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GPCRs modulate a plethora of physiological processes and mediate the effects of

one-third of FDA-approved drugs. Depending on which ligand activates a receptor, it

can engage different intracellular transducers. This ‘biased signalling’ paradigm

requires that we now characterize physiological signalling not just by receptors but

by ligand–receptor pairs. Ligands eliciting biased signalling may constitute better

drugs with higher efficacy and fewer adverse effects. However, ligand bias is very

complex, making reproducibility and description challenging. Here, we provide guide-

lines and terminology for any scientists to design and report ligand bias experiments.

The guidelines will aid consistency and clarity, as the basic receptor research and drug

discovery communities continue to advance our understanding and exploitation of

ligand bias. Scientific insight, biosensors, and analytical methods are still evolving and

should benefit from and contribute to the implementation of the guidelines, together

improving translation from in vitro to disease-relevant in vivo models.

1 | INTRODUCTION

The � 800 human GPCRstransduce sensory inputs and systemic sig-

nals into appropriate cellular responses in numerous physiological pro-

cesses. They recognize a vast diversity of signals ranging from

photons, tastants and odours to ions, neurotransmitters, hormones,

and cytokines (Harding et al., 2021; Wacker, Stevens, & Roth, 2017).

Even though GPCRs represent the primary target of 34% of FDA-

approved drugs, more than 220 non-olfactory GPCRs have disease

associations which are as yet untapped in clinical research (Hauser,

Attwood, Rask-Andersen, Schioth, & Gloriam, 2017; Sriram &

Insel, 2018). Despite the diversity of extracellular ligands and physio-

logical roles of GPCRs, these cell surface receptors share a conserved

molecular fold and intracellular transducers. Agonist binding stabilizes

active conformations of the receptor, facilitating the binding of one or

more cytosolic transducer proteins. These include the heterotrimeric

G proteins consisting of � , � and � subunits that dissociate to � and ��

upon activation by the receptor. G proteins comprise 16 distinct �

subunits and are divided into four families based on homology and

associated downstream signalling pathways: Gs (Gs and Golf), Gi/o (Gi1,

Gi2, Gi3, Go, Gt1, Gt2, Gt3, and Gz), Gq/11 (Gq, G11, G14 and G15), and

G12/13 (G12 and G13). Moreover, there are five different � and 12 �

subunit types, resulting in a vast number of possible heterotrimeric G

protein combinations (Hillenbrand et al., 2015; Masuho et al., 2021;

Milligan & Kostenis, 2006; Olsen et al., 2020).

Activated GPCRs are also bound and phosphorylated at multiple

Ser and Thr residues by one or more of the seven differentGPCR

kinases (GRKs) or effector kinases, such asPKA and PKC. Receptor

phosphorylation by GRKs is a key functional determinant for the bind-

ing of arrestin proteins (4 subtypes) (Komolov & Benovic, 2018),

which can ‘arrest’ signalling by blocking G protein coupling and facili-

tating receptor internalization, although phosphorylation-independent

arrestin interactions have also been described (Eichel et al., 2018).

Arrestins are scaffold proteins that recruit and/or assemble other pro-

teins that signal (Ahn, Shenoy, Luttrell, & Lefkowitz, 2020). Ultimately,

the functional interplay between G proteins, GRKs, other kinases,

arrestins, and other interaction partners at a GPCR shapes the

outcome of receptor signalling in space and time (Gutkind &

Kostenis, 2018; Kenakin, 2019). However, the molecular mechanisms

underlying these complex and variable interactions remain far from

fully understood (Smith et al., 2021; Thomsen et al., 2016).

‘Biased signalling’ is the ligand-dependent activation of certain

pathways over others, and can lead to a ‘functionally selective’
response. ‘Biased signalling’ became generally accepted after evi-

dence accumulated that the rank order of ligands by potency could be

different for different pathways engaged by a single receptor (Roth &

Chuang, 1987; Spengler et al., 1993) or inversion of the ligand modal-

ity (Azzi et al., 2003; Baker, Hall, & Hill, 2003). The most frequently

studied pathway-bias has been that between G proteins and arrestins,

while more recent studies have compared G protein families and even

subtypes belonging to the same G protein family. Several receptors

have evolved to recognize multiple alternative endogenous agonists

eliciting biased signalling (relative to the principal endogenous ligand),

for example, chemokine (Kohout et al., 2004), opioid (Gomes

et al., 2020), PACAP (Spengler et al., 1993),protease-activated

(Hollenberg et al., 2014), 5-HT (serotonin) (Schmid, Raehal, &

Bohn, 2008), and PTH (Dean, Vilardaga, Potts, & Gardella, 2008)

receptors. Therapeutic exploitation of biased signalling could increase

drug efficacy while avoiding adverse effects attributable to particular

pathways. Several studies have outlined disease-relevant pathways

for future therapeutic targeting (Urban et al., 2007; Whalen,

Rajagopal, & Lefkowitz, 2011) or retrospective cross-screening yield-

ing biased ligands predicted to result in potentially useful phenotypes

in therapy (Che, Dwivedi-Agnihotri, Shukla, & Roth, 2021; Galandrin,

Oligny-Longpre, & Bouvier, 2007; Kenakin, 2019; Urban et al., 2007;

Whalen, Rajagopal, & Lefkowitz, 2011).
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Mechanistically, biased signalling has been explained by confor-

mational selection. Specifically, a ligand and transducer—binding from

opposite sides of the cell membrane—may prefer the same receptor

structure conformation and thereby allosterically select each other

(Galandrin, Oligny-Longpre, & Bouvier, 2007; Kenakin, 1995; Kenakin

& Morgan, 1989; Roth & Chuang, 1987; Smith, Lefkowitz, &

Rajagopal, 2018). In other words, this allosteric communication is

reciprocal, as G protein pre-coupling can potentiate agonist binding

(Bock & Bermudez, 2021; De Lean, Stadel, & Lefkowitz, 1980;

Lefkowitz, Mullikin, & Caron, 1976; Maguire, Van Arsdale, &

Gliman, 1976). An activated receptor state has also been linked to a

high affinity binding state for arrestin (Gurevich & Benovic, 1997).

However, it is still unclear what the precise relationship between con-

formation and signalling is—at least at the level of detail required to

predict such outcomes.

Biased signalling comprises very complex pharmacology making

experiment design, interpretation and description challenging and

often inconsistent—causing confusion about what has really been

measured and what can be concluded. Here, we provide recommen-

dations on ligand bias intended to serve as common guidelines for the

field along with defined terminology. They are supported by

the authoritative organization for pharmacological nomenclature, the

Nomenclature and Standards Committee of the International Union of

Basic and Clinical Pharmacology (NC-IUPHAR, https://www.

guidetopharmacology.org/nciuphar.jsp), and COST Action CA18133

ERNEST (European Research NEtwork on Signal Transduction)

(Sommer et al., 2020). Each section below provides definitions, termi-

nology and recommendations for experiments and reporting (summa-

rized in Data S1, S2, and S3).

2 | DEFINITIONS OF PATHWAYS AND OF
BIAS TYPES

2.1 | Pathway definition and modulation

A GPCR pathway is here defined by a transducer protein, or family

thereof, binding intracellularly to the receptor and eliciting a distinct

cellular downstream signalling cascade, trafficking or internalization.

Based on present knowledge, this includes the four G protein

families—that is, the Gs, Gi/o , Gq/11 , G12/13 pathways—and the two

GPCR kinase (GRK) and arrestin families (in all six transducer protein

families). Typically, there is a sequential engagement of a receptor

with a G protein, GRK, and arrestin. However, GRKs and arrestins can

be recruited to and bind to GPCRs independently of functionally

active G proteins (Grundmann et al., 2018; Hunton et al., 2005;

Sauliere et al., 2012; Wehbi et al., 2013). For example,GRK4-6 func-

tions do not appear to require either G proteins or arrestins, as they

are not recruited by G�� but anchored to the plasma membrane via

polybasic domains and lipid modification (Komolov & Benovic, 2018).

Ligand bias is not limited to the comparison of these six transducer

protein families but can also occur within each such family, that is,

across its different members. This extends the number of pathways to

27: 16 G� proteins, 7 GRKs, and 4 arrestin proteins. For example, G

proteins belonging to the same family may differ in their functional

outcome due to unique binding kinetics, cellular expression levels,

and engagement of different downstream effectors (Anderson

et al., 2020; Avet et al., 2021; Ho & Wong, 2001; Jiang &

Bajpayee, 2009; Olsen et al., 2020). Similarly, differential recruitment

of the two isoforms of � -arrestin (� -arrestin 1–2) can translate to dis-

tinct functional outcomes, with respect to regulatory and signalling

paradigms (Ghosh et al., 2019; Srivastava, Gupta, Gupta, &

Shukla, 2015).

In addition, a range of modulatory proteins interact with and

change the signalling of receptors, transducers or effectors. For exam-

ple, receptor activity-modulating proteins (RAMPs) bind to receptors

and can alter their trafficking as well as G protein and/or arrestin

binding (Hay & Pioszak, 2016). In the case of thecalcitonin and

calcitonin receptor-like receptor, different receptor-RAMP complexes

produce distinct pharmacological responses and are therefore consid-

ered as separate receptor subtypes: one calcitonin, two

adrenomedullin, and three amylin receptors (Hay, Garelja, Poyner, &

Walker, 2018). Similarly, the cannabinoid CB1 receptor can bind to

cannabinoid receptor interacting protein 1a (CRIP1a), yielding distinct

pharmacology (Oliver et al., 2020). GPCRs are also substrates for sec-

ond messenger-activated kinases such as the cAMP-dependent kinase

(PKA), PKC, and thecasein kinase(CK), with each producing different

effects on receptor signalling and trafficking (Bouvier, Leeb-Lundberg,

Benovic, Caron, & Lefkowitz, 1987; Hausdorff et al., 1989; Tobin,

Totty, Sterlin, & Nahorski, 1997). Additionally, numerous downstream

intracellular effectors modulate pathway responses as scaffolding pro-

teins, for example, kinases and PDZ proteins (Bockaert, Fagni, Dumuis,

& Marin, 2004; Kenakin, 2019; Maurice et al., 2011). Theregulator of

G protein signalling (RGS)proteins selectively modulate G protein

subtypes and differentially alter G protein signal strength (Hollinger &

Hepler, 2002; Masuho et al., 2020; Neubig & Siderovski, 2002).

Furthermore, GRK2 and GRK3 have a RGS homology domain

(RH) binding to Gq/11 to inhibit signalling, and a pleckstrin homology

(PH) domain that can bind to G�� to inhibit its signalling while inducing

recruitment of GRK to the receptors (Carman et al., 1999;

DebBurman, Ptasienski, Benovic, & Hosey, 1996; Ribas et al., 2007).

Terminology summary A

Transducer: For the purpose of defining biased signalling ini-

tiated by the GPCRs, transducers are defined as proteins

that bind directly to an activated receptor to initiate, facili-

tate or modulate downstream events such as signalling, traf-

ficking or internalization. This includes G proteins, GRKs and

arrestins. Some also use‘primary’ effector to denote a

transducer, but this word can be confusing as these proteins

typically bind the receptor one after the other. Effector:

Signalling protein located downstream in a transducer's

pathway. Modulator: Proteins or molecules that do not

mediate, but modulate signalling of a receptor, transducer or
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effectors. Examples include receptor activity-modulating

proteins (RAMPs), guanine nucleotide exchange factors

(GEFs), GTPase-activating proteins (GAPs), regulators of G

protein signalling (RGSs), NO, cholesterol and other

lipids. Second messenger: Small molecules or ions directly

controlled by the effectors. Changes in second messenger

homeostasis mediate cellular responses and can serve as a

quantifiable measure of GPCR activation. Examples include

cAMP and calcium. Pathway: A pathway is named after

a transducer protein, or family thereof, that binds to GPCRs.

This includes G proteins and their families—that is, Gs, Gi/o ,

Gq/11 , and G12/13 which have distinct downstream effectors.

It also includes the GPCR kinase (GRK) and arrestin families,

which are often but not always engaged following G protein

activation.

2.2 | Ligand bias definition and distinction from
system bias

This paper focuses onligand-dependent bias, that is, cases where a

receptor's pathway engagement changes when binding a given ligand

(Figure 1). Quantification of bias compares two pathways at a time,

typically the pathway with the strongest signalling relative to the most

relevant other pathway(s). It also uses a reference ligand and is there-

fore a comparison of both pathways and ligands (like a quantitative

rank order).

In addition to ligand bias, a receptor's response is also determined

by system bias, which encompasses all non-ligand molecules involved

in signalling. System bias encompasses, for example, the stoichiometry

of receptors, transducers, effectors, and modulatory proteins which

varies spatially across tissues, cell types, and temporally across

physiological states. System bias includes a receptor's G protein or

arrestin selectivity. For example, some GPCRs lack the inherent ability

to elicit G protein coupling while exhibiting robust arrestin interaction

(Meyrath et al., 2020; Pandey et al., 2021; Rajagopal et al., 2010).

Furthermore, system bias depends on the different levels of receptor

constitutive activity, and intracellular intra- or inter-pathway

feedbacks. System bias affects all ligands equally (including the refer-

ence ligand), unless the system itself has an influence on ligand

concentration (e.g. by conditions where one of two ligands is

metabolized).

Functional selectivity is the combined effect of ligand and system

bias (Stallaert, Christopoulos, & Bouvier, 2011). For example, a GPCR

can give rise to different physiological effects after activation by alter-

native endogenous agonists or for the same ligand in different cells/

tissues with differentially expressed signalling components. In drug

discovery, achieving functional selectivity by tuning ligand bias on the

background of system bias in the tissue of interest provides an oppor-

tunity to elicit predominantly the therapeutically beneficial effect of a

receptor target.

F IGURE 1 Ligand, system and observational bias. Ligand and
system bias together determine the functional selectivity (see
terminology subsection for definitions). Each type of bias is measured
relative to a reference. Observational bias is not of biological origin,
but a consequence of assay sensitivity/non-linearity and the
experimental set-up
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Biased signalling studies can also suffer fromobservational

bias, which is an artificial bias caused by an inappropriate experi-

mental set-up and therefore not reflecting native biology. An

example are time points for data collection that are not relevant

for the physiological effect. Another example is if one of the two

studied pathways is measured using an assay with insufficient sen-

sitivity or, conversely, has an artificially high level of amplification.

Therefore, it is necessary to ensure that at least one assay for

each pathway has sufficient sensitivity (preferred) or to increase

expression levels of the involved signalling partners (alternative).

Moreover, the actual signal plateau may be missed if the signal

detection tools saturate prematurely. Observational bias can be

avoided by using an independent ‘orthogonal’ assay to validate

each pathway.

Disclaimer: A ligand may be unbiased (relative to the reference

ligand) with respect to two particular pathways but may be biased

when additional different pathways are studied or if a different refer-

ence ligand is used. Hence, the term‘biased ligand’ cannot be used as

an absolute descriptor for a ligand, but only in the context of receptor,

reference ligand, and pathways.

Terminology summary B

Ligand bias: Ligand-dependent preferential receptor activa-

tion so that one over other transducer pathways in a given

cellular system and relative to a reference ligand is induced

(see below).

System bias: Bias due to differences in the cellular system,

including so called‘tissue bias’. System bias can, for exam-

ple, arise from differential expression levels of receptors,

transducers, effectors, or modulatory proteins.

Functional selectivity: Functional selectivity is the observed

response combining ligand- and system-bias.

Observational bias: An artificial bias introduced by the

experimental set-up. This effect can be minimized, for exam-

ple, by using equally sensitive assays across pathways.

3 | CHOOSING A REFERENCE LIGAND

3.1 | The choice of reference ligand distinguishes
benchmark-, pathway-, or physiology-bias

The meaning of ligand bias depends on the choice of reference

ligand (Table 1). When the reference ligand is a tool compound,

for example, isoprotenerol/isoprenaline for the � 2-adrenoceptor) or

a drug (e.g. to investigate if an agent in a clinical trial is different

from this drug), we refer to this as ligand benchmark-bias, as all

that can be concluded is how the ligands differ in bias. In contrast,

ligand pathway-bias utilizes the reference ligand with the most

balanced signalling across pathways, allowing the researcher to

identify ligands for or functionally dissect a specific pathway.

Finally, ligand physiology-bias utilizes the principal physiological

agonist as the reference ligand and consequently can conclude

whether the tested ligands induce ‘natural’ or ‘unnatural’ signalling.

Thus, the three types of ligand bias are complementary in that

they allow different scientific conclusions to be drawn for the

tested ligands.

As an example, the choice of reference ligand changes the

preferred pathway of the κ-opioid receptor agonist naphthoyl-

� -naltrexamine (� -NNTA) (White et al., 2014). Using the endoge-

nous ligand dynorphin-A as the reference, � -NNTA has a 4.3-fold

bias for � -arrestin recruitment over G protein activation. However,

when using the plant psychedelic salvinorin A, � -NNTA displays

a 8.9-fold G protein bias instead. When using an analogue,

salvinorin B, � -NNTA still has a G protein bias but less pronounced,

only 2-fold.

3.1.1 | Problems and pitfalls

• Bias cannot be reported without the use of a reference ligand, as a

presumed bias may otherwise in fact be due to other differences

in, for example, the baseline, window, and sensitivity of assays

(‘system bias’ or ‘observational bias’ in Figure 1).

• It cannot be concluded that a tested ligand induces isolated/

specific signalling via one pathway unless a balanced ligand is

used as reference. In all other cases, the only conclusion is that

the tested ligand differs from the reference. This is because the

reference ligand may itself have pathway-bias, making a tested

balanced ligand appear biased in comparison.

3.1.2 | Recommendations for experimental design

a. Choose a reference ligand that can support the claims to be

made (Table 1). Use a pathway-balanced and physiological

reference ligand to study pathway- and physiology bias,

respectively.

b. Include multiple reference ligands, thus allowing claims about dif-

ferent types of ligand bias. Doing this will extend the insights from

the current study and enable comparison to other studies. This

entails, if possible, the inclusion of all types of reference ligand: a

highly used tool compound, a drug, a pathway-balanced ligand, and

a physiological ligand. Such ligands are available from the receptor

pages of the Guide to Pharmacology database (Harding

et al., 2021) and the ligand and drug resources in GPCRdb (Hauser,

Attwood, Rask-Andersen, Schioth, & Gloriam, 2017; Kooistra

et al., 2021).

c. Measure the reference ligand(s) and the ligands tested for bias,

under identical conditions.

d. If needed, use separate reference ligands for bias and Emax. If the

reference ligand for bias is not a full agonist, but a partial agonist

producing less than a full receptor response (maximum efficacy,
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Emax), a separate reference ligand for Emax should be used to exploit

the full window of receptor response. For the Gs pathway, some

studies use forskolin , which activates adenylate cyclase directly,

rather than a reference ligand to determine the maximal response.

It is possible to use different reference ligands for Emax in the dif-

ferent pathways, as long as the reference ligand for bias and all

ligands tested for bias are normalized relative to the same refer-

ence ligand for Emax. For mathematical models quantifying bias, see

Section 6.2.

3.1.3 | Reporting recommendations

i. Report the reference ligand along with a motivation to why it

was chosen. For example,‘The reference ligand A was chosen, as

it (i) is the principal physiological agonist, (ii) has a relatively

balanced signalling through pathways P1 and P2 (provide bias

plot slope, or (iii) a clinical or tool compound for which

enhanced pathway specificity is desired through the introduction

of bias’.
ii. The claims should be restricted to what is supported by the cho-

sen reference ligand (Table 1). Thus, in order to conclude on

pathway- and physiology-bias, a balanced and physiological refer-

ence ligand, respectively, must be used.

iii. Define the bias type. Instead of just ‘ligand bias’, we recommend

using the specific terms ‘ligand benchmark-bias’, ‘ligand

pathway-bias’, and ‘ligand physiology-bias’ when the reference

ligand is a drug/probe, balanced and physiological ligand, respec-

tively. Although the person who generated the data may only be

interested in one type of bias, the community understands the

meaning of bias differently.

3.1.4 | Disclaimer

Assay/system dependence: If the system or assays change, the same

ligands, receptor, and pathways can display a different bias. This is

because a reference ligand does not automatically equalise an imbal-

ance in pathways but merely moves the baseline. Imbalance in path-

ways is instead predominantly determined by the choice of systems

and assays, which should be as similar as possible.

Terminology summary C

Biased ligand: Ligand preferentially activating one receptor

transducer pathway in a given cellular system and relative to

a reference ligand. Ligand bias is a property of not just a

ligand, but of a ligand, pathway pair and receptor in combi-

nation, and only valid within the specific system that is

investigated. Therefore, the term ‘biased ligand’ should only

be used if explicitly defined, and not be construed to repre-

sent a ligand-only property. A recommended definition is

included in Section 8.1, which provides one-sentence and

table templates for reporting.

Reference ligand for bias: The ligand that is, by definition,

unbiased. The bias of any other tested ligands is quantified

relative to this reference.

Reference ligand for Emax: A separate reference ligand for the

full receptor response (maximum efficacy, Emax). This allows

exploiting the full window of receptor response even when

the reference ligand for bias is a weak partial agonist.

Unbiased ligand: A ligand that stimulates pathways in a

manner indistinguishable from the reference ligand.

TABLE 1 Types of ligand bias and their meaning by choice of reference ligand

Type of bias Reference ligand
Meaning (what can be
concluded from data)

Disclaimer (meanings/conclusion
not supported by data)

Ligand
benchmark-bias

Any ligand, for example, a candidate
drug or tool compound. The
reference ligand can be arbitrarily
chosen, but often has a particular
relevance as tool or clinical agent and
is therefore selected to benchmark
other tested ligands.

Simultaneous comparison across
pathways and ligands where the
reference ligand can be any ligand of
choice.

A biased ligand for which the reference
ligand was not selected based on
specific signalling pathway qualities
has bias only relative to the reference
ligand, which in turn can elicit any
bias.

Ligand
pathway-bias

Pathway-balanced ligand Signalling preferentially via one
pathway, as the reference ligand
approximates a pathway-balanced
signal.

A pathway-balanced/unbiased ligand
can be physiology-biased, although it
is by definition unbiased in the
pathway definition. A balanced ligand
in one system may not be‘balanced’
in another (applies to all types of
ligand bias).

Ligand
physiology-bias

Principal endogenous agonist Signalling differs from the physiological,
as the reference ligand represents the
endogenous response of the given
receptor and system.

An endogenous agonist can be
pathway-biased, although it is by
definition unbiased in the
physiological definition.

Note: The terms ‘ligand pathway-bias’ and ‘ligand physiology-bias’ are recommended when researchers wish to attribute a specific function (in addition to
just a difference to the reference ligand employed).
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3.2 | Ligand pathway-bias (uses a pathway-
balanced reference ligand)

Ligand pathway-bias is the most relevant type of ligand bias

when seeking to discover a drug with functional selectivity, as it

describes predominant signalling via one pathway. A pathway-

balanced reference ligand (typically a surrogate, but can also be an

endogenous ligand) has near equal signalling through compared

pathways, meaning that if a tested ligand is biased, it preferentially

activates one pathway over the other (Table 1).

3.2.1 | Problems and pitfalls

Lacking reference ligands: When no balanced ligand is available,

bias can still be measured but not interpreted as pathway-bias.

In these cases, it can be useful to visualize the relative pathway

preferences of the most interesting tested ligands in a bias plot

(Figure 2).

3.2.2 | Recommendations for experimental design

a. Determine a pathway-balanced reference ligand in a bias plot.

A balanced ligand can be defined based on a bias plot, which

is an equimolar comparison of induced pathway activities

(Figure 2). A balanced (least biased) ligand has a slope of

(close to) 1.

3.2.3 | Reporting recommendations

i. Document the pathway-balance of the reference ligand. For

example, present a bias plot (Figure 2) or reference a previous

supporting study, if available.

3.2.4 | Disclaimer

Context specific bias: Many researchers argue, rightly so, that a

ligand referred to as balanced will not be balanced in another

system or assay. Therefore, any claim of a ligand being

balanced and tested ligands exhibiting pathway-bias is always

system-specific (which is true for all ligand bias studies). See also

the Section 5.1.

Terminology summary D

Balanced ligand:Has indistinguishable or very similar signal-

ling through compared pathways (Figure 2).

Ligand pathway-bias: Ligand bias that is measured

relative to a balanced reference ligand and therefore has

the meaning that signalling is predominant via one

pathway.

3.3 | Ligand physiology-bias (uses the principal
endogenous ligand as reference)

When using an endogenous ligand as a reference ligand, the state-

ment that a tested ligand is biased carries the meaning that its signal-

ling differs from the physiological one (Table 1). This is valuable, for

example, when seeking to map the relationships between pathways

and physiological effects. Whether this entails a response through a

single pathway or not will therefore depend on the extent to which

the endogenous ligand engages different transducer pathways or not,

in the first place.

3.3.1 | Problems and pitfalls

• The same receptor often has multiple endogenous agonists

and depending on which one is used as the reference for a

ligand physiology-bias study, the measured bias may change

substantially.

• A secondary endogenous agonist can be biased relative to the prin-

cipal endogenous agonist.

• Ligand physiology-bias cannot be determined for‘orphan’ GPCRs,

as they have no known endogenous ligand.

• Endogenous ligands with low efficacy cannot be quantified for bias

(see Section 7.1).

F IGURE 2 Bias plot of an equimolar comparison of ligand-
induced activities in two pathways. The plot is adapted from White
et al., (2014) in which Salvinorin A was chosen as the reference ligand
because it has a bias plot slope close to 1. GR89696 andICI
199,441 are arrestin-biased and RB 48 and RB 64 are G protein-
biased. The pathway percent activation could, for example, use
�� Log (Emax/EC50) or (�� Log(� /K A) values (see Section 6.2 and
Box 1)
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3.3.2 | Recommendations for experimental design

a. Use the principal endogenous agonist as reference ligand for stud-

ies of how a tested ligand differs from the natural signalling, that is,

ligand physiology-bias. The principal endogenous agonist is that

which is most abundant and potent in the receptor's most physio-

logically relevant tissue. Principal and secondary endogenous ago-

nists of GPCRs are curated by experts coordinated by NC-IUPHAR

and available in the receptor pages of the Guide to Pharmacology

database (Harding et al., 2021). In cases where it is not clear which

endogenous agonist represents the principal agonist, we recom-

mend using the endogenous agonist with the highest potency (effi-

cacy is not annotated in this database) or efficacy in the given

investigators' assay and system.

Terminology summary E

G protein selectivity : The profile of one or more G proteins

that a receptor engages, typically when activated by the

principal endogenous ligand reference. This may be a subset

of additional G proteins that the receptor can engage when

bound to other agonists. The term ‘natural bias’ is self-

contradictory and should not be used.

Ligand physiology-bias: Ligand bias relative to a receptor's

principal endogenous agonist, which therefore bears the

meaning that signalling differs from the physiological.

3.4 | Ligand pathway-preference (uses no
reference ligand, and is not ligand bias)

Without a reference ligand, a study cannot conclude on ligand bias.

Investigation of a ligand's differential activity across pathways

(e.g. pathway � Log (Emax/EC50) or � Log(� /K A) values), but not

relative to a reference ligand, is here instead referred to aspathway-

preference. Comparing pathway-preferences of a number of tested

ligands can be a useful way to select a reference ligand for subsequent

calculation of ligand bias. It may also be a way to rank order ligands

without defining a fixed reference point.

3.4.1 | Problems and pitfalls

• Studies cannot claim ligand bias without a reference ligand.

3.4.2 | Recommendations for experimental design

a. Compare pathway� Log (Emax/EC50) or � Log(� /K A) values, not only

fold potencies, as differing efficacies can substantially influence

the relationships (Box 1).

b. Use the same or near-identical systems and assays, as without a

reference ligand any system bias will have a larger influence.

Terminology summary F

Pathway-preference: A ligand's differential activity across

pathways (e.g. pathway � Log (Emax/EC50) values), but

without comparison to a reference ligand.

4 | MEASURING AT THE TRANSDUCER OR
DOWNSTREAM

4.1 | Ligand bias measured at the
transducer level

Measuring receptor-binding transducers (G proteins, GRKs, or

arrestins) avoids downstream signal amplification. This can make

experiments more comparable across pathways than measuring

downstream effectors or second messengers.

4.1.1 | Problems and pitfalls

• If a single representative transducer is used, it may not be repre-

sentative for the signalling behaviour of the entire transducer fam-

ily (e.g. Gq, G11, G14, and G15 in the Gq/11 family). Differential

activation or recruitment of individual transducer family members

has been shown both for G protein families (Avet et al., 2021;

Inoue et al., 2019; Masuho et al., 2015; Namkung et al., 2018;

Olsen et al., 2020) and the arrestin family (Avet et al., 2021;

Srivastava, Gupta, Gupta, & Shukla, 2015).

• Different cellular systems can express transducers differentially.

Hence, even measurements of transducer-levels, albeit devoid of

signalling amplification, can differ across cells and tissues.

• Assays are often only referred to by their detection method, for

example, ‘BRET assay’. This is insufficient, as the same detection

technique can be used to measure fundamentally different mole-

cules and processes, such as GPCR-G protein binding/coupling or

G� -G�� dissociation (Figure 3a).

4.1.2 | Recommendations for experimental design

a. Use recent assays consistently profiling G proteins and arrestins

(also with GRKs) (Avet et al., 2021; Olsen et al., 2020) (The assays

in Olsen et al. were optimized from Gales et al. 2006; Lukasheva

et al., 2020).

b. If possible, test all transducers for each investigated transducer

family because it cannot be assumed that one transducer is repre-

sentative for the signal mediated by the entire family.
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c. If selecting representative transducer subtypes, use the most rele-

vant. If not all transducer subtypes within a given transducer family

can be tested, a representative could be selected based on the

transducer expression levels in the tissue most relevant for the

study. If this is not known, another rationale could be to select the

transducer subtype with the highest activation or recruitment.

Data to support such a selection have come from, for example,

Avet et al. (2021), Inoue et al. (2019) and Olsen et al. (2020) and

have been integrated in GproteinDb (Pandy-Szekeres et al., 2022)

and ArrestinDb (https://arrestindb.org).

4.1.3 | Reporting recommendations

i. Modifications of receptors, transducers, or effectors must be

clearly defined (e.g. tags, mutations and chimeras).

4.2 | Ligand bias measured downstream of distinct
transducers

Whereas ligand bias is often grouped into pathways represented by

the primary receptor-binding transducers (G proteins, GRKs, and

arrestins), most studies measure downstream effector proteins or sec-

ond messenger molecules (Figure 3a). Unlike measurements at the

transducer level (previous section), this collates the signalling of all

subtypes of a transducer family and may correlate better to the

tissue-level or systemic response. However, they may suffer from

pathway convergence or crosstalk (see Section 4.3).

4.2.1 | Problems and pitfalls

• If two pathways are measured at different depths, one close to the

receptor and another further downstream, this can lead to a higher

signal amplification for the latter pathway. This observation bias

can cause apparent ligand bias. For example, arrestin is nearly

always measured as recruitment or binding to receptors because

there is no consensus on a downstream effector or second mes-

senger. Conversely, G protein pathways are often measured at the

downstream level, typically as a secondary messenger.

• Ligand bias relationships may differ depending on which of a path-

way's downstream molecules are measured (Figure 3b).

4.2.2 | Recommendations for experimental design

i. Minimize differential signal amplification by measuring pathways

at similar depth (estimated based on the number of upstream

effectors, Figure 3a). Where the pathway readouts differ in

depth, special consideration should be given to potential amplifi-

cation effects.

4.2.3 | Reporting recommendations

i. Report measured processes. The same molecule can be involved

in several steps of the signalling process. For example, G proteins

can be measured for receptor binding, activation, nucleotide

exchange, or subunit dissociation. A non-exhaustive list of terms

to distinguish such signalling processes is visualized in Figure 3a

and tabulated in Table 2 along with example assay principles.

ii. Report the measured molecules. To provide clarity on what has

been measured, we recommend that the pathways are defined

not only for the upstream GPCR-binding transducer but also for

the downstream measured molecule or molecule pair (Table 3).

4.3 | Ligand bias measured downstream of
converged transducer pathways

4.3.1 | Problems and pitfalls

• Several transducer pathways intercept or converge downstream. If

measuring at or downstream of such pathway nodes, the signal

cannot be mapped back to a specific transducer. For example,ERK

proteins can be activated by all four G protein families (Jain, Wat-

son, Vasudevan, & Saini, 2018), and this process is shaped in space

and time by arrestins and GRKs (Eichel, Jullie, & von Zastrow, 2016;

Gurevich & Gurevich, 2018; Gutkind & Kostenis, 2018; Luttrell

et al., 2018; Wehbi et al., 2013).

4.3.2 | Recommendations for experimental design

a. Avoid measuring downstream of converged pathways, unless the

purpose is to compare two ‘deep’ signals close to the cellular end-

points without a need for relative transducer contributions.

b. If possible, dissect upstream transducer contributions using other

assays.

4.3.3 | Reporting recommendations

i. When pathways are truly inseparable and their contributions can-

not be dissected using upstream assays, the bias may be

described as a type of ‘effector bias’ (instead of pathway-bias)

accounting for the net pathway contributions.

ii. Interpret findings in light of their relative strength for the given

receptor and ligand. For example, calcium, PKC, or DAG measure-

ments should not be exclusively equated to Gq activation. Indeed,

different receptor transducers, including G�� released from G� i

can also lead to the generation of these second messengers and

activation of this kinase (Dorn, Oswald, McCluskey, Kuhel, &

Liggett, 1997).
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F IGURE 3 Recommendations to describe the measured pathway process and molecules. (a) Terms to describe the measured pathway
process. Also see reviews describing the translation across these levels (Luttrell, Maudsley, & Gesty-Palmer, 2018), assays (Smith, Lefkowitz, &
Rajagopal, 2018) and animal models (Bradley & Tobin, 2016). (b) Data from (Klein Herenbrink et al., 2016) show the relative bias ofdopamine D2

receptor agonists for five pathways (all with dopamine as the reference ligand). The relative order of the ligands changes depending on the
measured molecules, even across those participating in the same pathway. This emphasizes that bias should be measured at similar pathway
depths (comparably proximal/distal to the receptor), each of which should be defined with respect to the measured entities
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5 | CONSIDERING CELLULAR SYSTEM,
KINETICS AND SPATIAL BIAS

5.1 | Bias may not translate across in vitro,
physiological, and therapeutic systems

5.1.1 | Problems and pitfalls

• Most in vitro pharmacology experiments are performed in systems

(e.g. HEK cells) that may differ substantially from a physiologically

or therapeutically relevant system. Given the cell phenotype- and

physiological cell state-dependence of bias, the measured bias

incurs the risk of not translating to the expected physiological or

therapeutic effect in human (Bohn, Zhou, & Ho, 2015).

• The use of recombinant and/or overexpressed receptor, trans-

ducer, or effector proteins may not reflect the ligand bias in a

native system. Insofar as ligand bias quantification can be carried

out in a recombinant system, it serves to identify bias as a property

of the molecule (not the system) and still serves as an identifier for

molecular mechanisms to be elucidated further in natural systems.

• Some signalling pathways are difficult to evaluate in tissues

(i.e. arrestin recruitment) as many assays require genetically

modified tags to be applied to receptors and/or effectors. If modifi-

cations are made to proteins in endogenous systems, those

modifications must be clearly indicated, and interpretations should

consider the possible effects of overexpression and modification on

the system.

5.1.2 | Recommendations for experimental design

a. Where possible, use primary and/or disease-specific cells and eval-

uate potential system bias.

b. Where possible, validate the effect in a model organism using an

appropriate model of efficacy and/or genetic engineering to con-

firm target and pathway specificity.

5.1.3 | Reporting recommendations

i. Where a non-native system has been used, conclusions should

be stated carefully such that a ligand inducing bias in this system

may or may not have a beneficial effect in a therapeutically rele-

vant system in vivo.

5.2 | Kinetics and choosing measurement time
points

5.2.1 | Problems and pitfalls

• Ligand bias often depends on the time points of data collection.

For instance, comparing non-equilibrium readings with equilibrium

readings due to different binding kinetics or type of biological

responses (ion flux vs. reporter gene) can be a major confounding

factor (Klein Herenbrink et al., 2016).

• The physiologically most relevant time point is often the same

across pathways but can differ if the signalling processes

(Figure 3a) occur over different time scales.

• A ligand's effect is time-dependent, as signalling efficacy changes

(e.g. due to desensitization), which can be pathway-dependent

(Stout, Clarke, & Berg, 2002).

5.2.2 | Recommendations for experimental design

a. When possible, complete time courses and endpoint

measurements should be made. These could be quantified by onset

kinetics, for example, time constant tau (� ) or time to reach

half maximal response amplitude (Hoare, Pierre, Moya, &

Larson, 2018).

b. Single time points should be the physiologically most relevant or

measure the maximum effect (peak).

TABLE 2 Suggested terms to define the pathway processes at
different levels being compared for bias

Term Examples of assay principles

Accumulation Ca2+ or cAMP accumulation

Binding/coupling Proximity

Activation Receptor conformation and G protein activation,
for example, GTPase activity, GTP� S binding,
or recruitment of downstream effectors.

Dissociation G protein dissociation/rearrangement

Phosphorylation Incorporation of 32P in a specific protein. Two-
dimensional phosphopeptide mapping after
orthophosphate labelling, MS-based
identification of phosphorylation sites,
Phosphosite-specific antibody assays
or arrays

Recruitment Subcellular redistribution

Signalling Downstream cellular second messenger levels

Internalization ELISA, flow cytometry, diffusion-enhanced
resonance energy transfer (DERET), enhanced
bystander BRET (ebBRET), (confocal)
microscopy, antibody-feeding experiments,
real-time internalization by SNAP-tagged
receptors

Tissue phenotype Blood vessel contraction, cell migration,
hormone secretion, heart rate, force of
contraction, glandular secretion.

Transcription Differential gene arrays after agonism, qPCR,
and gene reporter assay.

Note: For specific assays implementing the tabulated assay principles, we
refer readers to Bohn & McDonald (2010); Bohn, Zhou & Ho (2015);
Masuho, Martemyanov & Lambert (2015); Perry-Hauser, Asher, Hauge
Pedersen & Javitch (2021); Wright & Bouvier (2021).
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5.2.3 | Reporting recommendations

i. Report the chosen time points and the reason(s) why they were

chosen.

ii. Provide data on the complete time course, if available.

Further reading: See Lane, May, Parton, Sexton, & Christopoulos

(2017).

Terminology summary G

Temporal effect: The effect influencing a measured response

due to the choice of time point at which a response is

recorded. Apparent bias can occur simply because the kinet-

ics of the response is different between two pathways for

two different ligands. These time effects include effects of

the binding kinetics (kon and koff ), time course of the biologi-

cal response measured, and time domain of the assay itself

(e.g. reporter gene vs. ion flux).

5.3 | Spatial bias: Differing signalling efficacies
across cellular compartments

5.3.1 | Problems and pitfalls

GPCRs signal from a wide range of cellular compartments other

than the plasma membrane, including endosomes, the Golgi and

the nucleus (Crilly & Puthenveedu, 2021; Jong, Harmon, &

O'Malley, 2019). This signalling can be modulated by different trans-

ducers, such as � -arrestins (Luttrell et al., 2001), G� subunits

(Feinstein et al., 2011; Irannejad et al., 2017), and G�� subunits

(Masuho, Skamangas, Muntean, & Martemyanov, 2021). With this

has come the realization that signalling involving the same transducer

from different compartments can have distinct outcomes; for exam-

ple, cAMP evolution from endosomes but not the plasma membrane

promotes gene transcription (Tsvetanova & von Zastrow, 2014). This

phenomenon of GPCR signalling through the same transducer in dif-

ferent locations producing distinct signalling responses has been

referred to as ‘spatial’ or ‘location bias’. Furthermore, spatial bias

extends to ligand-biased trafficking. For example, ligands differen-

tially regulate receptor recycling following endocytosis (Namkung

et al., 2016).

5.3.2 | Reporting recommendations

i. Report the biosensors and tags used for monitoring

compartment-specific signalling.

ii. Report the cell types used in assays, as some cell types lack trans-

porters, such asOCT3/SLC22A3, required for the trafficking of

hydrophilic small-molecule ligands that cannot cross the plasma

membrane (Irannejad et al., 2017).

iii. Report ligands with altered characteristics, for example, perme-

ability, through chemical modification (Jensen et al., 2017).

Terminology summary H

Spatial/location bias: The observation of biased GPCR sig-

nalling through the same transducer in different locations

that results in distinct signalling responses. This GPCR signal

may originate from different compartments or may be from

the same compartment but then result in the trafficking of

transducers to different compartments (Masuho,

Skamangas, Muntean, & Martemyanov, 2021).

TABLE 3 Experimental parameters critical to the unambiguous description of ligand bias

Parameter Pathway 1 Pathway 2 Pathway 3

Transducer (‘pathway’) � -Arrestin 2 Gi Gq

Cell line CHO CHO CHO

Receptor expression levels (fmol�mg� 1 protein) 300 300 300

Time point for data collection (min) (for time-
resolved, a span)

15–60 30 30

Temperature (� C) 20 20 20

Reference ligand for bias CP55,940 CP55,940 CP55,940

Reference ligand for Emax CP55,940 CP55,940 CP55,940

Measured process Recruitment Accumulation Accumulation

Measured molecule 1a CB1 receptor cAMP Inositol 1-phosphate

Measured molecule 2a (if any) � -Arrestin 2 - -

Signal detection technique FRET HTRF HTRF

Note: Table entries are examples only.
aA measured molecule is a GPCR, transducer, effector or second messenger.
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6 | HOW TO QUANTIFY LIGAND BIAS

6.1 | Many models exist to quantify ligand bias

The classical theory of receptor action (Furchott, 1966; Stephenson,

1956) aims to separate ligand- and system-dependent parameters and

forms a basis of strategies to quantify ligand bias. Many methods to

quantify ligand bias are based on the null principle of equi-effective

concentrations of agonist producing equal responses, first described by

Barlow, Scott, and Stephenson (1967) and theoretically justified within

the framework of the Black-Leff operational model (Black & Leff, 1983).

However, there are still different views on how to best quantify

bias and strategies for quantification are still being developed and

improved. Hence, there are numerous models that could be used, as

long as pathways are measured with consistent pharmacological

parameters, and in similar systems and assays with corresponding

levels of downstream processes and kinetics (see above). Of note,

even with the most detailed models, it is not possible to directly com-

pare quantitative estimates of ligand bias across different studies.

6.1.1 | Problems and pitfalls

• Quantification of ligand bias with different methods can in some

cases lead to different conclusions on the biased/unbiased nature

of a ligand (and system) (Onaran et al., 2017; Rajagopal et al., 2011)

or to a different relative bias rank order of ligands.

• No model can provide an absolute bias value of a given ligand at a

given receptor. Only bias values relative to a reference ligand are

accessible with current quantification techniques.

6.1.2 | Recommendations for experimental design

a. It is not possible to recommend a single, best-practice, quantifica-

tion method due to the lack of consensus in the community, with

new or refined methods still being proposed.

b. Results are more definitive when bias is quantified using multiple

models.

c. Irrespective of the model, error propagation and statistics must be

handled appropriately.

Further reading: We may refer readers to Table 4 in Kenakin (2019)

for an overview of methods to quantify ligand bias, and Onaran and

Costa (2021) for a critical review of the detailed principles, on which

specific implementations are based.

6.2 | A minimal and a refined model to calculate a
ligand bias factor

The two most commonly used models to quantify ligand bias are

relative-relative Log (Emax/EC50) (Ehlert, 2008) and relative-relative

Log(� /K A) (Box 1, Kenakin, 2015b).�� Log (Emax/EC50) is easy to use,

as it only requires Emax and EC50 values for which the log ratio is first

compared for two ligands and subsequently for two pathways (Box 1).

For ligands with concentration–response curve slope factors (Hill

coefficients) of 1, the �� Log (Emax/EC50) values are identical to Log

(� /K A) values. For other ligands,�� Log(� /K A) values are more correct,

as they account for receptor density and coupling within a system.

Like Emax/EC50, � /K A can be calculated from a concentration–

response curve, but it requires a software, such as GraphPad Prism, to

solve the Black/Leff model and special care for full agonists which can

have ambiguous fits (Box 1). Both �� Log (Emax/EC50) and �� Log

(� /K A) can be expressed as a bias factor, which is the antilog. As the

bias factor is on a logarithmic scale, a difference of 1 corresponds to a

10-fold activation difference. A template (MS Excel file) to calculate

bias factors is available at https://files.gpcrdb.org/bias_guidelines/

Template_to_calculate_ligand_bias_factors.xlsx.

6.2.1 | Recommendations for experimental design

a. �� Log (Emax/EC50) should not be used when ligand

concentration–response curve slope factors (Hill coefficients) are

not close to 1, as this quantification is theoretically justifiable only

when the slope factor is close to 1.

b. �� Log(� /K A) values are preferred over�� Log (Emax/EC50) when

ligand concentration–response curve slope factors (Hill coeffi-

cients) are not close to 1.

c. Confirm that the calculated bias factors are consistent with a bias

plot (Figure 2). There is unlikely to be bias in a system if it cannot

be visualized in a bias plot. Although a bias plot only provides a

qualitative assessment of bias, it does not have the weakness of

relying on fit parameters that can have artificially low errors from

fitting routines.

6.2.2 | Reporting recommendations

i. Report ligand Emax, EC50, and � /K A values and system maximum

response, Em. We recommend authors to tabulate the underly-

ing quantitative values of the pharmacological parameters.

Reporting these values will improve clarity, increase transpar-

ency and future-proof cross-study comparisons. It also allows

the calculation and presentation of multiple models of bias or to

change the choice of reference ligand to facilitate comparison

across studies.

ii. Report the ligand concentration–response curve slope factors

(Hill coefficients). This information is critical, especially when

�� Log (Emax/EC50) is used to assess bias, as slope factors deviat-

ing from 1 indicate the extent to which system bias contributes

to the calculated bias factors.

iii. Report a bias plot for biased ligands. This will serve to

validate quantified ligand bias in a qualitative and visualized

manner.
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Further reading: For further guides on how to calculate �� Log (Emax/

EC50) and �� Log(� /K A) values, we refer the reader to (Kenakin, 2015b;

Kenakin & Christopoulos, 2013; Rajagopal et al., 2011).

Caution: A large degree of caution is advisable for describing

ligands with only weak bias (low bias factor) or absolute efficacy (low

Emax), as these compounds are more likely to produce system-depen-

dent bias effects (see Section 7.1). Such agonists are therefore more

likely to be spuriously identified as biased, as both methods outlined

above rely on best-fit parameters. Weak partial agonists will result in

relatively poor fits (but still with excellent R 2) with Emax/EC50 or � /K A

values that grossly underestimate the errors of the derived bias

factors. One can use a bias plot to confirm non-quantitatively that

bias exists between two compounds, but one should never rely on

bias factors alone.
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6.3 | Comparing ligand bias across studies and
systems (use of rank orders)

6.3.1 | Problems and pitfalls

Bias values obtained from different experimental systems are not

comparable on a quantitative level. For example, a bias value above

2.0 in one system may be below 2.0 for the same pathways when

studied in another system differing by, for example, cell line, measured

molecules or process (Figure 3). Achieving a more consistent assess-

ment of which ligand is the most biased towards a given pathway is

important to identify functionally selective probes that can be used to

dissect a distinct effect. This provides information about which path-

ways should be targeted or avoided in the design of drugs with higher

efficacy and fewer side effects.

6.3.2 | Recommendations for experimental design

a. We recommend using ligand rank orders of bias factors (rather

than quantitative bias values) for comparisons of ligand bias across

studies using different experimental systems. Only the pathways

studied in both studies/systems can be compared, and the path-

way ranks must be identical (i.e. the strongest, second strongest,

etc. pathway).

Disclaimer: The relative ligand bias rank orders may also differ across

systems (Figure 3b). However, they differ less than detailed quantitative

values.

7 | SPECIAL RECOMMENDATIONS FOR
‘TRICKY’ LIGANDS

7.1 | Low efficacy agonists

Ligand bias quantification should be considered together with the

quantified strength of intrinsic efficacy of ligands in the relevant

signalling pathways. This is because organ sensitivity and relative

intrinsic efficacy differences have a large influence on a low-efficacy

(for some pathways) ligand, which may appear to be very functionally

selective in some organs. However, a signal may‘appear’ in a more

sensitive organ, or in the same organ at a different physiological

state.

7.1.1 | Problems and pitfalls

a. Too low efficacy in one pathway will result in bias factors with very

large errors.

b. The response may be stronger in more sensitive tissues or

assays.

7.1.2 | Recommendations for experimental design

a. Use ligand pathway rank orders. To avoid misleading conclusions

based on low efficacy, one should use rank orders, that is, nor-

malizing within the transducers for each ligand without

referencing to other ligands. Only a transducer/pathway rank

order change would constitute biased signalling. For example, if

ligands A and B share rank order Gs > Gq >> arrestin they are not

biased relative to each other. However, if a third ligand C differs

in its rank order, for example, arrestin > Gq >> Gs, it is biased rela-

tive to A and B.

b. If quantifying bias, use another reference agonist for Emax (see

Section 3.1.2).

Caution: Lack of response in a low-efficacy pathway does not pre-

clude the antagonism of the natural agonist for that pathway. Thus, a

physiological bias can be produced by a synthetic ligand's combined

own response (e.g. full agonism in pathway 1) and blockade of the

endogenous response (e.g. partial agonist in pathway 2). The outcome

of this consideration is that, although ligand physiology-bias or

pathway-bias may not be concluded for a low-efficacy compound, it

could still result in functional selectivity that may have physiological

importance in some tissues in which a low efficacy compound may

simply not be efficacious enough to activate all the pathways. Such a

situation would therefore result in a different physiological outcome

from that of a compound able to activate all these pathways in the

same tissue.

7.2 | Inverse agonists

Inverse agonists inhibiting the non-ligand-dependent constitutive

activity of a receptor may, as biased agonists do, act differentially on

pathways by stabilizing distinct receptor conformations. This is only

evident for receptors with constitutive activity in the absence of an

agonist. The minimum condition needed to quantify bias would be

concentration–response curves in two pathways and this condition

can be met for an inverse agonist ligand. For receptors with a high

constitutive activity, biased inverse agonism could be valuable to

fundamentally understand signalling and to exploit this knowledge

therapeutically.

7.2.1 | Recommendations for experimental design

a. Use another inverse agonist as the reference ligand. When a ligand

acts as an inverse agonist in two pathways compared for bias, a

bias factor can, in theory, be calculated in the same way as for ago-

nists, but using an inverse agonist reference. As most endogenous

ligands are agonists, this typically precludes quantification of ligand

physiology-bias (exceptions exist, for example,agouti is a rare

example of an endogenous inverse agonist).
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Further reading: Methods to quantify bias for inverse agonists are

beyond the scope of this paper, as they involve differences in

agonist-mediated and constitutive activity-mediated efficacy (Ehlert,

Suga, & Griffin, 2011). It is known that constitutively active recep-

tors themselves possess an efficacy that can be different from

agonist-mediated efficacy. This is manifested as the phenomenon

of protean agonism whereby a low efficacy partial agonist demon-

strates positive agonism in quiescent systems and inverse agonism

in constitutively active systems (Chidiac, Nouet, & Bouvier, 1996;

Kenakin, 1997). This is because the agonist-mediated active state

is of lower efficacy than the constitutively active state. Such

phenomena must be considered to ascribe an efficacy to an

inverse agonist.

7.3 | Agonist and antagonist across pathways
(‘modality bias’)

7.3.1 | Problems and pitfalls

When agonism and no agonism (neutral antagonism or inverse

agonism), respectively, are observed in two pathways compared, it

is not possibly to quantify bias using the above models. This is

because calculation of a quantitated bias factor requires two

concentration–response curves with the same modality (agonism or

inverse agonism).

7.3.2 | Reporting recommendations

i. Ligand bias with opposite modalities across pathways can be

described as a non-quantitative term,‘modality bias’. In this case,

there is no need to quantify bias to claim bias.

ii. Alternatively, it can be approximated by measuring an affinity to

limit bias or describe it in a ‘bias is larger than’ relationship

(Kenakin, 2015a; Stahl, Ehlert, & Bohn, 2019; Stahl, Zhou, Ehlert,

& Bohn, 2015). Specifically, the affinity (determined from func-

tional antagonism) is used to determine receptor occupancy and

a very low level of efficacy is assumed to generate a simulated

curve (i.e. maximal response of 5%) which is then used to calcu-

late bias. This yields the lowest possible bias (it could be greater

than this if the efficacy is lower than the assumed one giving 5%

maximal response).

Caution: Although a very low ligand efficacy cannot be detected

in one system, it may be detected in another functional system with

higher sensitivity. Hence, the statement should be understood as a

practical qualification, in the sense that the efficacy of the ligand is

close to zero within the detection limits of the given system. That is,

some partial agonists may appear to be neutral antagonists.

Terminology summary I

Modality bias: Ligand with efficacy in only one of the

compared pathways (neutral antagonist or inverse agonist

in others). As for all biased ligands, this refers to a partic-

ular system and in another more sensitive system, there

may be efficacy at several compared pathways allowing

the determination of concentration –response curves. We

discourage the use of the previous terms ‘full bias’ or

‘perfect bias’, as they can misleadingly give the impres-

sion that the ligand always has full efficacy in the

preferred pathway. In fact, a ligand with modality bias

may give a weaker activation than other agonists for

which bias can be quantified (as they induce agonism in

at least two pathways).

7.4 | Allosteric modulators affecting ligand bias

Pure allosteric modulators will modulate the orthosteric ligand binding

and/or efficacy, whereas ago-allosteric modulators also induce signal-

ling of their own. In all cases, the functional outcome can vary

depending on the orthosteric ligands.

7.4.1 | Problems and pitfalls

No concentration–response curves can be measured for an

allosteric ligand on its own; thus, bias cannot be attributed to it

individually but must be defined together with the orthosteric

ligand.

7.4.2 | Recommendations for experimental design

a. Quantification of allosteric modulator bias should make use of an

extended operational model of allosterism, which was originally

described in Leach, Sexton, and Christopoulos (2007) and further

extended in Slosky, Caron, and Barak (2021).

7.4.3 | Reporting recommendations

i. Report both the allosteric modulator and orthosteric ligand.

Further reading: For further reading, including examples of biased

allosteric modulators see Slosky, Caron, and Barak (2021).
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8 | PUBLICATION AND DATABASE
DEPOSITION

8.1 | Unambiguous description of ligand bias

All the above information is necessary to interpret ligand bias

correctly and to separate it from system bias (Figure 1). Hence, the

mention of a ‘biased’ or ‘unbiased’ ligand as short terms are only

meaningful after the prior definition of this information.

8.1.1 | Problems and pitfalls

Ligand bias will not be reproducible and understood consistently with-

out sufficient information about the ligands, pathways and systems.

Such ambiguity hampers consensus and advances in the field.

8.1.2 | Reporting recommendation

i. Define the ligand evoking bias and its system in a clear sentence.

This should be at first mention in a manuscript/text. For example,

ligand L displays [recruitment/signalling…] bias towards pathway

P1 at time point TP1 over pathway P2 at time point TP2 and rela-

tive to reference ligand A at receptor R in cell line C.

ii. Tabulate the experimental details required for unambiguous

description (Table 3 can be used as a template).

iii. Deposit biased ligands in a database. GPCRdb offers authors the

ability to submit biased ligands, compliant with the reporting rec-

ommendations brought forward above. The submission is done

via a standardized Excel file detailing all necessary information

(https://docs.gpcrdb.org/BiasedSignaling.html#data_submission).

9 | CONCLUSION AND OUTLOOK

Adopting the guidelines presented here will facilitate consensus and

advances in the GPCR field through increased quality, reproducibility

and clarity of ligand-induced bias. More precise experiments will

improve individual studies and make them more useful for others, as

data become more comparable. Furthermore, the unambiguous and

structured reporting of bias data will be directly reflected in more rele-

vant databases and literature reviews.

To unlock the rational targeting of GPCRs by exploiting ligand

bias to achieve functional selectivity, we must first map individual or

combined pathways to their distinct effects. This requires identifica-

tion of many more probes inducing bias, pharmacological assays, ani-

mal models, and so on. This represents a tremendous challenge, but

one with extraordinary potential. The recommendations herein can

contribute to this massive endeavour by better description of such

probes and effects. We have deliberately left the door open to include

additional intracellular transducers, effectors, or modulators involved

in GPCR signalling, and our definitions should therefore be future-

proofed, in the sense that they can be applied also to signalling pro-

teins that have yet to be discovered.

Ligand-dependent biased function is also being investigated for

other protein classes, for example, receptor TKs (Karl, Paul, Pasquale,

& Hristova, 2020), nuclear receptors (Heidari et al., 2019), monoamine

transporters (Hasenhuetl, Bhat, Freissmuth, & Sandtner, 2019), Toll-

like receptors (unpublished), and cytochrome P450 enzymes (Jensen

et al., 2021). Many of the recommendations brought forward in this

paper are also applicable to these protein families, which would in

time benefit from publication of additional dedicated guidelines.

9.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in https://www.guidetopharmacology.org, and

are permanently archived in the Concise Guide to PHARMACOLOGY

2021/22 (Alexander, Christopoulos et al., 2021; Alexander, Fabbro,

et al., 2021; Alexander, Kelly et al., 2021).
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APPENDIX A: Experiment recommendation checklist

Choosing a reference ligand

3.1 The choice of reference ligand distinguishes benchmark� , pathway� or physiology�bias

a. Choose a reference ligand that can support the claims to be made.

b. Include multiple reference ligands, thus allowing claims about different types of ligand bias.

c. Measure the reference ligand(s) under identical conditions as the ligands tested for bias.

d. If needed, use separate reference ligands for bias and Emax.

3.2 Ligand pathway�bias (uses a pathway�balanced reference ligand)

a. Determine a pathway�balanced reference ligand in a bias plot.

3.3 Ligand physiology�bias (uses the principal endogenous ligand as reference)

a. Use the principal endogenous agonist as reference ligand.

3.4 Ligand pathway�preference (uses no reference ligand, and is not ligand bias)

a. Compare pathwayΔLog (Emax/EC50) or ΔLog(τ/K A) values, not only fold potencies.

b. Use the same or near� identical systems and assays.

Measuring at the transducer or downstream

4.1 Ligand bias measured at the transducer level

a. Use recent assays consistently profiling G proteins and arrestins (also with GRKs).

b. If possible, test all transducers for each investigated transducer family.

c. If selecting representative transducer subtypes, use the most relevant.

4.2 Ligand bias measured downstream of distinct transducers

i. Minimize differential signal amplification by measuring pathways at similar depth (estimated based on the number of upstream effectors).

4.3 Ligand bias measured downstream of converged transducer pathways

i. Avoid measuring downstream of converged pathways.

ii. If possible, dissect upstream transducer contributions using other assays.

Considering cellular system, kinetics and spatial bias

5.1 Bias may not translate across in vitro, physiological, and therapeutic systems

a. Where possible, use primary and/or disease�specific cells and evaluate potential system bias.

b. Where possible, validate the effect in a model organism using an appropriate model of efficacy, and/or genetic engineering to confirm target

and pathway specificity.

5.2 Kinetics and choosing measurement time points

a. When possible, complete time courses and endpoint measurements should be made.

b. Single time points should be the physiologically most relevant or the measure maximum effect.

How to quantify ligand bias

6.1 Many models exist to quantify ligand bias

a. It is not possible to recommend a single best practice quantification method.

b. Results are more definitive when bias is quantified using multiple models.

c. Irrespective of the model, error propagation and statistics must be handled appropriately.

6.2 A minimal and a refined model to calculate a ligand bias factor

a. ΔΔLog (Emax/EC50) should not be used when ligand concentration� response�curve slope factors (Hill coefficients) are not close to 1.

b. ΔΔLog(τ/K A) values are preferred overΔΔLog (Emax/EC50) when ligand concentration�response�curve slope factors (Hill coefficients) are not close to 1.

c. Confirm that the calculated bias factors are consistent with a bias plot.

6.3 Comparing ligand bias across studies and systems (use of rank orders)

a. We recommend using ligand rank orders of bias factors (rather than quantitative bias values) for comparisons of ligand bias across studies using

different experimental systems.

Special recommendations for ‘tricky ’ ligands

7.1 Low efficacy agonists

a. Use ligand pathway rank orders.

b. If quantifying bias, use another reference agonist for Emax.

7.2 Inverse agonists

• Use another inverse agonist as the reference ligand.

7.4 Allosteric modulators affecting ligand bias

a. Quantification of allosteric modulator bias should make use of an extended operational model of allosterism.
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APPENDIX B: Reporting recommendation checklist

Choosing a reference ligand

3.1 The choice of reference ligand distinguishes benchmark� , pathway� or physiology�bias

i. Report the reference ligand along with a motivation to why it was chosen.

ii. The claims should be restricted to what is supported by the chosen reference ligand.

iii. Define the bias type.

3.2 Ligand pathway�bias (uses a pathway�balanced reference ligand)

i. Document the pathway�balance of the reference ligand.

Measuring at the transducer or downstream

4.1 Ligand bias measured at the transducer level

i. Modifications of receptors, transducers or effectors must be clearly defined (e.g., tags, mutations, and chimeras).

4.2 Ligand bias measured downstream of distinct transducers

i. Report measured processes.

ii. Report the measured molecules.

4.3 Ligand bias measured downstream of converged transducer pathways

i. When pathways are truly inseparable and their contributions cannot be dissected using upstream assays, the bias may be described as a type

of •effector bias• (instead of pathway�bias) accounting for the net pathway contributions.

ii. Interpret findings in light of their relative strength for the given receptor and ligand.

Considering cellular system, kinetics and spatial bias

5.1 Bias may not translate across in vitro, physiological, and therapeutic systems

• Where a non�native system has been used, conclusions should be stated carefully.
5.2 Kinetics and choosing measurement time points

i. Report the chosen time points and the reason(s) why they were chosen.

ii. Provide data on the complete time course, if available.

5.3 Spatial bias: differing signaling efficacies across cellular compartments

i. Report the biosensors and tags used for monitoring compartment�specific signaling.

ii. Report the cell types used in assays.

iii. Report ligands with altered characteristics, e.g., from chemical modification.

How to quantify ligand bias

6.2 A minimal and a refined model to calculate a ligand bias factor

i. Report ligand Emax, EC50 and τ/K A values and system maximum response, Em.

ii. Report the ligand concentration� response�curve slope factors (Hill coefficients).

iii. Report a bias plot for biased ligands.

Special recommendations for ‘tricky ’ ligands

7.3 Agonist and antagonist across pathways (•modality bias•)

i. Ligand bias with opposite modalities across pathways can be described as a non�quantitative term, •modality bias•.

ii. Alternatively, it can be approximated by measuring an affinity to limit bias or describe it in a•bias is larger than• relationship.

7.4 Allosteric modulators affecting ligand bias

i. Report both the allosteric modulator and orthosteric ligand.

Publication and database deposition

8.1 Unambiguous description of ligand bias

i. Define the ligand evoking bias and its system in a clear sentence.

ii. Tabulate the experimental details required for unambiguous description (Table 3)

iii. Deposit biased ligands in a database.
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APPENDIX C: Terminology cheat sheet

Definitions of pathways and of bias types

2.1 Pathway definition and modulation

Transducer: proteins that bind directly to an activated receptor to initiate, facilitate or modulate downstream events. This includes G proteins,

GRKs and arrestins.

Effector: Signaling protein located downstream in a transducer•s pathway.

Modulator: Proteins or molecules that do not mediate, but modulate signaling of a receptor, transducer or effectors. (RAMPs, GEFs, GAPs, RGSes,

NO, cholesterol, other lipids etc.

Second messenger: Small molecules or ions directly controlled by the effectors. Examples include cAMP, calcium, etc.

Pathway: A pathway is named after a transducer protein, or family thereof, that binds to GPCRs.

2.2 Ligand bias definition and distinction from system bias

Ligand bias: Ligand�dependent preferential receptor activation so that one over other transducer pathways in a given cellular system and relative

to a reference ligand is induced.

System bias: Bias due to differences in the cellular system, including so called•tissue bias•.

Functional selectivity: Functional selectivity is the observed response combining ligand� and system�bias.

Observational bias: An artificial bias introduced by the experimental setup.

Choosing a reference ligand

3.1 The choice of reference ligand distinguishes benchmark� , pathway� or physiology�bias

Biased ligand: Ligand preferentially activating one receptor transducer pathway in a given cellular system and relative to a reference ligand. Ligand

bias is a property of not just a ligand, but of a ligand, pathway pair and receptor in combination, and only valid within the specific investigated

system. Therefore, the term•biased ligand• should only be used if explicitly defined, and not be construed to represent a ligand�only property. A

recommended definition is included in section •Unambiguous description of ligand bias•, which provides one�sentence and table templates for

reporting.

Reference ligand for bias: The ligand that is, by definition, unbiased. The bias of any other tested ligands is quantified relative to this reference.

Reference ligand for Emax: A separate reference ligand for the full receptor response (maximum efficacy, Emax).

Unbiased ligand: A ligand that stimulates pathways in a manner indistinguishable from the reference ligand.

3.2 Ligand pathway�bias (uses a pathway�balanced reference ligand)

Balanced ligand: Has indistinguishable or very similar signaling through compared pathways.

Ligand pathway‐bias: Ligand bias that is measured relative to a balanced reference ligand and therefore has the meaning that signaling is

predominant via one pathway.

3.3 Ligand physiology�bias (uses the principal endogenous ligand as reference)

G protein selectivity: The repertoire of G proteins that a receptor can engage. The term•natural bias• is self�contradictory and should not be used.

Ligand physiology‐bias: Ligand bias relative to a receptor•s principal endogenous agonist, which therefore bears the meaning that signaling differs

from the physiological.

3.4 Ligand pathway�preference (uses no reference ligand, and is not ligand bias)

Pathway‐preference: A ligand•s differential activity across pathways (e.g. pathwayΔLog (Emax/EC50) values), but without comparison to a

reference ligand.

Considering cellular system, kinetics and spatial bias
5.2 Kinetics and choosing measurement time points

Temporal effect: The effect influencing a measured response due to the choice of time point at which a response is recorded.

5.3 Spatial bias: differing signaling efficacies across cellular compartments

Spatial/location bias: The observation of biased GPCR signaling through the same transducer in different locations that results in distinct signaling

responses.

Special recommendations for ‘tricky ’ ligands

7.3 Agonist and antagonist across pathways (•modality bias•)

Modality bias: Ligand with efficacy in only one of compared pathways (neutral antagonist or inverse agonist in others).
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