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Introduction

The transferability and clinical value of genetic risk scores (GRS) across populations 

remains limited due to an imbalance in genetic studies across ancestrally diverse 

populations. We conducted a multi-ancestry genome-wide association study (GWAS) of 

156,319 prostate cancer cases and 788,443 controls of European, African, Asian, and 

Hispanic men, reflecting a 57% increase in the number of non-European cases over previous 

prostate cancer GWAS. We identified 187 novel risk variants for prostate cancer, increasing 

the total number of risk variants to 451. An externally replicated multi-ancestry GRS was 

associated with risk that ranged from 1.8 (per standard deviation (SD)) in African ancestry 

men to 2.2 in European ancestry men. The GRS was associated with a greater risk of 

aggressive versus non-aggressive disease in men of African ancestry (P=0.03). Our study 
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presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification 

across ancestry groups.

In men, prostate cancer is the most frequently diagnosed non-skin cancer globally1. 

Variation in prostate cancer incidence is observed across populations globally, with the 

highest rates observed in men of African ancestry1. prostate cancer risk is heavily influenced 

by genetic factors, with 278 genetic risk variants identified through GWAS2–13. While 

the majority of samples in prostate cancer GWAS have been of European ancestry, multi-

ancestry analysis has been demonstrated to improve discovery of novel risk variants14 and 

enhance genetic risk prediction for prostate cancer across populations2.

We conducted a multi-ancestry GWAS meta-analysis with 122,188/604,640 (cases/controls) 

of European ancestry, 19,391/61,608 of African ancestry, 10,809/95,790 of East Asian 

ancestry and 3,931/26,405 of Hispanic ethnicity. Studies, genotyping, quality control and 

association testing methods are described in Supplementary Table 1 and 2 (Methods). 

Case sample size was increased by 43% in European, 87% in African, 26% in Asian 

and 45% in Hispanic groups (with a corresponding effective sample size ≥128% in each 

population accounting for controls), compared to previous multi-ancestry GWAS analyses2. 

We performed a fixed-effect meta-analysis within each ancestry group and meta-analyzed 

the ancestry-specific GWAS results. The genomic inflation statistic (λ) was 1.158 in the 

multi-ancestry GWAS and ranged from 1.053 in Asian to 1.169 in European ancestry studies 

(Supplementary Table 3); the corresponding meta-analysis λ1000 (scaled to a sample size of 

1,000 cases and 1,000 controls) was 1.001.

Overall, 42,428,922 variants with a minor allele frequency (MAF)>0.1% were examined 

for association with prostate cancer risk, with 55,241 variants reaching genome-wide 

significance (P<5.0x10−8). To identify independent risk variants, we implemented a 

forward-selection conditional analysis using multi-population Joint Analysis of Marginal 

summary statistics (mJAM; Methods)2,15. We identified 451 independent risk variants for 

prostate cancer that were genome-wide significant in multi-ancestry or ancestry-specific 

analyses (Supplementary Table 4), including 187 that were previously unreported (Fig. 1, 

Supplementary Tables 4 and 5). Of these, 61 were within 800 Kb of known variants but 

remained genome-wide significant after conditioning on nearby known variants. Of the 451 

variants, 150 were known risk variants that were replaced by a more significant lead variant, 

while 114 remained the lead risk variant in the region. Eighteen variants previously reported 

as prostate cancer risk variants were dropped because they did not reach genome-wide 

significance (Supplementary Table 4).

The underlying rationale for conducting a cross-ancestry meta-analysis is based on the 

hypothesis that true causal variants are predominantly shared across populations. Of the 

451 risk variants, 429 (95%) in European, 411 (91%) in African, 377 (84%) in Asian 

and 424 (94%) in Hispanic populations had MAF>1% (Extended Data Fig. 1), and 339 

(75%), 47 (10%), 42 (9%) and 9 (2%) were genome-wide significant, respectively (Fig. 

2a). Of these, nineteen (European), five (African) and three (Asian) were population-specific 

risk variants with MAF≤1% in all other populations (Extended Data Fig. 1). For variants 

with a MAF>1% in all populations (n=370), 369, 247, 208 and 125 were nominally 
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significant in European, African, Asian and Hispanic populations, respectively (Fig. 2b). 

The effect sizes for variants with a MAF>1% were correlated between populations, with an 

R=0.73 for European versus African ancestry (398 variants), R=0.58 for European versus 

Asian ancestry (371 variants) and R=0.72 for European ancestry versus Hispanic men 

(414 variants; Fig. 2c, Supplementary Fig. 1). Heterogeneity in effect size was statistically 

significant (Pheterogeneity<0.05) for 78 variants (21%), with the largest average effect size 

in Asian men (odds ratio (OR)avg=1.11) followed by European ancestry (ORavg =1.09), 

African ancestry (ORavg =1.08) and Hispanic men (ORavg =1.08; Supplementary Table 6).

Of the 451 variants, 28 (6.2%) directly alter protein structure (Supplementary Table 7). We 

detected a novel association with a population-specific frameshift deletion in the C9orf152 
gene (European) and previously reported frameshift deletions in ANO7 (African16) and 

CHEK2 (European2) and a frameshift insertion in FAM111A (European4). The lead 

variants include 24 missense substitutions representing previously reported variants within 

ANO7 (three lead variants4), CDKN1B, CHEK2, COL23A1, HOXB13, INCENP, KLK3, 

POGLUT3, RASSF6, RFX7 and SUN2, replacement lead variants in FAM118A, INHBB 
and SPDL1, novel associations in MMAB, PIM1, RPA1, SERPINA1, SIM2, SYTL1 and 

ZBTB42, and a second missense risk variant in RASSF6 Supplementary Table 7). Among 

the new genes implicated in prostate cancer risk, expression of SIM2, a transcription factor, 

has been shown to discriminate prostate cancer and non-cancerous tumor tissue17 and to 

be associated with poorer survival18, while PIM1 is a serine/threonine kinase overexpressed 

in prostate cancer19, shown to modulate androgen receptor transcriptional activity through 

phosphorylation20 and be a co-activator of c-MYC21.

Many lead variants were also implicated in regulation of gene expression in prostate tissues 

and cell-lines (Methods). Seventy-four variants (16.4%), including 19 novel associations, 

were located within regions of open chromatin, chromatin modifications consistent with 

regulatory elements, situated within transcription factor binding sites overlapping an 

association for differential gene expression or splicing (Supplementary Table 7), providing 

strong support for biological functionality. Candidate functional variants include rs1858800, 

correlated with expression of ZFXH3, a gene frequently somatically mutated in prostate 

cancer22; rs10499188, correlated with expression of SLC2A12, a gene encoding a glucose 

transporter expressed in prostate cancer cell-lines but not benign prostatic hyperplasia23 and 

regulated by androgen receptor signaling24, and rs79186742, correlated with expression of 

BARX2, a homeobox transcription factor associated with poor prognosis for a range of solid 

tumors25.

Overall, 219 of the 451 lead variants (48.6%) overlap with significant associations for 

differential expression in prostate tissues (Methods, Supplementary Table 7) of 439 distinct 

genes (eQTLs), while 69 (15.3%) correlate with significant associations for alternative 

splicing of 95 unique genes (sQTLs). Of the 439 differentially expressed genes, 204 (46.5%) 

had not been implicated as candidate mediators of prostate cancer risk by the previous 

panel of 269 prostate cancer risk variants2 and were established through the identification 

of additional novel risk variants and replacement of lead variants. To assess the extent to 

which prostate cancer risk variants exhibit prostate-specific regulatory function compared 

with the genome-wide background, we performed a permutation test while controlling for 
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MAF and linkage disequilibrium (LD) patterns (Methods). Overall, we found evidence for 

enrichment of prostate cancer risk variants in regions of prostate-specific regulatory activity 

across eQTLs, sQTLs and candidate cis-regulatory elements (≥2.9-fold enrichment, P < 

0.0017; Supplementary Table 8).

To further explore the molecular mechanisms underlying prostate cancer risk, we performed 

transcriptome- (TWAS) and proteome-wide association studies (PWAS)26–28 using predicted 

gene expression and protein levels from multiple prostate tissue29–31 and plasma32 studies 

(Methods). Across 19,352 tests performed, we identified 746 associations across 528 genes 

and 230 genomic regions (Supplementary Tables 9 and 10). Of the 746 associations, the 

greatest contribution was from predicted expression in histologically normal prostate tissue 

(351/746)30. However, this is likely due to the larger reference panel sample size and, 

thus, number of association tests performed (Supplementary Table 9; ANOVA P>0.05). Of 

the 451 genomic risk regions identified through GWAS, 237 colocalized within 250Kb of 

transcriptome- or proteome-wide significant associations, which is consistent with previous 

large-scale TWAS investigations of prostate cancer risk33,34. Of the 230 TWAS/PWAS 

genomic risk regions identified, 45 did not colocalize within 250Kb of the 451 genome-wide 

significant variants, suggesting that increasing GWAS sample sizes will continue to identify 

novel risk regions (Supplementary Table 11).

The predictive ability of the GRS for prostate cancer has improved with the identification of 

additional risk variants2–6,8. We compared the performance of GRSs based on past marker 

sets (n=1008, 1815,6,35, 2692) to the current set of 451 risk variants, with GRSs constructed 

by summing the risk allele dosage, weighted by the multi-ancestry per-allele log-ORs 

estimated from the current meta-analysis (Methods). With the discovery of more risk 

variants, there is greater stability in the assignment of unaffected men to GRS categories; 

58% of men in the lowest or highest quintile remained in the same quintile between GRS100 

and GRS181, whereas 69% to 70% remained between GRS269 and GRS451 (Supplementary 

Fig. 2a-6a). Likewise, the percentage of cases has increased for each population within 

higher GRS categories (e.g., from 40.5% in the highest quintile of GRS100 to 51.2% in 

GRS451) and decreased within lower GRS categories (e.g., from 7.5% in the lowest quintile 

of GRS100 to 4.4% in GRS451; Fig. 3, Supplementary Fig. 2b-6b). Risk classification with 

the GRS in addition to age was evaluated using the net reclassification index (NRI)36 and 

showed substantial improvement from GRS100 (range across populations: 30.2% in African 

to 49.5% in European) to GRS451 (range across populations: 58.5% in African to 69.9% 

in European; Supplementary Table 12). Compared to a model with GRS269, the population 

specific improvement for a model with GRS451 resulted in a NRI ranging from 3.3% in 

Asian ancestry to 21.7% in Hispanics. The improvement in risk prediction of GRS451 over 

previous GRS panels was confirmed in replication studies among men of European and 

African ancestry that were not included in the GWAS (Fig. 4a-b, Supplementary Table 13 

and 14). Based on the high degree of variation in the association of GRS451 with prostate 

cancer risk across sub-studies in the discovery and replication phases (Extended Data Fig. 

2), a single summary OR per SD was estimated from the overall meta-analyzed sample: 2.32 

[95%CI: 2.30–2.35], 2.04 [95%CI: 2.00–2.08], 2.15 [95%CI: 1.99–2.32] and 2.12 [95%CI: 

2.03–2.23] for European, African, Asian and Hispanic men, respectively (Pheterogeneity by 

population: 4.51x10−50, 7.52x10−4, 0.29 and 0.31, respectively). The ORs in the replication 
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studies were 2.19 [95%CI: 2.12–2.25] in European and 1.79 [95%CI:1.69–1.90] in African 

ancestry men (Fig. 4b). In replication studies, comparing GRS451 to a genome-wide 

polygenic risk score (PRS) derived by PRS-CSx (Methods), the effect estimates of the 

genome-wide PRS were smaller than those of GRS451 in both men of European (OR per 

SD = 2.00, 95%CI: 1.92–2.10) and African ancestry (OR per SD = 1.54, 95%CI: 1.44–1.64; 

Supplementary Table 15).

As observed for GRS269, age modifies the association of GRS451 and prostate cancer risk 

(Fig. 4c, Supplementary Table 16, Methods)37. In men of European ancestry, GRS451 was

associated with an OR per SD of 2.86 [95%CI: 2.76–2.97] for men ≤ 55 and 2.27 [95%CI: 

2.25–2.30] for men > 55 years (Pheterogeneity = 8.7x10−33). Effect modification of GRS451 

by age was similarly observed in men of African ancestry: OR per SD = 2.41 [95%CI: 2.29–

2.54] for men ≤ 55 years and 1.98 [95%CI: 1.94–2.03] for men > 55 years (Pheterogeneity = 

8.0x10−12) and was reproducible in the replication studies (Supplementary Table 16).

In men of European and Asian ancestry and in Hispanic men, the GRS451 was equally 

associated with risk of aggressive prostate cancer (stage T3/T4, regional lymph node 

involvement, metastatic disease, Gleason score ≥ 8, prostate-specific antigen (PSA) level 

≥ 20 ng/mL or prostate cancer as the underlying cause of death) and non-aggressive 

prostate cancer (no aggressive features; Fig. 4d, Supplementary Table 17, Methods). For 

men of African ancestry with prostate cancer, GRS451 was associated with a greater 

risk of aggressive versus non-aggressive disease (OR per SD = 1.08, 95%CI: 1.04–1.12, 

P=1.1x10−4; Fig. 4d, Supplementary Fig. 7). A weak nominally significant association of 

GRS451 with aggressive disease in African ancestry men was also observed in the African 

prostate cancer MADCaP replication sample (OR per SD= 1.12, 95%CI: 1.01–1.23, P = 

0.03).

Fifty-one of the 451 prostate cancer risk variants have been directly or indirectly (LD 

R2>0.8) associated in GWAS of PSA at P<5x10−8 (Supplementary Table 7, Methods). 

To assess whether the prostate cancer risk signals for PSA-associated variants reflect 

an increased likelihood of prostate cancer detection due to screening, particularly for 

low-stage disease, we examined their aggregate association with disease aggressiveness 

(Supplementary Table 18). When removing the prostate cancer-PSA variants from the 

GRS analysis we found the GRS (with 400 markers) to be more strongly associated with 

aggressive disease (versus GRS451) in European ancestry men (OR per SD = 1.04, 95%CI: 

1.03–1.06, P =3.2x10−7), African ancestry men (OR per SD = 1.10, 95%CI: 1.06–1.14, 

P =7.0x10−7) and Hispanic men (OR per SD = 1.05, 95%CI: 0.97–1.14, P =0.12), which 

suggests that some prostate cancer risk variants may be over-represented in men with less 

aggressive disease as the result of their association with PSA levels.

A man’s cumulative risk of developing prostate cancer, including aggressive disease, is 

profoundly influenced by the GRS. For men of European ancestry, 20% of men have a 

2-fold or greater risk compared to men at the 50% of GRS451, and these men achieve an

absolute risk comparable to the median risk in the population 16 years earlier. Specifically,

these men reach a level of absolute risk of at least 7.8% (the risk at age 85 for men with

a 50% GRS451) by age 69 or earlier (Fig. 5). For African ancestry men, 16% of men

Page 5



achieve a 2-fold or greater risk by age 66, with an absolute risk comparable to the risk 

reached by the average man by age 85 (11.6%), a full 19 years earlier. A GRS-informed 

approach to screening may improve early detection, as over 50% of cases, including those 

with aggressive and lethal disease, develop among men in the top GRS quintile, while fewer 

than 5% of cases develop among men in the bottom 20% (Fig. 3).

Increasing the size of genetic studies across ancestrally diverse populations is paramount for 

broad and equitable discovery of risk loci and clinical translation. The current multi-ancestry 

study reflects a 57% increase in the number of non-European cases over previous prostate 

cancer GWAS and resulted in the identification of 187 novel risk variants, which represents 

~40% of all prostate cancer risk variants identified to date. We detected a 3% (Asian), 

14% (European), 15% (Hispanic) and 23% (African) increase in the OR (per SD) for 

GRS451 versus GRS269 (Fig. 4a), which supports previous work demonstrating the ability of 

multi-ancestry studies to identify prostate cancer risk variants that improve risk prediction 

across populations2. As shown previously in comparisons of GRS269 with genome-wide

approaches38, the greater predictive performance observed for GRS451 over a genome-wide

PRS emphasizes our approach to select a limited set of multi-ancestry risk variants that 

capture risk across populations. The random selection of markers used for genome-wide 

PRS may not adequately capture risk across all risk regions resulting in poorer performance, 

particularly in some populations.

Of critical importance for clinical utility of GRS in prostate cancer is the ability to 

differentiate risk of aggressive/lethal versus non-aggressive disease. We demonstrated that 

an understanding of the relationship between germline variants that influence both PSA 

levels and prostate cancer risk variants is needed to accurately estimate the GRS association 

with prostate cancer aggressiveness and prostate cancer outcomes. Evidence that GRS can 

differentiate risk of aggressive versus non-aggressive disease, albeit modestly, for men 

of African ancestry, an association that strengthened when accounting for PSA variants, 

suggests potential clinical utility of GRS in this high-risk population16. While GRS for 

prostate cancer is a highly effective tool for risk stratification and personalized risk 

assessment, how and when this information should be included in the decision-making 

process for prostate cancer screening and early detection needs to be determined.

Online Methods

Study subjects in the multi-ancestry GWAS.

The institutional review board at the University of Southern California approved the study 

protocol. The meta-analysis included 107,247 prostate cancer cases and 127,006 controls 

that were part of a previous multi-ancestry meta-analysis (Supplementary Table 1)2. The 

present study included an additional 49,072 cases and 661,437 controls from the UK 

Biobank, the FinnGen study, the Electronic Medical Records and Genomics (eMERGE) 

Network, the BioVU Biobank, the BioMe Biobank, the Prostate, Lung, Colorectal, and 

Ovarian Cancer Screening Trial (PLCO), the MD Anderson prostate cancer study (MD 

Anderson), the California and Uganda Prostate Cancer Study (CA UG), the VA Million 

Veteran Program (MVP), and the Maryland Prostate Cancer Case-Control Study (NCI-MD) 

(Supplementary Table 1). Each study includes adult males over the age of 21 years. All 
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participants provided written informed consents, and study protocols were approved by the 

Institutional Review Board at each study site. In total, there were 122,188 cases and 604,640 

controls of European ancestry, 19,391 cases and 61,608 controls of African ancestry, 10,809 

cases and 95,790 controls of Asian ancestry, and 3,931 cases and 26,405 controls of 

Hispanic ancestry. The effective sample size for each population was calculated using the 

formula Neff = 4/(1/Ncases + 1/Ncontrols).

Genotyping and imputation in the multi-ancestry GWAS.

The details of study design, inclusion and exclusion criteria, genotyping, imputation and 

quality control procedures are provided in Supplementary Tables 1 and 2. Imputation in 

each study was performed using Minimac3/Minimac439, Impute240, Eagle241, or Beagle 

4.142 under the 1000 Genome phase 343, the NHLBI Trans-Omics for Precision Medicine 

(TOPMed) Consortium freeze 544, Haplotype Reference Consortium (HRC), UK10K45, or 

SISu v3 imputation42 panels. For most studies, single nucleotide polymorphisms (SNPs) and 

small insertion/deletions (indels) with MAF≥0.1% and imputation quality scores ≥0.3 were 

included in the association analysis. A higher cutoff of imputation quality score was applied 

in FinnGen (>0.6) and BioMe (≥0.8).

Statistical analysis for GWAS.

Genetic similarity was estimated with uncorrelated SNPs using principal component 

analysis in each study based. In total, 42,428,922 variants (SNPs and indels) were examined 

for association using logistic regression adjusting for age, sub-study (if applicable, see 

Supplementary Table 1) and up to 10 principal components. Per-allele ORs and standard 

errors from individual studies were combined by a fixed-effects inverse-variance weighted 

meta-analysis using METAL in ancestry-specific analyses as well as across all four ancestry 

groups to obtain multi-ancestry estimates of effects. Heterogeneity of effect sizes across 

ancestries were examined by the statistic I2 with corresponding tests of significance 

(Supplementary Table 6). The genomic inflation factors (λ) were calculated in each study/

consortium and within each population (Supplementary Table 3). Each inflation factor was 

then rescaled to λ1000, which represents the inflation factor for an equivalent study of 1,000 

cases and 1,000 controls46.

Risk variant identification.

Genome-wide significant associations were defined as variants with P<5x10−8 in the multi-

ancestry meta-analysis. To identify independent index risk variants in the newly identified 

and previously known risk regions, we implemented a forward-selection conditional analysis 

approach using a multi-population Joint Analysis of Marginal summary statistic (mJAM). 

Within each region, the forward selection process started with a model containing the 

variants with the most significant multi-ancestry marginal P value, and additional variants 

were added if they were independent of the selected variants (LD R2<0.1 in all four 

populations). Variants with a conditional multi-ancestry P<5x10−8 were retained in the 

model. Imputation quality scores of all individual studies were checked for all selected risk 

variants (Supplementary Table 5).
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Genome-wide significant variants were considered “novel” if they were not in LD with any 

previously known risk variants in any of the four populations and remained genome-wide 

significant after conditioning on nearby known risk variants. Previously known variants were 

1) dropped if their marginal P values were below the genome-wide significance threshold, 2)

replaced by a correlated new lead variant with a more significant conditional P value, or 3)

not replaced.

GRS construction.

We constructed a GRS from the summed risk allelic dosages weighted by the per-allele 

log-odds ratios in the marginal model for independent variants and in the conditional model 

for the variants in the same region. GRS was constructed for the 451 risk variants, and also 

for risk variant sets reported in previous prostate cancer GWAS meta-analyses: (1) N=269 

variants reported in a multi-ancestry study (107,247 cases / 127,006 controls)2, (2) N=181 

variants reported in European (25,723 cases / 26,274 controls)35, African (10,202 cases / 

10,810 controls)47 and Asian (3,000 cases / 4,394 controls)6 ancestry-specific studies, 

respectively, and (3) N=100 variants reported in a multi-ancestry study (43,303 cases / 

43,737 controls)8.

Discriminative improvement of GRS.

To visualize the improvement of predictive ability of prostate cancer GRS over time with 

the increasing number of risk variants included, we categorized the distributions of previous 

GRS (GRS100, GRS 181, GRS269) and the current GRS (GRS451) into quintiles ([0–20%], 

(20–40%], (40–60%], (60–80%], and (80–100%]) based on the distribution of the score in 

controls for each study or consortium. We used Sankey diagrams to visualize the change in 

risk categorization from the previous GRS to the subsequent GRS among controls and cases, 

respectively.

To quantify the discriminative ability improvement by inclusion of additional risk variants, 

we calculated continuous-based NRI in our GWAS discovery sample36. For each study, 

we calculated NRI comparing a risk model with age only (adjusted for sub-studies and 

top 10 principal components) to risk models with additional inclusion of GRS100, GRS181, 

GRS269, and GRS451, respectively. Additionally, we calculated NRI comparing the GRS451 

model to the GRS269 model to show the discriminative ability improvement of the current 

GRS relative to last GRS. The 95% CIs for NRI were estimated using 1,000 bootstrap 

replications.

GRS association analysis.

The risk of prostate cancer was estimated for the per SD GRS change and for each percentile 

category of the GRS: [0–10%], (10–20%], (20–30%], (30–40%], (40–60%], (60–70%], (70–

80%], (80–90%], and (90–100%]. Additional analysis was performed to obtain the risk 

of prostate cancer for the top 1% ((99–100%]). We reported the GRS associations using 

the median quintile (40–60%] category (Supplementary Table 13) as well as the bottom 

decile [0%-10%] category as the reference groups (Supplementary Table 14), respectively. 

The mean and SD, and the GRS categories were determined by the observed distribution 

among controls for each study or consortium. We applied the conditional multi-ancestry 
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effect estimates from the overall meta-analysis to calculate GRS for individuals from studies 

mentioned above. In each study, logistic regression was performed to estimate the OR and 

95%CI corresponding to per SD change of GRS or each GRS category, adjusted for age, 

sub-study (if applicable), and up to 10 principal components. Within each population, the 

associations of GRS with prostate cancer risk were meta-analyzed across individual studies 

using a fixed-effect inverse-variance-weighted method.

GRS association in replication and overall samples.

We validated the GRS performance in independent samples that were not part of the GWAS 

discovery, including the Michigan Genomics Initiative48 (MGI; European: 3,244 cases, 

10,537 controls; African: 189 cases, 450 controls), Mass General Brigham Biobank49,50 

(MGB; European: 1868 cases, 10,980 controls; African: 85 cases, 471 controls), Men 

of African Descent and Carcinoma of the Prostate51 (MADCaP; African: 2,505 cases, 

2,160 controls), and Estonian Biobank52 (EstBB; European: 2,352 cases, 28,546 controls). 

Details of study population, genotyping and imputation were described in Supplementary 

Tables 1 and 2. GRS451 and GRS269 were constructed and weighted by the multi-ancestry 

conditional weights. ORs per SD and for each decile were estimated within study population 

using logistic regression adjusted for age, sub-study (if applicable), and up to 10 principal 

components.

Genome-wide PRS.

We compared our GRS451 to a recent genome-wide PRS approach PRS-CSx53, an extension

of the Bayesian PRS-CS approach54 that integrates GWAS summary statistics from multiple 

ancestry groups to improve cross-population polygenic modeling. We previously found that 

PRS-CSx was more predictive of prostate cancer risk relative to several other genome-wide 

PRS approaches in both European and African ancestry men38. PRS-CSx was evaluated 

with the fully Bayesian approach to identify the optimal global shrinkage parameter phi, 

as recommended for large GWAS training data. PRS-CSx was trained on the population-

specific (European, African, East Asian, and Hispanic populations) marginal GWAS 

summary statistics from the current investigation, using the meta=TRUE option to generate 

a multi-ancestry genome-wide PRS. Variants included were the 1.1 million HapMap3 panel 

variants55. Populations from the 1000 Genomes Project56 were used for LD reference 

panels. The resulting genome-wide PRS was evaluated in independent studies of European 

ancestry men from MGI and African ancestry men from MADCaP. Performance metrics 

included ORs calculated for the continuous standardized genome-wide PRS, adjusting for 

age, sub-study (if applicable), and up to 10 principal components.

GRS by Age and Disease Aggressiveness.

We investigated the association of GRS with prostate cancer risk stratified by age and 

its association with disease aggressiveness. In age-stratified analysis, cases and controls 

were both stratified into two age groups (age ≤55 vs. age >55 years). prostate cancer was 

defined as aggressive if one or more of the following criteria were met: tumor stage T3/T4, 

regional lymph node involvement, metastatic disease (M1), Gleason score ≥ 8, PSA level 

≥ 20 ng/mL, or prostate cancer as the underlying cause of death. Non-aggressive prostate 

cancer was defined as prostate cancer without aggressive features and meeting one or 
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more of the following criteria: Gleason score ≤ 7.0, PSA < 20 ng/mL, and stage ≤ T2. 

Logistic regressions were performed with prostate cancer status (non-aggressive vs. control, 

aggressive vs. control, or aggressive vs. non-aggressive) as the outcome and per SD GRS or 

GRS categories as the independent predictors, adjusting for age, sub-study (if applicable), 

and up to 10 principal components. Ancestry-specific GRS estimates were obtained via 

an inverse-variance weighted fixed effects meta-analysis performed within each population. 

Heterogeneity between stratum was assessed via a Q-statistic between effect estimates with 

corresponding tests of significance.

Impact of PSA screening on prostate cancer GWAS.

We compared the 128 PSA variant reported in the latest PSA GWAS57 to the 451 prostate 

cancer risk variants and found 50 overlapping variants (in high LD (R2>0.8) or identical 

index variant; supplementary Table 7). Three of the variants (2 of which overlapped with the 

PSA variants) are near the KLK3 gene, which encodes the PSA protein and are very strongly 

associated with PSA level. For the 48 overlapping variants (removing KLK3), it is currently 

difficult to differentiate whether they are prostate cancer risk variants, PSA variants or both. 

To better understand the likelihood of these variants being identified as the result of altering 

PSA levels, leading to biopsy and a prostate cancer diagnosis, we examined their aggregate 

effect on disease aggressiveness in our GWAS discovery samples. Additionally, we removed 

the 48 potential PSA variants (and 3 KLK3 variants) from the prostate cancer GRS (with 

400 variants) and examine the association with aggressive versus non-aggressive prostate 

cancer in the multi-ancestry sample.

To account for the multiple comparisons being made in our sub-group analyses described 

above (in total 20 independent tests), we applied Bonferroni correction to the significance 

level (0.05/20=0.0025).

Age-specific absolute risk estimation.

Absolute risk for a given age for each GRS percentile and each population has been 

described previously2,58–1. The approach constrains the GRS-specific absolute risks for a 

given age to be equivalent to the age-specific incidence for the entire population while 

accounting for competing causes of death. For each ancestry group, absolute risks by age t 
were calculated using age-specific prostate cancer incidence, μ t , and age-specific mortality 

rates, μD t , from the Surveillance, Epidemiology, and End Results (SEER) Program (2014–

2018)62,63.

Variant annotation.

Lead variants were annotated for indicators of functionality according to a framework 

described previously2, and incorporating additional datasets. Gene-based information was 

obtained using wANNOVAR64. Chromatin Immunoprecipitation Sequencing peaks were 

obtained from the Cistrome Data Browser65 for the prostate cancer cell-lines LNCaP, 

PC3 and VCaP and prostate epithelium cell-line PrEC66. Peak data were obtained for 

open chromatin (DNase-Seq and ATAC-seq), histone modifications (H3K27Ac, H3K9Ac, 

H3K4me1, H3K4me2 and H3K4me3), and transcription factor binding. A list of datasets 

included is provided in Supplementary Table 19.

Page 10



Data for significant variant-gene pairs for differential gene expression (eQTLs) in three 

prostate tissue cohorts (GTEx v867, normal prostate tissue, n=221; TCGA PRAD68, prostate 

adenocarcinoma, n=359; MAYO30, tumor-adjacent normal prostate tissue, n=471) were 

obtained as described previously2. All significantly associated genes at False Discovery Rate 

(FDR) ≤0.05 identified were reported for each lead variant.

Data for significant variant-gene pairs for differential gene splicing (sQTLs) were obtained 

for two prostate tissue cohorts. sQTLs for GTEx v8 normal prostate tissue (n=221) were 

downloaded from the GTEx portal. sQTLs for TCGA PRAD (n=485) were obtained 

from the CancerSplicingQTL database69. All genes significantly associated with alternative 

splicing in the respective datasets were reported for each lead variant.

Functional enrichment permutations.

To quantify the extent to which the prostate cancer risk variants are enriched with 

regulatory activity compared to the genome-wide background, we performed a permutation 

test based on simulations. Briefly, we sought to sample 439 autosomal variants from 

the genomic background and compare the number of functional annotations observed 

with those observed in the original 439 autosomal prostate cancer risk variants. We 

first estimated the deciles of MAF and LD scores among the 439 prostate cancer risk 

variants using the combined Human Genome Diversity Project (HGDP)70 and 1000 

Genomes Project56 datasets as reference. For a given simulation, we sampled 439 variants 

from the genomic background, after stratifying by the number of variants observed 

in the MAF and LD deciles. For a given functional category C, let C S  denote the 

number of variants in set S with annotation C. We computed a permutation P value as 

p C = 1
1001 + 1

1001 S
C S ≥ C R , where R denotes the 439 prostate cancer risk variants. 

The additional 1/1001 term is the result of R acting as an “identity” permutation of the 

data and to prevent permutation P values of 0. Similarly, we computed enrichment as 

e C = C R
C S  where C S = 1

1000 S
C S  represents the average number of annotated variants 

in the genomic background. We performed this procedure using genomic annotations from 

prostate eQTL and sQTL in GTEx v867, tumor prostate eQTL in TCGA PRAD 68, and 

cis-regulatory elements (CRE) in prostate samples using EnTEx/ENCODE annotations71.

Fitting prediction models of gene expression in prostate tissues.

To perform a TWAS, we fitted predictive models using genotype and mRNA measurements 

from samples of normal prostate in GTEx v8 (n=221)29 and histologically normal prostate in 

refZ (n=471)30. We performed quality control (QC) on genotype data and kept only biallelic 

SNPs with MAF ≥0.01, HWE P >5 x e−5, imputation quality score>0.6, and were annotated 

in HapMap3. Using the FUSION pipeline, we estimated cis-h2g using QC’d genotypes 

within 1 Mb flanking the gene body (i.e., ±500 Kb transcription start and stop sites)27. For 

GTEx expression data, we adjusted expression models using eQTL covariates described in 

reference29, which included 5 principal components, 30 PEER factors72, and two binary 

indicators for sequencing protocol and platform. For expression data in refZ30, we adjusted 

expression models for histologic characteristics, percent lymphocytic population, percent 

epithelium present, and 14 gene expression principal components, which were defined in 
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refZ. We limited downstream model fitting to genes whose expression levels exhibited 

evidence of genetic control by testing for non-zero cis-heritability (P<0.01) using GCTA73. 

To build prediction models of expression, we fit penalized linear models using a modified 

version of the FUSION software which included SuSiE74.

TWAS and PWAS using predicted gene and protein expression levels.

To perform downstream TWAS, we used the FUSION software27 to integrate our fitted 

prostate expression models together with the current multi-ancestry GWAS summary 

statistics. In addition to our fitted models of prostate expression, we also downloaded 

prediction models of gene expression in prostate adenocarcinoma samples from TCGA 

(n=468)31. To test the association between genetically predicted levels of protein expression 

in plasma with prostate cancer risk, we downloaded prediction models fitted using 

the INTERVAL study (n=3301)32. In total, we performed m=19,352 association tests 

(m_GTEx=5063, m_refZ=8632, m_TCGA=4664, m_INTERVAL=993). We used a per-

reference panel Bonferroni adjustment to determine transcriptome- or proteome-wide 

significance (TWAS P < 0.05 / m_study). To quantify the extent to which novel risk regions 

identify from TWAS replicate in larger GWAS, we also performed TWAS and PWAS using 

a smaller, previously published meta-analyzed GWAS summary statistics of prostate cancer 

(N=234,253)2. A region exhibiting TWAS/PWAS significant signal was determined to be 

novel if it did fall within 250Kb of a lead GWAS variant.

Extended Data

Extended Data Fig. 1. 
Venn diagram of prostate cancer risk variants common (MAF>1%) among European, 

African, Asian and Hispanic populations.

The plot illustrates the distribution of 451 prostate cancer risk variants, highlighting the 

number of variants that are either unique to or shared among European, African, Asian, and 

Hispanic populations. Five variants with a minor allele frequency (MAF) of ≤1% across all 

populations are specifically included under the European population, where they have the 

highest MAF. Numbers in parentheses denote the total count of variants common to each 

respective population.
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Extended Data Fig. 2. 
The associations of GRS451 and total prostate cancer risk in GWAS discovery and 

replication sub-studies and meta-analysis by ancestry.

Odds ratios and 95% confidence intervals for one SD increase in GRS451 and total prostate 

cancer risk were calculated from logistic regression. The columns ‘case’ and ‘control’ 

show the case and control sample sizes, respectively. ‘META’ refers to the meta-analyzed 

results using the inverse-variance weighted method. The y-axis shows each individual sub-

studies (details of each sub-studies are available in Supplemental Table 1 and 2) and their 

corresponding meta-analyzed results by ancestry and study phase (GWAS discovery or 

replication), as well as overall meta-analyzed results.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plot of results from the multi-ancestry prostate cancer meta-analysis.

Multi-ancestry meta-analysis (156,319 cases and 788,443 controls) was performed using 

an inverse-variance-weighted fixed-effects model. Nominal statistical significance is shown 

as −log10P (two-sided) of z statistics on the y axis. Purple and orange circles indicate 

previously known or novel risk variants, respectively, that were genome-wide significant in 

multi-ancestry or ancestry-specific meta-analyses. The plot is truncated at −log10P=600.
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Figure 2. 
Comparison of the ancestry-specific results of the 451 risk variants for prostate cancer.

(a) Venn diagram of genome-wide significant variants (P<5x10−8) among European,

African, Asian, and Hispanic populations. (b) Venn diagram of nominally significant

variants (P<0.05) among European, African, Asian, and Hispanic populations. (c)

Comparison of ancestry-specific odds ratios (ORs) between European and African, Asian,

and Hispanic populations, respectively. The number of variants is denoted in the lower right

corner. Genome-wide significant variants among African, Asian, or Hispanic populations are

highlighted in orange. Two-sided Pearson correlation tests were performed. The Pearson’s

correlation coefficient between effect size and corresponding P-value are denoted in the

upper left in each sub-panel. Only common variants across all populations (MAF>1%,

n=370) were included in (a), (b), and (c).
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Figure 3. 
Percentage of cases in the lowest and highest genetic risk score (GRS) quintiles based on 

GRS100, GRS181, GRS269, and GRS451 in the multi-ancestry sample.

GRS risk quintiles were categorized based on GRS distributions among controls. Quintile 1 

(orange bar) refers to the lowest quintile (0–20%), and quintile 5 (yellow bar) refers to the 

highest quintile (80–100%).
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Figure 4. 
The associations of GRS and prostate cancer risk in GWAS discovery and replication 

samples.

ORs and 95% Confidence Intervals (CIs) from logistic regression for one standard deviation 

(SD) increase in (a) GRS100, GRS181, GRS269, and GRS451 and total prostate cancer risk by 

ancestry in the GWAS discovery studies; (b) GRS269 and GRS451 and total prostate cancer 

risk in the replication studies: Michigan Genomics Initiative (MGI), Mass General Brigham 

Biobank (MGB), Estonian Biobank (EstBB ), and Men of African Descent and Carcinoma 

of the Prostate (MADCaP); (c) GRS451 and total prostate cancer risk by age; (d) GRS451 

and GRS400 and prostate cancer aggressiveness among prostate cancer cases in the GWAS 

discovery studies. ‘META’ refers to the meta-analyzed results for all populations using the 

inverse-variance weighted method. Incremental percentage change of ORs were calculated 

for each comparison. The columns ‘case’ and ‘control’ show the case and control sample 
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sizes, and the columns ‘agg’ and ‘non-agg’ show the aggressive and non-aggressive cases 

sample sizes, respectively.
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Figure 5. 
Cumulative absolute risk by age.

Solid lines are the cumulative absolute risk for individuals in the top 16% GRS for African 

ancestry and top 20% for European ancestry. These GRS categories represent the percent 

of individuals in each population with at least a 2-fold increase in risk in comparison to 

the median GRS (as indicated in the inset distributions for African and European ancestries, 

respectively). Dashed horizontal lines indicate the lifetime absolute risk achieved at age 85 

for the average (50% GRS) in African (11.6%) and European (7.8%) ancestry populations. 

Solid dots indicate the ages at which lifetime absolute risk levels are achieved for men of 

African ancestry in the top 16% GRS (age = 66 years) and men of European ancestry in the 

top 20% GRS (age = 69 years).
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