were very similar during the folding process in ferrets. Therefore, a much 

deeper understanding of the value and impact of these parameters is key in order to comprehend 

gyrification. However, the consequential folding pattern produced by models studying cortical 

folding using the differential tangential growth hypothesis are realistic in terms of size and 

shape [23], but it still has not been proved using real foetal brain geometries.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Hypotheses for the mechanical folding of the brain’s cortex. Image from [6]. 
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1.2. State of the art in mechanical modelling  

 
The current research of the mechanics behind cortical folding has the aim of understanding the 

formation of gyri and sulci considering the physical properties and geometry shaping of the 

growing brain [27]. The latest advances in genomics have allowed shedding a light on the 

genetic pathways that regulate patterns of cortical growth [19][20]. However, the physics behind 

cortical folding remain unclear and only by performing experimental studies of neural 

mechanobiology coupled with computational modelling will allow assessing the different 

hypothesis postulated [6], as obtaining useful in vivo data from human foetal brains that enables 

the evaluation of said theories is still challenging [28].  

The quantitative studies that use experimental setups to measure various parameters related to 

gyrification have permitted complementing the current theoretical and numerical paradigm. In 

the literature several works can be found that use experimental modelling to study, for instance, 

the effect of thickness and stiffness on cortical folding using polymer swelling experiments 

[21], the presence of folding with wavelength that depended on the thickness and modulus of 

the cortical layer using circular slices of  gel [29] or differential growth using approximated 3D 

polydimethylsiloxane geometries that initially resembled the smooth foetal human brain [27]. 

In addition to experimental analyses, numerical approaches have also been used to test the 

different contemplated hypotheses. In most cases, the computational modelling of cortical 

folding has been based on the finite element method (FEM) [27][28][30]. FEM models make 

use of a geometry discretized in finite elements, also known as mesh, in which a set of partial 

differential equations describing the phenomenon studied are approximately solved in each of 

the elements by the minimization of an error function [31]. Tallinen et al. [27] proposed a 

human cortical model in which brain growth is modelled as a tangential expansion of the 

cortical layer with respect to the subcortical one, as it is assumed that the former is growing 

faster, which results in a differential growth. This mechanical model is able to simulate a 

realistic brain folding process by assuming that the brain is a neo-Hookean hyperelastic 

material, so it has been further used and developed in various recent studies [32][33]. 

Furthermore, Alenyà et al. [28] presented a whole computational pipeline to generate patient-

specific finite-element 3D meshes from foetal magnetic resonance imaging (MRI) data to be 

then used to simulate and validate brain development through the aforementioned gyrification 

model. This pipeline permitted quantifying that there are still differences between the 

mechanical model and the observations. 

 

 



5 
 

 
 

Nevertheless, the use of FEM techniques in these mechanical models also introduces some 

challenges that limit the quality of the resulting folded brain simulations. They are mainly found 

in the requirement of meshes with elements of good quality, which is critical for the 

simulations’ convergence; and the presence of large deformations that generate overlapping 

elements which hamper obtaining the correct solutions [28]. These ultimately lead to the need of 

manually editing the meshes to ensure convergence or introducing contact penalty forces that 

avoid the elements’ collapse. It is in this context that meshless techniques can be used so as to 

cope with the aforementioned limitations since, as its own name indicates, meshless methods do 

not require the use of meshes to find solutions in structure-only models [34].  

Meshless methods have been considered as an approach for modelling human biomechanics for 

their potential in simulating explicitly fluid flow and handling large deformations of soft 

materials [35]. These techniques have been used for the simulation of lateral collateral ligament 

[36], prediction of bone tissue remodelling [37], motion of deformable erythrocytes in flowing 

blood plasma [38] or a multi-physics model of the heart [34]. Therefore, for the study of brain 

cortical folding, in which large deformations and contact between elements are present, 

meshless methods, such as smooth particle hydrodynamics (SPH), can be tools to be tested to 

obtain results without requiring a rigorous mesh refinement process. However, there is not any 

study in which mesh-free geometries and meshless algorithms have been used to understand 

brain development and gyrification. Thus, there is in here an opportunity of a new field to be 

developed and explored. 

 

1.3. Proposal and objectives 
 
The main goal of this project is generating a framework for the study of cortical folding in the 

context of brain development through meshless methods. To do so, several objectives can be 

described: 

I. Building of patient-specific brain meshless geometries. 

II. Adapting the current FEM biomechanical models so as to be used in a SPH 

environment. 

III. Evaluating the resulting folded geometry obtained from meshless simulations 

comparing it simulated FEM models in order to assess the overall performance of 

meshless methods for reproducing realistically the brain’s folding process. 
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2. METHODS 

In this part, first the developed meshless-based modelling pipeline will be described. Then, the 

next section describes in depth the brain’s biomechanical model for cortical folding which has 

been adapted for meshless simulations in this work. The following part focuses on how the 

aforementioned physical model has been integrated inside the meshless software tool used. The 

last section presents how the geometry models have been obtained and the setup needed to carry 

out the meshless simulations. 

2.1. Smoothed Particle Hydrodynamics 
 

As it was commented before, the reduced accuracy when modelling large deformations of soft 

materials in mesh-based numerical methods limited the obtained results in previous 

gyrification’s modelling studies. Using meshless methods, in the case of this work it was chosen 

Smoothed Particle Hydrodynamics (SPH) because of its versatility, maturity and large 

deformations’ handling in comparison to other mesh-free methods [34]. According to the SPH 

formulation, the geometry is not discretized in a mesh but in a point cloud which contains 

particles with defined material physical properties but without any connectivity among them. 

2.1.1. SPH formulation 

SPH is defined as a Lagrangian meshless method which discretizes the domain in a set of points 

with no connectivity [34]. The value of a smooth continuous function 𝑔 in a particle of interest 𝑖 

can be calculated as: 

𝑔𝑖 =  ∑ 𝑚𝑗 

𝑔𝑗

𝜌𝑗
𝑊ℎ(𝑥𝑖 − 𝑥𝑗),

𝑗

 

( 1 ) 

where sub-index 𝑗 indicates a particle in the neighbourhood of point 𝑖, 𝑚 and 𝜌 are the particle’s 

mass and density, respectively, and 𝑊ℎ(𝑥𝑖 − 𝑥𝑗) is the kernel function. The gradient with 

respect to space can be approximated as a derivative of the kernel function: 

∇𝑔𝑖 =  ∑ 𝑚𝑗 

𝑔𝑗 − 𝑔𝑖

𝜌𝑗
∇𝑊ℎ(𝑥𝑖 − 𝑥𝑗) .

𝑗

 

( 2 ) 
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Figure 3: Kernel function representation in a 2D spatial domain. Image from [34]. 

The kernel function is used to define which interactions are present between particle 𝑖 and its 

neighbours (see Figure 3). This function depends on the smoothing length (ℎ), which defines 

the supported domain of definition of the kernel function. In other words, ℎ will determine the 

number of neighbour particles that will be taken into account. Finally, the kernel function will 

be evaluated depending on the particles’ positions (𝑥). 

 

 

 

 

 

 

 

2.1.2. Equations of motion and Total Lagrangian formulation 

The motion of a body in isothermal conditions which is under the effect of external forces can 

be described using the momentum equation and the continuity equation: 

𝑑𝜌

𝑑𝑡
+  𝜌

𝜕𝑣

𝜕𝑥
= 0 

( 3 ) 

 

𝜌
𝑑𝑣

𝑑𝑡
=  𝜌𝑏 + 

𝜕𝜎

𝜕𝑥
, 

( 4 ) 

where 𝑡 is time, 𝜌 is the density, 𝑣 the velocity vector, 𝑥 the position vector, 𝑏 the external 

forces and 𝜎 the stress tensor. As it has been explained, in the SPH formulation the geometry is 

discretized into particles of constant mass. Then, the density and velocity for each of the 

particles is updated by explicitly integrating Equation 3 and Equation 4, while the displacement 

is updated after integrating in time the velocity’s derivative. 

By discretizing the continuity equation (Equation 4) using the SPH formulation (Equation 1), 

the density’s material derivative of a particle of interest is obtained: 
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𝑑𝜌𝑖

𝑑𝑡
= ∑ 𝑚𝑗 (𝑣𝑖 − 𝑣𝑗) ∙ ∇𝑖𝑊𝑖𝑗

𝑗

   .  

( 5 ) 

On the other hand, the momentum equation’s (Equation 3) discretization with SPH allows 

computing the acceleration of a particle of interest: 

𝑑𝑣

𝑑𝑡
=  ∑ 𝑚𝑖 (

𝑝𝑖

𝜌𝑖
2 −

𝑝𝑗

𝜌𝑗
2 +

𝑆𝑗

𝜌𝑗
2 −

𝑆𝑖

𝜌𝑖
2 + 𝛱𝑖𝑗) ∇𝑖𝑊𝑖𝑗 + 𝑏,

𝑖

 

( 6 ) 

where 𝑝 stands for the hydrostatic pressure. The deviatoric stress tensor 𝑆 also needs to be 

added for simulating solid mechanics. Finally, 𝛱𝑖𝑗 represents the artificial viscosity, which is 

used in the SPH in order deal with numerical instabilities originated from local particle 

oscillations:  

𝛱𝑖𝑗 =  {

−𝛼𝑐�̅�𝑗𝜙𝑖𝑗 + 𝛽𝜙𝑖𝑗
2

�̅�𝑖𝑗
        𝜙𝑖𝑗 < 0

0           𝜙𝑖𝑗 ≥ 0

 

( 7 ) 

with  

𝜙𝑖𝑗 =  
ℎ̅𝑖𝑗(𝑣𝑖𝑗 ∙ 𝑟𝑖𝑗)

|𝑥𝑖 − 𝑥𝑗|
2

+ 0.01ℎ̅𝑖𝑗
2

 ;   �̅�𝑖𝑗 =  
𝑔𝑖 + 𝑔𝑗

2
   𝑓𝑜𝑟 𝑔 = 𝑐, 𝜌, ℎ   , 

where 𝛼 and 𝛽 are the coefficients of artifical viscosity and are chosen to be 0.04 and 0.08 

respectively, and 𝑐 is the wave speed related to the material’s stiffness.  

 

Due to the interpolation technique used in SPH, a numerical artifact called tensile instability 

appears, which is especially perceptible when simulating solids in tension states [40]. To deal 

with it, a total Lagrangian formulation is used. Using this formulation, the reference 

configuration does not change throughout the simulation, and it is only used in order to 

calculate accelerations and stresses, which will update the position and velocity of the particles. 

Therefore, the motion of the body at any time  𝑡 will be described by the mapping between the 

reference configuration and the present configuration: 

𝜙: 𝛺0 → 𝛺𝑡  ,        𝑥 = 𝜙(𝑋, 𝑡). 

 

 



9 
 

 
 

Now, the motion in this configuration will follow the next conservation laws: 

𝜌𝑖 =
𝜌0

𝐽𝑖
 

( 8 ) 

𝜕2𝑈𝑖

𝜕2𝑡
=

1

𝜌0
∑ 𝑉𝑗(𝑃𝑗 − 𝑃𝑖 − 𝛱0𝑖𝑗)∇0𝑊𝑖(𝑋𝑖 − 𝑋𝑗)

𝑗

+ 𝑏𝑖, 

( 9 ) 

where 𝑈 represents the displacement between configurations, 𝑃 is the first Piola-Kirchhoff 

stress tensor and 𝐽 is the determinant of the deformation gradient 𝐹: 

𝐽 = det(𝐹),     𝐹𝑖 =  ∑ 𝑉𝑗(𝑥𝑗 − 𝑥𝑖)

𝑗

∇0𝑊𝑖(𝑋𝑖 − 𝑋𝑗) 

( 10 ) 

2.2. Brain’s gyrification biomechanical model 
 

The studied brain’s cortical folding model was proposed by Tallinen et al. [27], which was able 

to realistically replicate the highly nonlinear mechanics behind brain folding phenomenon using 

the finite-element methodology. The model assumes that two different materials in contact that 

presented different growth rates, would induce mechanical instabilities that result in the 

buckling of the cortical layer. This model uses brain geometries discretized into a mesh 

composed of tetrahedral finite elements. 

2.2.1.  Cortical growth kinetics 

The model enforces growth by expanding the elements sizes while maintaining their shape and 

topology. The differentiation between the cortical layer, which represents grey matter, and the 

subcortical one, the white matter, is made applying the following indicator function: 

𝜃(𝑦) =  
1

1 + 𝑒10(𝑦 ℎ−1⁄ ) 
  . 

( 11 ) 

In Equation 11, y corresponds to the distance from surface using material coordinates; and h is 

the cortical thickness. Using this indicator function, the two materials are defined, with a 

smooth transition from the cortical layer (θ = 1) to the white matter zone (θ = 0).  
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The tangential cortical expansion ratio, which is the relative tangential growth ratio between the 

cortical and subcortical layers, is defined as: 

𝑔(𝑦) = 1 +  𝛼𝑡  𝜃(𝑦)𝑡, 

( 12 ) 

where αt defines the cortical growth as 𝛼𝑡  =  √8 − 1, and 𝑡 ∈ [0,1] parameterizes time. The 

corresponding growth tensor G is used to describe the tangential expansion perpendicular to 

each element’s normal vector �̂�: 

𝐺 = 𝑔(𝑦)𝐼 + [1 − 𝑔(𝑦)]�̂� ⊗ �̂�  . 

( 13 ) 

On the other hand, it is also assumed that the cortical thickness (H) will be increasing linearly as 

a function of time along the simulations time steps [28], which is a difference with respect to the 

original proposed model: 

𝐻 = 𝐻𝑖 +  𝛽𝑡  , 

( 14 ) 

where 𝐻𝑖 is the initial cortical thickness and 𝛽 a constant factor empirically defined to be 0.3.. 

Furthermore, since there was a volume growth during cortical folding, it was needed to 

isotropically scale the reference state so that its longitudinal length changed accordingly: 

𝐿 =  59
1 − 0.55𝑡⁄     (𝑚𝑚). 

( 15 ) 

However, Wang et al. [32] noticed that the Equation 15 was not completely realistic with the 

volume growth process found in biological measurement results. They modified it by 

introducing a second order term, which helped better scaling the longitudinal length with the 

biological observation: 

𝐿 =  −0.067(𝐺𝐴)2 + 7.16(𝐺𝐴) − 66.05     (𝑚𝑚), 

( 16 ) 

where GA corresponds to the gestational age and it is related to the time of the model (t) 

through the following equation: 

𝑡 = 0.987𝑒𝑒−0.134(𝐺𝐴−29.433)
 

( 17 ) 
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2.2.2. Constitutive equations 

The brain is assumed to be a neo-Hookean hyperelastic material, which implies a non-linear 

relation between the stress and strain, described by the following strain energy density 

𝑊 =
𝜇

2
[𝑇𝑟(𝐹𝐹𝑇)𝐽−2 3⁄ − 3] +

𝐾

2
(𝐽 − 1)2, 

( 18 ) 

where μ corresponds to the shear modulus, K is the bulk modulus, F is the corresponding 

deformation gradient and J = det F. In the model, the bulk modulus is assumed to be K = 5μ, 

which describes a modestly compressible material. It was also assumed that the cortical layer is 

slightly softer than the white matter area, presenting a shear modulus ratio between the two of   

𝜇𝑐
𝜇𝑤

⁄ = 0.86. The shear modulus across the geometry can be calculated as: 

𝜇(𝑦) =  𝜃(𝑦)𝜇𝑐 + [1 − 𝜃(𝑦) ]𝜇𝑤 , 

( 19 ) 

which show anisotropic properties for each of the elements depending on their relative position 

from surface.  

The deformation gradient (F) equation allows integrating the tangential growth tensor (G) in the 

deformed configuration of a tetrahedral element (A), which represents the stress-free initial 

configuration for the tetrahedron: 

𝐹 = 𝐴(𝐺�̂�)
−1

  . 

( 20 ) 

Finally, the Cauchy stress tensor, which defines the stress state at a point in the deformed state, 

is: 

𝜎 =
1

𝐽

𝜕𝑊

𝜕𝐹
𝐹𝑇  . 

( 21 ) 

In order to deal with the element contacts at the brain surface, they were modelled using a 

penalty-based vertex-triangle contact processing [39]. In essence, this contact force avoids 

nodes from penetrating element faces and only occurs if the distance between a node and a 

superficial face is less than a given threshold and the calculated elastic force at a given time step 

would bring even closer.  
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2.3. Integration of the physical model in an SPH environment 

 
The SPH environment used in this work was developed by Lluch et al. in [34], where a fully 

coupled multi-physics meshless model of the heart was constructed. The code allows coupling 

cardiac sub-models (electrophysiological, circulation and mechanical), which they are described 

by the SPH formulation presented previously. The only sub-model that needed to be adapted for 

this work was the 3D mechanical model. Thus, the mechanical solver had to be isolated from 

the other cardiac models, since we are only interested in modelling brain mechanical growth, 

and the complete physical model described in Section 2.2. had to be correctly introduced. 

Regarding the solver detachment from the other models present in the SPH environment, it was 

found that several models acted as boundary conditions for the 3D mechanical model, 

modifying particles’ parameters that had an impact on the computation of their acceleration and 

position during the simulation’s iterations. What was done was basically eliminating these 

boundary conditions and re-computing the needed mechanical variables for each of the particles 

according to the brain mechanical model. For instance, in the cardiac 3D mechanical model the 

presence of a pericardium acted as a boundary condition that limited the movement of the 

external layer’s particles. Therefore, this restriction was removed and substituted by a “free 

space”, since in the studied brain mechanical model there is not a motion limitation of this kind. 

Another feature that was present in the original biomechanical model and was not incorporated 

into the adapted one is the contact processing penalty function among elements, since the SPH 

formulation uses unconnected particles and there was no need of maintaining a mesh topology.  

In order to adapt the cortical growth kinetics described in Section 2.2.1, several approximations 

were made. First, the indicator function (Equation 11) was approximated so as to only define 

two materials: grey matter found in the external layer and white matter in the subcortical one. 

This approximation was introduced to diminish the computational time required to complete the 

simulations, since the distance to surface for each particle (y) had to be obtained in each 

iteration. This implied first computing the distance of each inner particle to all the particles in 

the outer layer and then only taking the minimum value among these distances in every case. 

The value of the cortical thickness (H) was also assumed to be constant and only used for 

initially assigning the layer to each of the particles. This decision was taken since this parameter 

only has an impact on the indicator function, which now is approximated to be binary and only 

used in the initial conditions (t=0). With a similar reasoning, each particle’s shear modulus (𝜇) 

and bulk modulus (𝐾) are not changed along the simulation’s time since they now depend on 

the new indicator function. The tangential cortical expansion ratio (𝑔(𝑦)) and growth tensor (𝐺) 

were computed and updated for each particle and iteration according to Equation 12 and 

Equation 13, respectively. 
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Since the deformation gradient (𝐹) has to be now computed using the SPH formulation 

(Equation 10), the deformation gradient used in Tallinen’s brain model (Equation 20) needed to 

be adapted, considering that in meshless methods there are not any tetrahedrons and, therefore, 

the stress-free initial configuration (𝐴) of each element could not be calculated. The 

deformation gradient was computed using the following equation, which allows integrating each 

particle’s tangential growth tensor in the deformation gradient using the SPH formulation. 

𝐹𝑖 =  (∑ 𝑉𝑗(𝑥𝑗 − 𝑥𝑖)

𝑗

𝛻0𝑊𝑖(𝑋𝑖 − 𝑋𝑗) ) · 𝐺  . 

( 22 ) 

Then, as the brain is assumed to be a neo-Hookean hyperelastic material, the strain energy 

density function used was the same as in Equation 18. This function was needed in order to first 

calculate the Cauchy Green stress tensor (𝜎) and then it was used to compute the first Piola 

Kirchhoff stress tensor (𝑃), which was the one employed by the SPH environment for updating 

the particles’ acceleration. 

𝜎 =
1

𝐽

𝜕𝑊

𝜕𝐹
𝐹𝑇 =

𝜇

𝐽
5
3

(𝐹𝐹𝑇 −
1

3
𝑇𝑟(𝐹𝐹𝑇)𝐼) + 𝐾(𝐽 − 1) , 𝑃 = 𝜎 · 𝐹−𝑇 · 𝐽  . 

( 23 ) 

 

2.4. Brain modelling and synthetic simulation setup 
 

For the first simulations, the models were spheres of 12.496 mm radius as an approximation of a 

brain geometry, in a similar fashion as it has been done previously in other studies working in 

brain modelling [27][33].  

2.4.1. Geometry pre-processing 

To construct mesh-free geometries, the initial step is generating a mesh model with the desired 

shape. In this case, the synthetic sphere model was built by first generating a superficial mesh 

using Meshmixer1 and then generating the respective volumetric mesh using Gmsh2. Then, the 

meshed model is transformed into a meshless geometry using Paraview3. Finally, in order to 

control the number of points in the model, a Python4 algorithm is used. Essentially, this code 

randomly selects a specified number of particles to build the geometry and checks that the 

 
1 Meshmixer version 3.5 
2 Gmsh versión 4.9.5 
3 Paraview version 5.10.0 
4 Python version 3.3.2 
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density of points in all parts of the model is approximately uniform. A representation of the 

whole process can be found in Figure 4. 

 

 

 

 

 

 

 

 

As it has been stated in Section 2.2, the brain’s gyrification biomechanical model defines 

different material properties depending on the indicator function (Equation 11). Therefore, it is 

important to first determine the points found on the external layer. For the spheres, this is done 

by checking if each of the particles fulfills the following condition: 

𝑥2

𝑟𝑥
2  

+
𝑦2

𝑟𝑦
2  

+
𝑧2

𝑟𝑧
2  

≥ 𝜆  , 

( 24 ) 

where x,y and z represent the particle’s coordinates, rx, ry and rz are half the difference between 

the maximum and minimum value for each respective axis found on the particles’ coordinates 

forming the cloud point; and 𝜆 represents the layer threshold. In a model where all particles 

were white matter, this threshold would be 𝜆 = 1. Nevertheless, as an external layer definition 

is needed, this margin has been defined as 𝜆 = 0.75 in order to define said outer layer. Another 

approximation is done when defining the values for rx, ry and rz. Their theoretical value would 

always correspond to the sphere’s radius, but since the geometry is discretized in a finite 

number of unconnected points their values are adapted depending on the cloud of particles. 

Once the external layer is determined, those particles that do not fulfill the aforementioned 

condition will establish the internal layer.   

The area of each of the particles is computed by dividing the total area of the geometry by the 

number of particles in the cloud of points. For obtaining the volume of each particle, the 

geometry’s total volume can be expressed as: 

Figure 4: Model geometry adaption from a mesh (A) to a meshless geometry of 32k 

points (B) and a reduced meshless geometry of 15k points (C). 

A) B) C) 
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Figure 5: Graphic representation of the normal vector interpolation for a point P. Since 

D1 < D2, particle P will take as normal direction the vector of line N1. 

𝑉𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝑉𝑖

# 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑖=0

 =  𝑘 ∙ ∑
1

𝑁𝑖

# 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑖=0

   , 

( 25 ) 

where 𝑉𝑖 and 𝑁𝑖 are the volume and number of neighbours of particle i. The neighbours of 

particle i are those particles which are within a fixed distance from particle i. From the last 

equation, 𝑘 can be isolated and computed for each model, as the total volume and the number of 

neighbours for each of the particles is known. Then, the volume of a single particle i is: 

𝑉𝑖 = 𝑘 ∙  
1

𝑁𝑖
   . 

( 26 ) 

 

2.4.2. Particle’s normal direction definition 

It is important to characterize the initial normal direction for each of the particles, as it is 

required to update their position and acceleration during the model’s simulation. To do so, the 

normal vectors defined by the elements found on the sphere’s mesh surface can be extracted 

using Paraview. Using an own designed Python code, the particles’ normal vector can be 

interpolated by first dividing the geometry into a finite number of equal pieces containing the 

coordinates of the model’s particles and the mesh’s surface normal vectors enclosed in each of 

the portions. Then, the minimum distance of each particle to the line defined by each normal 

vector is computed. Finally, each particle’s normal direction is approximated by taking the 

vector of the line with the least distance to the particle’s coordinates. Therefore, all the initial 

normal directions will radially point towards the geometry’s external surface. 
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2.4.3. Simulation setup 

All simulations have been performed using Code::Blocks5, employing a computer laptop 

composed by 8 cores Intel Core i7-11800H and a Nvidia GeForce RTX 3050 Ti graphic card. In 

order to set both the simulation’s parameters and the geometry characteristics, some have 

remained constant throughout the tests while others have been adjusted by performing a 

sensitivity analysis for each of them, which allowed assessing which was their impact on the 

simulations’ resulting solution and choosing the best simulation setting (see Section 3.1).   

Among the fixed parameters among all simulations, it can be remarked the kernel type, the time 

integration method and the geometry’s cortical thickness. The kernel type defines the kernel 

function used in order to determine how each of the particles interacts with its neighbours in 

each iteration. The selected function has been the C2-Wendland Kernel because it has been 

observed that the results are more similar to the ones obtained in FEM simulations for mechanic 

simulations [34]. The time integration method applied is Runge Kutta 4, because it was 

observed to be appropriate in the context of SPH [41]. The geometries’ external layer elongation 

is defined by the threshold 𝜆 from Equation 22. It was set to 𝜆 = 0.75, which corresponds to a 

cortical thickness of 10.82 𝑚𝑚. Since the number of layers in the model were approximated to 

only two, a more extended external layer was defined so as to better observe the resulting 

deformation. 

On the other hand, the parameters studied in sensitivity analyses have been the time-step size, 

kernel size, geometry’s number of particles and the number of symmetrical pieces in which the 

sphere was initially divided to interpolate the normal vector direction for each point. The study 

of the time-step size was needed because it determines the incremental change in time for which 

the equations are being solved and it has an influence on the solution’s convergence and the 

simulation’s duration. The kernel size is used to establish the maximum distance that the kernel 

function has an influence on, thereby determines the number of particles that will act as 

neighbours for each point. The geometry’s number of particles defines the spatial resolution of 

the geometry’s discretization, which has an impact on the solution’s accuracy and the 

computational time employed. Last but not least, it was also studied if the number of fragments 

that the sphere was divided in for interpolating the initial normal vectors have an impact on the 

resultant solution and if this approximation adds a significant error on the results.   

 

 

 
5 Code::Blocks IDE version 20.3 
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Table 1: Simulation’s differences when modifying the time step size. All simulation’s 

geometries presented a number of particles of 32000. 

3. RESULTS 

The results are presented in two parts: four sensitivity analyses to better understand the impact 

of different parameters into the simulation’s outcome and choosing the best combination of 

them; and a qualitative and quantitative comparisons between the SPH simulations and FEM 

simulations using Tallinen’s model [27] to assess if the gyrification equations were correctly 

introduced, and evaluating the differences between these two modelling methodologies. 

3.1. Sensitivity analyses 
 

The sensitivity analyses have been done in terms of running time and convergence. To evaluate 

the latter, the simulation time value, which represents the time in simulation units before 

divergence, and a representation of the resulting deformed sphere were used. The maximum 

simulation time set is 0.1 units, which means that simulations reaching this value have 

converged. To compare the resulting solution between two simulations, the mean difference of 

𝐽 = det (𝐹) is used, which can be calculated as: 

𝑀𝐷12 =
1

𝑁
∑|𝐽1𝑗 − 𝐽2𝑗|

𝑁

𝑗

 , 

( 27 ) 

where 𝑗 denotes a particular particle, N is the total number of particles, and the subindex 1 and 2 

refer to two different simulations.  

3.1.1. Time step 

A sensitivity analysis of the time-step size was performed to establish the stable values needed 

to correctly discretize time and preserve the physical characteristics of the solution. Four 

simulations were conducted with the same settings, except for the time step used for the time 

integration of the different variables. The results can be found in Table 1. 

 

 

 

Time step Kernel size (mm) Simulation’s duration Iteration’s duration Iterations Simulation time 

𝟎. 𝟓 · 𝟏𝟎−𝟓 3.5 47h 33min 8.56s 20000 0.1 

𝟏 · 𝟏𝟎−𝟓 3.5 13h 13min 8.51s 5590 0.0559 

𝟐 · 𝟏𝟎−𝟓 3.5 5h 7min 8.59s 2144 0.0429 

𝟒 · 𝟏𝟎−𝟓 3.5 1h 45min 9.26s 687 0.0275 
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Figure 6: Changes in the simulation’s total duration when modifying the time-step size.  

As the time-step size is increased, the simulation’s total duration is reduced. In Figure 6 it can 

be observed a rapid decrease in running time between using a time-step of size 0.5 · 10−5 and 

2 · 10−5, which is then stabilized, resembling an exponential decay. Modifying the time-step 

does not substantially vary the iteration’s duration, which can indicate that the decrease in the 

simulation’s duration is due to performing a lower number of iterations.  

  

 

  

  

 

 

 

Regarding the simulations’ convergence, the simulation time value differs among settings. 

Using a time step size of 0.5 · 10−5 allows reaching the highest simulation time. Nevertheless, 

as it is shown in Figure 7A, the obtained geometry does not exhibit any deformation. Thus, 

although the simulation seems to converge, the resulting solution is inaccurate. The opposite 

behaviour is obtained when using a time-step size of 4 · 10−5: the simulation rapidly diverges, 

and the resulting deformation is erroneous. The simulations using a time step of 1 · 10−5 and 2 ·

10−5 visually exhibit a similar deformed sphere in their last iteration, with a mean difference of 

J of 0.181 units. Nonetheless, neither of the simulations converge because of the presence of 

particles escaping the geometry. These particles are released from the cortical bulges found in 

Figure 7C, and show the highest J values. The simulations’ divergence is caused by non-

invertible deformation gradients in the escaping particles, because the kernel resolution is not 

large enough to find any neighbours for them. However, the simulation time reached when 

using a time step of 1 · 10−5 units is higher, which can be interpreted as also having a higher 

convergence. Another feature to point out between these two simulations is the fact that, 

although the resulting deformation is similar, it is obtained with a lesser simulation time when 

using a 2 · 10−5 time-step. Hence, there is a temporal delay between the two as the test using 1 ·

10−5 needed a longer simulation time to exhibit the same deformation as the 2 · 10−5 test. 
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Table 2: Simulation’s differences when modifying the kernel size. All simulation’s 

geometries presented a number of particles of 32000. 

 

 

 

 

 

  

 

3.1.2. Kernel size 

The kernel size study was conducted to set the optimal values to implement the C2-Wendland 

kernel function. In this case, five tests were performed with the same parameter configuration 

and only changing the kernel size in each simulation. The results can be found in Table 2. 

 

 

It has been tested kernel size values from 3 mm to 4.75 mm, as a smaller value leads to the 

usage of an insufficient number of neighbours, especially in the most outer layer, while values 

higher than 5 mm do not allow even performing the tests because of a lack of computer memory 

resources. Nevertheless, in the kernel size range tested it was observed that the simulation’s 

duration augments when increasing its value (Figure 8A). In this case, however, the number of 

iterations performed are similar, which can indicate that the convergence among simulations is 

comparable and the increase in simulation’s duration does not depend on the number of 

iterations. Moreover, the execution time differences depend on the iteration’s duration. As the 

kernel size augments, more neighbour particles are set for each point, which enlarges the 

computational cost of the operations performed in each iteration and thus the simulation’s 

execution time. In Figure 8B it can be observed that the iteration’s duration grows exponentially 

for changes in the kernel size parameter. 

 

Time step Kernel size (mm) Simulation’s duration Iteration’s duration Iterations Simulation time 

2 · 10−5 3.0 4h 8min 6.07s 2230 0.0446 

2 · 10−5 3.5 5h 7min 8.59s 2144 0.0429 

2 · 10−5 4.0 7h 58min 13.82s 2075 0.0415 

2 · 10−5 4.5 9h 10min 16.54s 1995 0.0399 

2 · 10−5 4.75 10h 58min 30.09s 1965 0.0393 

Figure 7: Resulting deformed sphere for each simulation found in simulation time 0.0429 for A, B and C; and 

simulation time 0.0275 for D.  A) Time-step = 0.5 · 10−5  B) Time-step = 1 · 10−5  C) Time-step = 2 · 10−5  D) 

Time-step = 4 · 10−5  . The usage of different axis in each case allows observing that in A there is no deformation, 

the points of high deformation in B and C (in warmer colours) are found at the same regions, and the escaping 

particles present the highest J in D. 

 

A) B) C) D) 
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Figure 9 shows a representation of the value of J for each particle found in a simulation time of 

0.0390 in each of the tests. In this case, all spheres are deformed and qualitatively exhibit 

similar deformation patterns. The highest J values are found in analogous areas across 

simulations. In order to quantitatively study the solution’s differences among simulations, the 

test with a kernel size of 4 mm will be used as a reference. Then, the mean difference of J is 

computed for all other simulations with respect to the reference. The most similar cases to the 

reference are found when using a kernel size of 3 mm and 4 mm, with a MD of 0.17 units and 

0.22 units respectively. With larger kernel sizes, a higher MD is obtained (0.27 units for a 

kernel size of 4.5 mm and 0.30 units for a kernel size of 4.75 mm), which it can also be visually 

corroborated in Figure 9. This can be explained as augmenting the kernel size leads to an 

increase in the kernel function’s range. Therefore, a larger number of particles are taken into 

account for computing the motion of each point, which has an impact on the obtained solution. 
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Figure 8: A) Changes of simulation’s total duration when modifying the kernel size. B) 

Changes of iteration’s duration for variations of kernel size.   

Figure 9: Resulting deformed sphere in each test found in simulation time 0.0390. The higher values of J (in red) 

are found on the cortical bulges. A) Kernel size = 3 mm  B) Kernel size = 3.5 mm  C) Kernel size = 4 mm  D) 

Kernel size = 4.5 mm  E) Kernel size = 4.75 mm .  

A) B) C) 

D) E) 
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Table 3: Differences observed when modifying the geometry’s number of points. 
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Figure 10: Changes of iteration’s duration when modifying the geometry’s number of particles.   

3.1.3. Geometry’s number of points 

For this sensitivity analysis, a time step size of 2 · 10−5 and a kernel size of 3.5 were employed. 

Only three tests were performed since the geometry’s generation is a time-consuming step and 

the intention was to study a situation with a lower number of points (15000) and a higher 

number of points (45000). The upper limit in number of points found for the computational 

resources used was of 60000 points. The results can be found in Table 3.  

 

 

The variation in particle resolution has an impact on the simulation’s total time. As the number 

of points is increased the total amount of mathematical operations performed also augments, 

since there are more particles to update, and more neighbours interact with each of the points for 

the same kernel size. Hence, the computational cost of the simulations is larger, which is 

reflected in the augmented simulation’s duration. To further study this, Figure 10 presents the 

relation between the iteration’s duration and the number of points. This parameter allows to 

better compare the tests since in the case of 15000 points the simulation diverged faster, which 

means that the simulation’s duration was also lower because of a smaller number of total 

iterations performed. The iteration’s duration grows faster when increasing the number of 

points, which is expected to become an exponential growth if tests with more particles could 

have been performed. 

 

 

 

 

 

 

 

The resulting deformed spheres from each test are shown in Figure 11. It is visually appreciated 

that the deformation patterns differ among simulations, especially in the case of lesser particle 

resolution (Fig.11A). In this test, the simulation diverged faster and the resulting solution is 

inaccurate. When increasing the number of points, a more recognizable deformation is found. 

Number of particles Simulation’s duration Iteration’s duration Iterations Simulation time 

15000 1h 18min 3.9s 1200 0.0240 

32000 5h 7min 8.59s 2144 0.0429 

45000 10h 46min 18.46s 2100 0.0420 
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Table 4: Summary of the changes in computational time and convergence observed when 

changing the interpolation method. 

Figure 11: Resulting deformed sphere in each test found in simulation time 0.0240 for A; and simulation time 0.0429 

for B and C.  A) Number of particles = 15000  B) Number of particles = 32000  C)  Number of particles  =  45000 

A) B) C) 

Furthermore, the potential gain in accuracy when using a higher number of points (Figure 11C) 

leads to a more uniformed outer layer deformation with less larger bumps, which was regarded 

as more desirable. Nevertheless, the kernel definition depends on both the particle resolution 

and the kernel size. Therefore, the kernel size needs to be adjusted depending on the number of 

particles used. For instance, the solution presented in Figure 11A could be fixed by the usage of 

a larger kernel size, as more particles would be considered in the kernel function, especially in 

the external layer.  

 

 

 

 

 

 

 

 

3.1.4. Normal vector direction’s interpolation 

The initial normal vector of each particle is defined in the pre-simulation step. For each of the 

tests, the sphere was divided into a different number of portions before applying the 

interpolation method described in Section 2.4.2. The simulations were performed all using the 

same parameter setting. The results are presented in Table 4. 

 

 

The results show that no major variation in the simulation’s duration nor in the solution’s 

convergence are found when changing the number of pieces that the sphere was initially divided 

before applying the normal vector interpolation algorithm. The computational cost of the tests 

was expected to be practically equal since all simulations are performed using the same 

parameter configuration. If the test using 8 divisions is taken as the reference and the mean 

difference of J is computed with respect to the other two tests, a MD = 0.012 units for the test 

using 4 divisions and a MD = 0.014 units for the 16 divisions are obtained, respectively. This 

Number of divisions Simulation’s duration Iteration’s duration Iterations Simulation time 

4 5h 8.41s 2140 0.0428 

8 5h 7min 8.59s 2144 0.0429 

16 5h 6min 8,54s 2143 0.0429 
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Table 5: SPH simulation and geometry’s parameter configuration. In this table it is also 

displayed the computational time employed and the convergence in terms of the simulation 

time reached. 

indicates that the resulting deformation pattern in all three tests are nearly equivalent. Therefore, 

the number of divisions approximation does not have an impact in the obtained solution. This 

can be qualitatively validated in Figure 12. Nevertheless, the pre-processing computational cost 

needed to do each of the interpolations is different. For a low number of divisions, each particle 

needs to be compared to a larger number of lines, which increases the computational time 

needed to obtain a valid meshless geometry. On the other hand, dividing the sphere in a larger 

number of portions than 8 is also a time-consuming task because it needs to be manually done 

using Paraview. 

 

 

 

 

 

 

 

 

3.2. Comparison between SPH and FEM results 
 

With the intention of comparing the resulting deformed sphere modelled using the SPH 

formulation, a simulation using FEM methodology was performed. The C++ code employed for 

running the FEM test was originally presented by Tallinen et al in [27], and it was further 

developed in [28]. In this case, the geometry was initially modelled as a sphere with the same 

radius as the other tests that have been presented throughout this work and was discretized using 

a volumetric mesh composed of 223000 elements. For this comparison only two layers were 

defined, and the shear and bulk modulus remain constant during the course of the simulation. 

The simulation was performed using a High-Performance Computing (HPC) cluster, which uses 

40 CPUs. The FEM test had a total simulation duration of 10.5 minutes. On the other hand, the 

SPH simulation parameter configuration was set according to the results found on the sensitivity 

analyses presented in Section 3.1. A summary of the simulation’s setting is presented in Table 5. 

 

 

Number of points Time step  Kernel size (mm) Simulation’s duration  Simulation time 

45000 2 · 10−5 3 7h 23min 0.0430 

Figure 12: Resulting deformed sphere in each test found in simulation time 0.0429.    

A) Number of divisions = 4  B) Number of divisions = 8  C)  Number of divisions  = 16 

A) B) C) 
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Table 6: Quantitative measures for comparing growth and cortical folding between SPH and 

FEM simulations.  

The quantitative differences regarding the geometry’s growth and surface folding between both 

tests are examined in terms of cortical layer area, volume and gyrification index. All this 

metrices were measured in the last iteration of each simulation. The gyrification index allows 

evaluating the cortical folding by computing de ratio between the deformed area in the final 

state with respect to the original smooth-surfaced sphere. Table 6 shows the value of these 

measures for each simulation. It is observed that the deformed sphere using SPH has 1.6 times 

more area than the FEM test, while the volume is roughly 0.6 times smaller. This indicates that 

there is a reduced growth in the SPH model in comparison to the FEM one. The convolution’s 

presence can be measured by evaluating the area to volume ratio. The relation is 2.65 times 

higher in the SPH, which shows a lower number of surface folds and more cortical bulges. This 

is further validated by an augmented gyrification index since each of these bulges increases the 

surface’s deformed area.  

 

 

The qualitative evaluation of the deformed spheres allows to further assess the differences 

between both models. To perform this comparison and better show the obtained results, the 

solution from the SPH test is transformed into a mesh model (see Figure 13 and Figure 14). 

This conversion is done in Paraview by using a 3D Delaunay triangulation to build a topological 

structure from the unconnected, mesh-free particles. This mesh is constructed by fulfilling the 

Delaunay criterion, which states that a circumsphere of each simplex in a triangulation contains 

only the defining points of the simplex [42]. By making this meshless-to-mesh transformation, 

there is an improvement in the visual assessment of the resulting SPH test, as it helps to better 

compare the obtained deformation pattern to the one found in the FEM test. Nevertheless, is 

important to point out that the models presented in Fig.13A, Fig13C, Fig.14A and Fig.14C are 

obtained by meshing the unconnected particles from the SPH solution.  

Figure 13 shows a representation of the interaction between the two simulated layers for both 

methodologies (Fig.13A and Fig13C for SPH, and Fig.13B and Fig.13D for FEM). In all cases 

it can be observed that the highest shear modulus is found in the internal layer. Another 

consistent feature is the separation between cortical and subcortical layers, as there is not any 

mixture between the two at any point. Nevertheless, there is a tendency of internal particles to 

grow towards the external part, which shows a cohesion among all the meshless particles. The 

differences between the two models, which were quantitatively studied previously, are a more 

 Area (mm2) Volume (mm3) Area - Volume ratio (mm-1) Gyrification Index 

SPH 11589.99 10895.57 1.06 4.67 

FEM 7135.26 17755.59 0.40 1.93 
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A) B) C) D) 

Figure 14: Values of J in the last iteration found in the SPH test after applying the 3D Delaunay 

triangulation (A,C) and FEM test (B,D). C and D show the geometry’s interior by applying a normal 

cut with respect to the x axis. The highest values of J are represented in warmer colours. 

A) B) C) D) 

Figure 13: Resulting deformed sphere in the last iteration from the SPH model after applying the 3D 

Delaunay triangulation (A,C), and FEM model (B,D). C and D show the geometry’s interior by 

applying a normal cut with respect to the x axis. 

 

grown geometry in the FEM simulation and the existence of cortical swelling in the SPH test, 

which is contrasted with a more visually recognizable gyrification pattern that leads to the 

cortical folding in the FEM simulation.  

 

 

 

 

 

 

The variations in the deformation pattern between the tests can be studied by analysing the 

value of J in the different areas of the geometry. On the one hand, it can be observed that the 

central area of both simulations remains relatively undeformed, showing a low J. In the SPH test 

a spherical nucleus is found in the most central area (Fig.14C), while in the FEM simulation this 

nucleus is less defined, and the most internal part present a similar J value (Fig.14D). The 

highest subcortical values are found in similar regions of the internal layer: in the SPH case are 

discerned in the subcortical area under each surface bulge, while in the FEM test are found in 

the internal part of each gyrus. 

Most differences between both simulations are found in the cortex’s deformation. The FEM test 

shows a cortical buckling across the surface produced by its tangential expansion with respect to 

the internal layer (Fig.14B).  Moreover, the value of J is similar in all parts of the cortical 

region. On the other hand, the SPH simulation presents a different deformation pattern 

(Fig.14A).  The appearance of cortical swelling in some surface’s regions show a higher value 

of J not found in any part of the FEM’s cortex, exhibiting in this case a growth in the normal 

direction. However, the particles that do not form these cortex bulges have a comparable J with 

respect to the FEM’s cortical layer.  
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4. DISCUSSION 

Due to a recent development in computational power and the enhancement of numerical 

methods, in silico experiments that study the mechanics behind brain’s gyrification during early 

growth have been complemented with computational simulations. The current computational 

models used in this context are based on the FEM methodology [43], which relies on the 

definition of highly detailed geometrical meshes in order to discretize the geometry and obtain 

accurate solutions. This by itself generates a limitation of mesh-based models, as large 

deformations are produced during cortical folding which lead to overlapping elements that 

impede obtaining the correct solutions. One possible approach for overcoming these limitations 

is the usage of meshless computational models, which discretize the domain in independent 

particles and avoid the problems of mesh degeneration generated by large deformations. 

Nevertheless, in the literature there is not any mesh-free computational model that integrates the 

mechanic equations describing brain’s gyrification. It is in this context that this project has 

worked on the first steps for studying brain’s cortical folding through a meshless model.  

The contributions of this work can be summarized as the development of a pipeline for the pre-

processing of mesh geometries to built suitable mesh-free models, the adaptation of a brain’s 

gyrification FEM model so as to be used in a SPH environment, and the development of a 

parameter setting framework that permits optimizing the solution’s accuracy with the total 

simulation’s running time. 

 

4.1. Geometries’ pre-processing  
 

The construction of patient-specific brain meshless geometries was introduced earlier as one of 

the project’s objectives. Although these geometries were not presented at any point of this work, 

they were obtained from the work of Alenyà et al. [28] and built using the steps described in 

Section 2.4.1. and Section 2.4.2. However, they were not used as meshless models due to time 

limitations, as it was preferred to further develop the mechanical model’s integration rather than 

improving the quality of brain-shaped meshless geometries. Still, the pre-processing pipeline 

described allowed building functional sphere-shaped meshless models, proving that the process 

could be adapted to mould any geometry as a meshless model.  
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4.2. Mechanical model inclusion in a SPH environment  
 

The meshless model that has been studied and adapted was proposed by Lluch et al. [34], in 

which the SPH formulation was used to construct a fully coupled multi-physics model of the 

heart. To start working with this SPH model, all the C++ codes needed to be first integrated and 

built, which was an obstacle as it required a specific setup for the computational setting I was 

using. Another difficulty found throughout the project was figuring out the code’s organization, 

as there were not many indications on how to utilize the program. This resulted in employing a 

large amount of time on just understanding and getting familiar with the SPH environment and 

all its functionalities, which was a crucial step to comprehend which were the parts of the code 

that needed to be adapted since it was not obvious while using this extensive code.  

Despite these difficulties, the mechanical equations describing brain’s cortical folding were 

integrated inside the program. The physical model used was developed by the adaptation of the 

gyrification model proposed by Tallinen et al. [27] using the SPH formulation and eliminating 

all boundary conditions that connected the mechanical model to other cardiac solvers. The 

proposed equations are the consequence of a process of correcting the model by analysing the 

obtained simulation’s solution, which end up being the most time-consuming task. 

Nevertheless, the original mechanical model could not be integrated in its completeness. The 

inclusion of the indicator function (Equation 11) implied increasing the computational times 

enormously due to the need of finding the closest cortical point for each of the particles. This 

limited the modelling to only two tissue types (cortical and subcortical tissue) in contrast to the 

smooth transition from the cortical layer to the subcortical one found in Tallinen’s model.  

 

4.3. Sensitivity analyses 
 

The sensitivity analyses were performed with the objective of adjusting several key model and 

geometry parameters by assessing their impact on the resulting simulation’s solution. These 

analyses defined a parameter framework that permits obtaining accurate solutions in a 

reasonable time span for the computational resources employed. In the long run, this kind of 

experiments are key for introducing computational models in a clinical environment, as one of 

their goals is giving precise, patient-specific information in the least amount of time.      

The results showed that the optimal time step size was of 2 · 10−5 simulation units. Values 

smaller than 1 · 10−5 units could not appreciate the changes in position and velocity, which 

resulted in an undeformed sphere (Fig.7A). On the other hand, a time step of 4 · 10−5 units was 

too large and provoked the rapid solution’s divergence. It was also observed that the difference 

in running time between using a time step of  1 · 10−5 and 2 · 10−5 was of 8 hours 6 min, for 
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just a mean difference of J of 0.181 units. Thus, it justified the choice of a time step of 2 · 10−5 

units. 

The kernel size analysis showed an exponential growth of an iteration duration as the parameter 

was increased (Fig.8). This can be explained by an increase in the number of each particles’ 

number of neighbours, which augments the computational cost of the mathematical operations 

in each iteration, thereby augmenting the simulation’s total duration. The resulting solutions 

presented J variations, which can also be explained by the increase in the number of particles 

that have an influence in the kernel function due to augmenting the kernel resolution. 

Nevertheless, the chosen kernel size was in the range of 3.0 - 3.5 mm because of the balance 

between a reduced computational time and an appropriate kernel resolution. 

The geometry’s number of particles also defines the kernel resolution. Hence, the kernel size 

and the particle resolution need to be adjusted jointly to obtain an optimal kernel resolution. 

When only changing the geometry’s number of points, a nearly exponential growth in running 

time was observed (Fig.10). However, the usage of a higher particle resolution was necessary 

because of a gain in the deformation’s pattern accuracy. 

After studying how the number of divisions that the sphere is divided in before applying the 

interpolation method, it is concluded that the impact on the resulting solution is lower than the 

other analysed parameters. The parameter’s analysis showed a minimal difference in J among 

the different tests. Nevertheless, in this case the choice of 8 divisions does not come because of 

changes in the simulations per se, but due to an augmented computational time during the pre-

processing step when using fewer divisions, and the arduous task of manually dividing the 

sphere for a number of divisions higher than 8, as this step was not completely automatized.   

The conclusion of the sensitivity analyses allowed defining the optimal parameters used in the 

test that compared SPH modelling with a FEM simulation (see Table 5). The kernel resolution 

was adjusted by using a geometry composed of 45000 particles and decreasing the kernel size to 

3 mm, which allowed reducing the computational time more than 3 hours with respect to the test 

using this same number of points and a kernel size of 3.5 mm. 

 

4.4. SPH as a method for modelling brain’s gyrification 
 

The usage of SPH formulation has been shown to be an adequate methodology for modelling 

large deformations without the need of introducing any penalty function to the model’s motion 

and avoiding mesh distortion. Even though the deformation of a meshless sphere geometry was 

achieved, the resulting deformed model reveal several differences with respect to the deformed 

geometry obtained using FEM methods. On the one hand, the total running time required to 
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complete each simulation largely differed as they were performed using distinct computational 

resources. The HPC cluster was used to perform the FEM test, which possesses a much higher 

computational power in comparison to the local resources used for performing all SPH 

simulations. However, to perform simulations that reproduce accurately the brain’s cortical 

folding using FEM techniques, a mesh of approximately 2 million elements is required, which 

increase the computational time to more than 30 hours using the HPC cluster resources [28]. 

Thus, the obtention of accurate solutions using FEM methods can be computationally 

expensive. 

The SPH model is able to replicate the presence of a cortical and subcortical layer, characterized 

by a different shear modulus (𝜇), growth rate (𝑔) and growth ratio (𝐺). Particles that form the 

inner layer show a similar behaviour as the FEM internal elements, displaying high J values in 

the transition between cortex and white matter while maintaining a less deformed internal 

nucleus-like structure. 

Regarding the model’s cortical behaviour, the gyrification pattern observed along the FEM 

test’s surface is not reproduced in meshless simulations (Fig.13). Cortical folds are not formed, 

but different bulges appear in the external layer instead. This can explain an increased area to 

volume ratio and an augmented gyrification index (Table 6), which in this case is not due to 

presence of cortical buckling but rather a surface swelling that increases the total deformed area 

with respect to the original, smooth cortex. Furthermore, these bulges present high J values 

(Fig.14A), which show that the expected tangential expansion of the cortical layer with respect 

to the subcortical one is not reproduced. Rather, the cortex tends to expand in the normal 

direction, producing bumps composed of highly deformed particles that tend to escape the 

geometry and, in the end, cause the solution’s divergence. Several hypotheses can be formulated 

to why the gyrification process is not correctly modelled: 

1. The equations used for computing the geometry’s deformation are not completely 

correct. It would be needed to test other approaches for calculating the deformation 

gradient in order to accurately reproduce the set of equations presented in Section 2.2. 

2. The implemented values of the mechanical (shear modulus, bulk modulus) and/or 

growth (growth ratio) parameters are not in the optimal range to obtain the 

characteristic cortical folding patterns. Performing sensitivity analysis of these 

parameters would help to see their impact on the resulting deformation patterns. 

3. Possible presence of cardiac boundary conditions. These conditions were found 

dispersed through several parts of the SPH code, and all the encountered ones were 

substituted. However, it cannot be dismissed the existence of unneeded boundary 

conditions due to the extensive number of files that built the whole SPH environment. 
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4. The implemented SPH formulation would need to be refined so as to be used for other 

applications, as the specific cardiac solvers were more develop than the more general 

mechanical solver.  

 

4.5. Limitations 
 

This work is not without its limitations. As it was commented previously, a sphere model 

instead of patient-specific brain geometries was employed for all tests performed. This restricted 

the possibility of validating the resulting solutions with real neonatal MRI data. On the other 

hand, a model consisting of only two materials (cortex and subcortical tissue) was developed, in 

contrast to the gradual transition between the two tissue types according to Equation 11. Last 

but not least, the HPC cluster was not used because of time limitations. The usage of a higher 

computational power could have provided a better spatial resolution for the geometries, more 

extensive sensitivity analyses and the possibility of diminishing the overall computational time 

needed for each simulation, which would have been useful to further test the model and enhance 

the proposed model. 

 

5. CONCLUSIONS 

This project shows the potential that SPH has for modelling large deformations, which makes it 

a great candidate for modelling brain’s cortical folding during early development. The work also 

has set the first steps towards building a gyrification meshless model by first developing a pre-

processing pipeline to construct functional meshless geometries and then adapting the 

mechanical equations describing cortical fold formation in an SPH environment. A detailed 

analysis on the effect of several simulation and geometry parameters for the studied physical 

was also performed, which helped to set a framework that allowed obtaining precise solutions in 

a feasible amount of time. However, the obtained cortex deformation pattern in all simulations 

is not analogous to the one found when using FEM methods. Thus, the integrated biomechanical 

model needs to be further developed so as to realistically reproduce the gyrification process.  
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