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Abstract

While recent studies have revealed higher than anticipated heterogeneity of mutation rate across 

genomic regions, mutations in exons and introns are assumed to be generated at the same rate. 

Here we find fewer somatic mutations in exons than expected based on their sequence content, and 

demonstrate that this is not due to purifying selection. Moreover, we show that it is caused by 

higher mismatch repair activity in exonic than in intronic regions. Our findings have important 

implications for our understanding of mutational and DNA repair processes, our knowledge of the 

evolution of eukaryotic genes, and practical ramifications for the study of the evolution of both 

tumors and species.

Introduction

Genetic variation in exonic regions is lower than in intronic ones both across species and 

within populations. This differential exon-intron variation rate is attributed to the action of 

stronger purifying selection on exonic nucleotide changes, whereas the rate of generation of 

variants –that precedes the effect of selection– is generally assumed to be overall 

homogeneous between these two genic regions. This assumption lays at the heart of 
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evolutionary biology and cancer genomics approaches that compare the rate of intronic and 

exonic variation to estimate the strength of selection acting on coding genes1–5.

Recent studies have shown that the rate of mutations across genomic regions is highly 

heterogeneous. Replication time6,7, the level of gene expression8, and the degree of 

chromatin compaction9,10 have been described as features that affect mutation rate at the 

megabase scale. Our group and others recently demonstrated that the local efficiency of 

DNA repair is influenced by factors that affect accessibility of the repair machinery11–14.

The assumption that introns and exons suffer a similar basal rate of mutations before the 

action of purifying selection is a reasonable one because both exonic and intronic regions are 

replicated at the same time and transcribed equally and, therefore, DNA repair mechanisms 

associated with the advance of the replication fork, as well as transcription-coupled repair 

are expected to have equivalent access to both. Nevertheless, several features of the 

chromatin structure –including some that have been related to the recruitment of DNA repair 

machineries15–17– vary widely between exons and introns18,19. This motivated us to 

question the long-standing assumption that introns and exons receive similar rate of 

mutations before selection.

Somatic mutations detected in tumors20 are an ideal ground to explore whether exonic and 

intronic variants appear at the same rate. Tumor cells, upon clonal expansion, accumulate 

somatic mutations at accelerated rates compared to the germline. We demonstrate here that 

even in the absence of purifying selection, exons receive fewer mutations than expected 

given their nucleotide composition. We show that this decrease of the exonic mutation 

burden is detectable across seven tumor types. We also demonstrate that the cause of this 

reduction is that the Mismatch Repair (MMR) system acts more efficiently in exons than 

introns, and we propose that this differential repair is caused by the differential positioning 

of histone marks in these two genic regions.

These findings imply that the differential genetic variation in exonic and intronic regions 

across species and within populations is caused by a combination of differential sequence 

context, rate of DNA repair and purifying selection. This possesses ramifications of 

technical nature for evolutionary methods that rely on the calculation of intronic variation to 

estimate the strength of selection on genes or to detect cancer driver genes1–3,5,21,22. More 

generally, these findings have profound implications for our knowledge of gene evolution 

and DNA repair mechanisms.

Results

Differential distribution of chromatin features in exons and introns

We first sought to identify chromatin features with the most differential distribution between 

exons and introns, using data generated by the Epigenome Roadmap23 and ENCODE24. We 

analyzed 32 chromatin features –comprising 30 histone modifications, the presence of a 

histone variant (H2A.Z) and DNase I hypersensitive site (DHS)– on 127 cell lines and 

primary cells from different tissue types and nucleosome density obtained in a 

lymphoblastoid cell line (Supp. Table 1). We computed the coverage (fraction of bases 
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overlapping peaks) of each feature on exons and introns located at different positions along 

the structure of genes (Fig. 1a illustrates the results of this calculation for three chromatin 

features; Methods). Then, we defined the difference of the exonic and intronic coverage of 

each mark in each cell type, as the p-value of the two-tailed Mann-Whitney test of their 

comparison (boxplots in Fig. 1a). Several chromatin marks exhibited a significant overall 

difference of exonic and intronic coverage (Figs. 1a and b). In particular, nucleosome 

density and H3K36me3 are significantly higher in exons than introns across the gene, and 

H3K36me3 is the histone mark with higher coverage across all exons in the gene. This 

behavior of H3K36me3 is consistent across the majority of the 127 cell types in the 

Epigenome Roadmap (Fig. 1b and Supp. Tables 1 and 2). Moreover, the coverage of 

H3K36me3 decreases steeply at the flanking introns (Fig. 1c). Interestingly, the protein 

hMutSα of the MMR machinery, involved in the recognition of mismatches, has recently 

been described as recruited to the chromatin through the interaction of its hMSH6 subunit 

with the tri-methylated H3K3615,17.

We therefore hypothesized that the exonic enrichment of certain chromatin features, in 

particular the H3K36me3, may result in an increased recruitment of the MMR machinery to 

exons. This, in turn would lead to a reduction in the quantity of exonic mutations with 

respect to the number of mismatches expected from the exonic sequence content alone.

Internal exons exhibit decreased exonic mutation burden in POLE-mutant tumors

POLE-mutant tumors, due to the decreased proofreading capabilities of the DNA 

polymerase ε, sustain an important number of mismatches during DNA replication, which 

hence make a sizable part of their somatic mutations. Therefore, to determine whether the 

rate of somatic mutations caused by mismatches differs in exonic and intronic regions, we 

first explored the mutations detected across the whole genomes of 6 colorectal POLE-mutant 

tumors, sequenced by The Cancer Genome Atlas (TCGA). We stacked exon-centered 2001-

nucleotide sequences and compute the mutation burden at each position of this window as 

the number of mutations overlapping the position. This analysis shows that the mutation 

burden in positions dominated by exonic sequences is lower than that observed along their 

flanking intronic regions (Fig. 2a, red line).

The mutation probability at individual DNA positions is influenced by their sequence 

context. Therefore, differences in nucleotide composition between exons and introns could 

provide a plausible explanation for the observed difference of exonic and intronic mutation 

counts. To compute the expected mutation burden at each position of the 2001-nucleotide 

exon-centered window, we distributed the mutations observed in each sequence in the stack 

taking into account the conditional probability that each of its 2001 positions was mutated 

given its 5’ and 3’ bases. This sequence-wise distribution of expected mutations (details in 

methods) avoids potential biases resulting from aggregating genic regions with different 

mutation rate and exon/intron proportions (Supp. Fig. 1). The distribution of these 

synthetically generated ‘expected’ mutations in POLE-mutants across exons and their 

flanking introns shows that more mutations are expected in exons than in introns, as 

represented by the black line in Figure 2a.
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We then set out to compare the number of observed exonic mutations to their expected 

quantity in POLE-mutant tumors and to assess the statistical significance of the deviation 

between the two (Fig. 2b; Methods). We carried out this comparison at the level of 

individual genes, to guarantee that its results are free of the aforementioned caveat. (Known 

cancer genes25,26 were excluded from this and subsequent analyses to eliminate any 

deviation due to positive selection.) First, we randomly distributed a number of mutations 

equal to that observed in each gene across its exons and introns following the probability of 

each nucleotide to be mutated. A second method to obtain their expected mutation burden 

based on permutations of observed mutations yielded similar results. (Methods, Supp. Fig. 2 

and Supp. Table 3). We then computed the difference between the observed and expected 

mutation burden of each gene (Fig. 2c). Most genes (77%) possess fewer exonic mutations 

than expected from their sequence content, resulting in a negative difference. After 

aggregating the number of observed and expected mutations across all genes (Fig. 2d), we 

discovered that while internal exons bear only 5616 mutations in the six POLE-mutant 

tumors, 8996 exonic mutations were expected, given i) the total number of genic mutations, 

ii) the nucleotide composition of exons and introns, and iii) the mutational processes

operating in these tumors. This represents a decrease of 37.5% of the observed exonic

mutation burden with respect to the expected. Employing a likelihood-based statistical

approach (details in Methods) we found this decrease to be statistically significant (p-value

< 0.0001). We have named this phenomenon decreased exonic mutation burden, and

globally we quantify it as the percent of decrease with respect to the expected mutation

burden.

We next tested whether the decreased exonic mutation burden was due to increased selective 

pressure on exons resulting in purifying selection of mutations in these regions during tumor 

evolution. To determine the impact of purifying selection on the exonic mutation burden, we 

separated exonic mutations on the basis of their consequence type. We found that the 5616 

exonic mutations in the 6 POLE-mutants yielded 950 synonymous, and 4666 non-

synonymous mutations. If the decreased exonic mutation burden were caused by purifying 

selection, we would expect it to consist mostly of a decrease of non-synonymous mutations. 

Nevertheless, when redistributing genic mutations across intronic, synonymous and non-

synonymous sites according to their mutational probabilities, we found a 35.7% decrease of 

non-synonymous mutations, along with a 45.4% decrease of synonymous mutations (Fig. 

2d; p-value<0.0001). On the other hand, when redistributing solely exonic mutations based 

on their mutational probability we found that the expected number of non-synonymous 

mutations is very close to their actual observed number: 4562 (with the remaining 1054 

expected to yield synonymous variants). In other words, there are not significantly fewer 

non-synonymous mutations than expected from the potential non-synonymous sites in exons 

(non-significant p-value). The results of these two tests support the conclusion that the 

decrease of exonic mutation burden is not due to negative selection (Fig. 2d). This result is 

maintained across bins of genes with different mutation rate, and is observable for all 

individual POLE-mutant tumors (Supp. Tables 4 and 5).

We then checked that the decreased exonic mutation rate was not driven by a subset of genes 

at either extreme of the mutation rate range. To do this, we binned the genes into 10 groups 

of increasing mutation rate (Fig. 2e, top panel). We then aggregated the mutations of the 
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genes in each bin and confirmed that the decreased exonic mutation burden remains around 

40% across all bins (top panel). Finally, we demonstrated that very similar values of 

decreased exonic mutation burden are observed across groups of genes with increasing 

replication time, expression level, H3K36me3 coverage, and also across exons at different 

positions along the gene (Fig. 2e, second to bottom panel). Furthermore, the decrease of 

exonic mutation burden is not driven by one or few POLE-mutant tumors, as it is observable 

and significant for each of them (Fig. 3a; this analysis includes also a POLE-mutant of 

uterine adenocarcinoma origin).

In summary, we found a significant decrease of the exonic mutation rate in POLE-mutant 

tumors. This decrease is not due to the sequence content and cannot be explained by 

negative selection acting on exonic mutations, and it is maintained across genes with all 

levels of mutation rate and across exons at different positions of the gene.

The decreased exonic mutation rate is caused by differential mismatch repair

We reasoned that the decreased exonic mutation burden observed in POLE-mutant tumors 

could be caused by an elevated activity of MMR in exons with respect to their neighboring 

introns. MMR is the main mechanism responsible for the repair of errors generated by the 

polymerase during DNA replication. Colorectal tumors –and other cancer types– acquire the 

microsatellite instability (MSI) phenotype when mismatches introduced by the DNA 

polymerase are not corrected, due to deficiencies in the MMR system27. MSI tumors are 

normally classified on the basis of the level of five biomarkers into MSI-H (high, with over 

40% of the biomarkers of MSI) and MSI-L (low, with less than 40%), although the latter 

have recently been shown to not significantly differ from microstaellite stable (MSS) tumors 

in numbers of gained microsatellite alleles28. Thus, if our hypothesis were true, we would 

expect that tumors with an impaired MMR function (MSI-H) showed lower decreased 

exonic mutation burden than MMR competent tumors, such as POLE-mutants or MSS 

tumors.

We proceeded to compute the decreased exonic mutation burden of 6 colorectal and 8 

uterine MSI-H tumors in the TCGA cohort. We found, as predicted by our hypothesis, that 

MSI-H tumors exhibit a decreased exonic mutation burden around 20% (Fig. 3a and b); in 

other words, close to half of the decrease observed in POLE-mutant MMR-proficient 

tumors. Several reasons may explain why the decreased exonic mutation burden does not 

disappear completely in MSI-H tumors. On the one hand, the impairment of the MMR 

system may not be complete, and it probably has not existed throughout the entire history of 

the tumor. On the other, alternative mutational processes may also contribute to the mutation 

load.

Then, we computed the decreased exonic mutation burden of 2 POLE-mutant and 2 POLD-

mutant glioblastomas from children with inherited biallelic mismatch repair deficiency 

(bMMRD) sequenced by The International BMMRD Consortium29. These tumors have 

been MMR-deficient throughout their entire history and their POLE/D mutations guarantee 

a preponderance of mismatch-caused mutations. Their decreased exonic mutation burden is 

indeed close to zero (Fig. 3a and b), with independence of the mutation rate of genes (Supp. 

Fig. 3 and Supp. Table 4). Mismatches in these tumors are generated at comparable rate as in 
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previously analyzed POLE-mutant tumors. However, the majority of these mismatches 

remain uncorrected and turn into mutations. In other words, the mutations observed in these 

tumors follow the pattern of generation of mismatches, corroborating our hypothesis that 

they appear with higher probability in exons than introns, and that it is the MMR, with its 

increased efficiency in the former that causes the decreased exonic mutation burden.

In summary, the decreased exonic mutation burden differs between three different scenarios 

of MMR activity, with higher decrease in MMR proficient tumors to none in MMR deficient 

tumors. These results indicate that the increased activity of the MMR in exons is the cause 

of the decrease exonic mutation burden in POLE-mutant tumors (Fig. 3c).

A role for H3K36me3 in the differential activity of MMR in exons and introns

The results of the two previous sections demonstrate that the enhanced efficiency of the 

MMR system in exons is the cause of the observed decreased exonic mutation burden of 

colorectal POLE-mutant tumors. On the basis of formerly established mechanistic links 

between H3K36me3 and the recognition of mismatches, we then hypothesized that the 

decreased exonic mutation burden could be explained, at least in part, by the exonic 

enrichment of this histone mark in cells of the colon epithelium (see first section of Results). 

If true, we should be able to observe the biggest decreased exonic mutation burden in genes 

with the strongest exonic enrichment for H3K36me3 in MMR-proficient tumors. To test this, 

we first computed the exon to intron ratio of H3K36me3 readcount of primary cells from the 

colonic mucosa (Fig. 4a; E07523). Then, we grouped the genes into bins of increasing 

H3K36me3 exon to intron ratio, and we computed the aggregated decrease of exonic 

mutation burden of the genes in each bin for POLE-mutant colorectal tumors (Fig. 4a and 

Supp. Figs. 4 and 5). As predicted by our hypothesis, we found a significant negative 

correlation between the H3K36me3 exon to intron ratio and the decrease of exonic mutation 

burden (correlation coefficient, -0.68, p-value=6.7x10-8). A much lower, non-significant 

correlation (Supp. Fig. 5 bottom panel) is observed between the exon to intron ratio of 

nucleosomes and the decrease of exonic mutation burden. This suggests that the H3K36me3 

histone mark and not just the presence of nucleosomes underpins the increased level of 

MMR in exons that results in the decreased exonic mutation burden. The correlation with 

other histone marks is also lower (Supp. Table 6). On the other hand, the negative correlation 

between H3K36me3 exon to intron ratio and the decreased exonic mutation burden 

disappears in MSI-H colorectal tumors (correlation coefficient, 0.12, p-value=0.46) and 

bMMRD tumors (exon to intron H3K36me3 readcount ratio computed from cells of the 

brain angular gyrus, E067; correlation coefficient, 0.07, p-value=0.64) (Fig 4b).

These results indicate that the exonic enrichment for H3K36me3, possibly in combination 

with other chromatin features, could act as a driver of the enhanced MMR activity in exons 

that ultimately results in the decreased exonic mutation rate of POLE-mutant tumors (Fig. 

4d). When cells become MMR deficient, either during tumor evolution (as MSI-H colorectal 

samples), or before its emergence (like bMMRD glioblastomas), the link between the 

H3K36me3 exonic enrichment and the decreased exonic mutation burden is thus severed. 

This results in uncorrected mismatches accumulating, and ultimately mutations appearing 

more frequently in exons.
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Tumors of other cancer types also exhibit decreased exonic mutation rate

Our observations in previous sections have been limited to colorectal and uterine 

carcinomas, the mutational spectra of which are dominated by the interplay between the 

generation of mismatches in the course of DNA replication and their correction by the MMR 

machinery. The mutational processes of other somatic tissues are dominated by different 

types of damage dealt with by other DNA repair systems. Nevertheless, somatic cells in a 

human body, including the gametes, are the result of millions of cell divisions involved in 

organism development and tissue renewal. Therefore, MMR must play a role –although with 

different relative contribution– in shaping the mutational processes of all human tissues. We 

then asked whether tumors originated from other tissues exhibit a decreased exonic mutation 

rate. To do this, we first clustered the samples of the 8 tumor types in the studied cohort 

based on their mutational signatures (Supp. Fig. 6).

For the tumors in each cluster, we next computed the decreased exonic mutation burden 

(Fig. 5a, top panel). All clusters, except the one grouping POLE bMMRD glioblastomas 

exhibited significant decreased exonic mutation burden. This global trend was corroborated 

for individual samples (Fig. 5b). Interestingly, we found that the decreased exonic mutation 

rate is apparent also in the somatic mutations detected in a normal skin sample (Figure 5b, 

orange dot)30, indicating that this phenomenon is not a pathologic effect caused by 

tumorigenesis. In none of the clusters could the decreased exonic mutation burden be 

attributed to negative selection acting on exonic mutations (Fig. 5a, middle panel). We also 

computed the exon to intron mutation rate ratio as explained in the first section for the 

chromatin features (see Methods). In coherence with the decreased exonic mutation burden, 

in most clusters exons showed fewer mutations than their intronic counterparts (bottom 

panel).

Strikingly, even melanomas and lung carcinomas, whose mutations arise mostly as a 

consequence of DNA damage caused by UV light or tobacco, respectively, repaired via the 

Nucleotide Excision Repair (NER)31,32, exhibit a clear decreased exonic mutation burden. 

Two explanations are plausible for the pervasive identified decreased exonic mutation rate. 

The first –as pointed out above– is that, although modest, in relative terms, the MMR still 

plays a role in DNA repair in these tumors. Nevertheless, a second intriguing possibility is 

that other DNA repair machineries, also acting with higher efficiency in exons, contribute to 

the reduced exonic mutation rate. Exploring this prospect in the case of NER in melanomas, 

we indeed found higher activity in exonic regions (Supp. Fig. 7), although we cannot rule 

out that this is due to a higher exonic rate of UV-induced damage.

To sum up, the decrease of somatic mutation burden in exonic regions with respect to the 

expectations and to neighboring introns is apparent across cancer types. While we have 

demonstrated that the MMR plays a role in shaping this decrease, other DNA repair 

mechanisms may also contribute to it.

Discussion

In this work we provide, to the best of our knowledge, the first demonstration that the 

generation of somatic mutations –in the absence of negative selection– is lower in exons 
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than expected given their nucleotide composition. In other words, somatic cells exhibit a 

decreased exonic mutation burden. We have also shown that the reason is that mismatches in 

exonic DNA are repaired more efficiently than their intronic counterparts. These results 

represent a significant contribution to the body of research that in recent years has revealed a 

higher than anticipated heterogeneity in the mutation rate across different regions of the 

genome. Several recent seminal studies exploiting whole-genome germline and somatic 

mutations and the availability of nucleotide resolution maps of DNA repair33,34 have 

provided glimpses at a complex relationship between chromatin conformation, basic cellular 

processes like gene expression, DNA replication, the binding of transcription factors, and 

DNA repair5,7,10–12,14,32,35–39. It is the complicated interplay between these processes 

which determines that mutations accumulate heterogeneously across the genome. The results 

we present here reveal that the interaction of the most basic structural feature of eukaryotic 

genes, namely their segmentation in exons and introns –and its correlative chromatin 

structural differences– results in these two regions being repaired at very different rates.

As a possible explanation of the mechanisms through which the segmented structure of 

genes influences the activity of the DNA repair machinery, we have shown a pervasive 

enrichment of the tri-methylation of H3K36 in exons of normal tissues, which correlates 

with the decrease of exonic mutation burden in the corresponding tumors. As we show here 

H3K36me3, possibly in combination with other chromatin features, may participate in 

shaping the observed depletion of exonic mutations. The enrichment of H3K36me3 for 

exonic regions –which appears in both germline and somatic tissues– has been proposed to 

be ultimately responsible for the correct recognition of exon-intron boundaries by the 

splicing machinery18,19,40. Nevertheless, the H3K36me3 is bound by the MutSα protein 

via the PWWP domain of its MSH6 subunit15. A concomitant factor may thus have acted in 

the evolution of H3K36me3-enriched exons. Indeed, our results suggest that the increased 

recruitment of the MMR machinery to exonic regions as a result of higher levels of this 

histone mark would result in a reduction of the exonic mutation burden after DNA 

replication and ultimately, in an increase of fitness.

Our results demonstrate that the decreased exonic mutation burden is not due to negative 

selection in the generation of cancer somatic mutations across all tumor types analyzed. This 

finding suggests that the mutational landscape of cancer genes is not strongly influenced by 

negative selection, in agreement with a recent report41. Nevertheless, we expect that, in the 

germline, purifying selection plays a predominant role, filtering out all variants that prevent 

the development of a viable individual42. Given that MMR components are highly 

conserved across evolution –and that the exonic enrichment for H3K36me3 and other 

chromatin marks has been observed across species18,43–, it is reasonable to assume that the 

enhanced exonic MMR observed in human somatic cells is also present in germline cells and 

in other organisms. Therefore intronic regions could accumulate more nucleotide changes 

across evolution as a result not only of intense purifying selection on exonic variants but also 

of this differential repair. This, in turn would bring into question the use of the rates of 

intronic substitutions (Ki) as a proxy for neutral evolution44–46, with important 

implications for our understanding of the evolution of genes. Further implications may be 

extracted for methods aimed at detecting cancer driver genes that model the background 

mutation rate of exonic elements from their surrounding areas to identify signals of positive 
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selection in the coding region of genes. Some of these methods5,21,22, which use intronic 

mutations as estimators of the exonic background mutation rate, may be strongly affected by 

the differential generation of mutations in these regions.

In summary, we demonstrate that the differential MMR in exons and introns in somatic cells 

causes the former to harbor fewer mutations than expected from their nucleotide 

composition. This finding advances our knowledge of the interplay between mutational 

processes and the DNA repair machinery. Moreover, our results have important implications 

regarding the way we study the forces that shape the development of tumors and our 

understanding of the evolution of the genome.

Online Methods

Whole-genome expression and mutation data

Whole-genome somatic mutations and expression data of 38 skin cutaneous melanomas 

(SKCM), 46 lung adenocarcinomas (LUAD), 45 lung squamous cell carcinomas (LUSC), 42 

colorectal adenocarcinomas (CRC), 96 breast carcinomas (BRCA), 21 bladder carcinomas 

(BLCA), 47 uterine corpus squamous cell carcinomas (UCEC), 27 glioblastomas (GBM), 18 

low grade gliomas (LGG), 20 prostate adenocarcinomas (PRAD), 34 thyroid carcinomas 

(THCA) and 27 head and neck squamous cell carcinomas (HNSC) probed by TCGA were 

obtained from Fredriksson et al. (2014)20. Cohorts of tumors with fewer than 5000 genic 

mutations or fewer than 1000 exonic mutations (HNSC, GBM, KIRC, THCA, LGG and 

PRAD) were discarded from the analysis. The somatic mutations detected in four bi-allelic 

mismatch repair deficient (bMMRD) pediatric glioblastomas sequenced by The International 

BMMRD Consortium29 were obtained through personal communication from the authors. 

Finally, we obtained the somatic mutations detected across the whole genome of a normal 

skin sample from Martincorena et al. (2015)30.

Genomic coordinates of exons and introns

GENCODE47 v19 coordinates for 20,345 protein-coding genes were retrieved. Genes 

without introns, overlapping genes, and cancer driver genes, according to the Cancer Gene 

Census and other sources25,26, were discarded, thus obtaining a filtered set of 12,104 genes. 

All transcripts per gene were merged, generating meta exon and meta intron coordinates. 

Finally, the 5’ and the 3’ exons were removed, as well as all UTR regions (except for the 

analysis shown in Fig. 1), thus leaving only internal exons and their flanking introns. We 

then identified all genic regions where mutation calling would be technically challenging 

due to low sequence complexity, ambiguous mappability of sequencing reads, or low 

sequencing coverage. Regions of low complexity or low mappability were obtained from the 

UCSC genome browser (http://genome.ucsc.edu/cgi-bin/hgFileUi?

db=hg19&g=wgEncodeMapability). The former included repetitive regions defined by 

RepeatMasker, while the latter comprised low unique mappability regions for 36-mer 

sequences (CRG Alignability 36' Track, score <1). Finally regions covered by fewer than 8 

reads in any of five randomly selected tumor samples of each tumor type (requirement to 

make somatic calling in Fredriksson et al. 201420) were considered of low coverage. 

Regions of any of these three types were removed from introns and exons.

Frigola et al. Page 9

http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability


Clusters of tumors with different somatic mutational processes

To group the tumors of each cancer type in the cohort according to their underlying 

mutational processes, we first built a matrix of the frequencies of the 96 tri-nucleotide 

changes across tumors, as in a previous work12. Then, we carried out a hierarchical 

clustering (using Euclidean distance and average method for computing the similarity 

between clusters) of this matrix. We then manually separated the clusters of tumors and 

identified their underlying mutational processes through visual comparison with previously 

obtained32 mutational signatures across cancer types. Clusters of tumors with fewer than 

5000 genic mutations or fewer than 1000 exonic mutations were discarded for downstream 

analyses.

Chromatin features

We downloaded peak (narrow) coordinates and genome-wide read-coverage of 32 chromatin 

features presented in Supplementary Table 1 across 127 cell lines and primary cell types 

from the Epigenome Roadmap23 and the nucleosome density obtained from ENCODE24. 

Peaks and reads (see below) obtained from http://egg2.wustl.edu/roadmap/data/byFileType/

peaks/consolidated/narrowPeak and http://egg2.wustl.edu/roadmap/data/byFileType/

alignments/consolidated, respectively of each feature were mapped to intronic and exonic 

regions of genes. The primary cell closest to colorectal tumors and glioblastomas from the 

Roadmap were selected to represent the exon-intron distribution of chromatin features. 

Genome-wide nucleosome positioning signals (density graph) of ENCODE cell line 

GM12878 (lymphoblastoid cell line) were obtained via the UCSC genome browser (http://

hgdownload.cse.ucsc.). Further, by using the bwtool find program (with parameters local-

extrema -maxima -min-sep=150) the nucleosome peak regions were identified across the 

genome and 146bp flanking the peak (73bp per side) were considered as regions covered by 

a nucleosome.

We numbered the exons and introns in each gene according to their position with respect to 

the TSS. Exons and introns that occupy different positions in different transcripts, and those 

in the lower quartile of length were discarded. We then stacked all exons –and introns 

separately– and computed the aggregated coverage (fraction of bases covered by peaks of 

each mark) at the center of the stack corresponding to the number of bases of the shortest 

exon or intron remaining after the filtering. Finally, the difference between the exonic and 

intronic coverage was computed via the two-tailed Mann-Whitney p-value of the 

comparison of both distributions.

Classification of colorectal tumors according to the MMR level

Colorectal samples were separated into four subtypes on the basis of their level of MMR. 

MSIH (N=6), MSIL (N=4) and MSS (N=26) groups were defined based on clinical 

information from TCGA (https://portal.gdc.cancer. The rescaled frequency (Rescf) of each 

nucleotide in the genegov/query). The POLE group (N=6) was defined by identifying 

samples with missense mutations of the DNA polymerase epsilon (POLE) gene.
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Exon-centered mutational analyses

We stacked 2001-wide sequences centered at the middle position of internal exons. In this 

analysis we did not exclude regions that overlap any of the three types of technically 

challenging regions. Thus, we obtained a stack of 95164 sequences centered at exons. We 

then counted either observed or expected (distributed across each sequence of the 2001-wide 

window following the mutational probability of each nucleotide, as explained below for 

individual genes) mutations associated to each nucleotide of this 2001-wide sequences. With 

these counts across the selected windows, we produced exon-centered plots as those shown 

in Figures 2a, and 3b.

Computing the decrease of exonic mutation burden

We first computed the relative frequencies of the 192 tri-nucleotide changes, 

f(AiXjCk→AiXlCk) across each cluster of tumors, as:

where N(AiXjCk→AiXlCk) is the number of such changes within all mutations observed in 

the tumors, and T is the total number of substitutions observed across tumors. Then, we 

made f relative to the abundance of each tri-nucleotide in the genome, G(AiXjCk).

Next, for each genic site, we summed the relative frequency of its three possible changes 

given its 5’ and 3’ flanking bases:

Then, we rescaled the relative frequency of change of each site to one, by multiplying each 

by the factor:

The rescaled frequency (Rescf) of each nucleotide in the gene is proportional to the 

conditional probability that the reference nucleotide changes to the alternative given its 5’ 

and 3’ nucleotides. Finally, for each independent gene we redistributed all observed 

mutations (Nmuts) across exonic and intronic sites following these summed rescaled 

frequencies of each site to be mutated as:
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Note that this redistribution process could be done equally for the mutations observed in one 

tumor (for single-tumor analysis, Fig. 5b) or across a group of tumors (for groups or cluster 

analyses, Figs. 2,3,4 and 5a). This yielded the number of expected exonic (EExonic) and 

intronic (EIntronic) mutations in the gene. (We employed a second method to compute the 

expected number of exonic mutations, based on the average of 1000 random permutations of 

the observed mutations in each gene following the probability of each site to suffer a 

mutation: Supp. Table 3). Summing the observed and expected exonic mutations over all 

genes, we computed the difference between the observed and expected number of exonic 

mutations, which we refer to as the decrease of exonic mutation burden (since in most 

tumors it yielded a negative difference). Throughout the paper, we express this decrease as 

percent of the total number of observed exonic mutations.

To compute the significance of this decrease, we employed two tests: i) a G-test of 

independence comparing the number of observed and expected mutations in exons and 

introns, under the null hypothesis that the observed and theoretical distributions of the 

variables are equal; ii) for the expected number of exonic mutations computed using the 

permutations approach (see above), we computed an empirical p-value as the fraction of the 

iterations with fewer expected than observed exonic mutations.

Test for negative selection on exonic mutations

The consequence type of all observed exonic mutations was obtained using the Ensembl 

Variant Effect Predictor48 (VEP, v. 70). We subsequently separated exonic mutations into 

two groups: those with synonymous consequence, and those with a consequence ranking 

higher than synonymous in the Ensembl Variation hierarchy (www.ensembl.org/info/

genome/variation/predicted_data.html), which were collectively deemed non-synonymous. 

All possible nucleotide changes in a gene were then divided into three categories: i) 

synonymous; ii) non-synonymous (with the consequences defined above); iii) intronic. We 

redistributed the mutations observed in each gene across these three types of sites following 

the probability of occurrence of each change computed as explained above. Through the 

difference of observed and expected synonymous and non-synonymous mutations we were 

able to compute the decrease of the burden of both types of mutations (expressed as 

percentage of the expected number, as explained above for all exonic mutations). Finally a 

G-test of independence (see above) was used on the null hypothesis that fewer non-

synonymous mutations should be observed than expected.

We also redistributed only the exonic mutations across synonymous and non-synonymous 

sites according to the probability of change of each type of sites. In this case, we used the G-

test of independence on the null hypothesis that the number of expected non-synonymous 

mutations was not smaller than their observed number.
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Stratification of genes by mutation rate and several co-variates

The mutation rate of each gene was computed as the quotient between the number of 

observed mutations and the number of bases in the gene. Genes were subsequently grouped 

into 10 bins according to their mutation rate.

We computed the 75th percentile of the expression of each gene across the tumors in each 

cohort. Genes with a 75th percentile of expression equal to 0 were considered to be non-

expressed and were grouped together. All other genes were sorted on the basis of their 

previously computed expression percentile and divided into 9 bins of equal size. Non-

expressed genes were subsequently added as a tenth bin.

Replication time data across the human genome measured in lymphoblastoid cell lines was 

obtained from Koren et al. 20126. Using this data, a mean replication time per gene was 

computed. Next, genes were sorted on the basis of this value and divided into 10 groups of 

equal size.

Finally, we also grouped the genes into 10 bins according to their H3K36me3 peak 

coverage.

Relationship between the decrease of exonic mutation rate and exonic enrichment of 
nucleosomes and histone marks

For each gene, we computed the readcount-based exonic enrichment of any chromatin 

feature as the ratio between the exonic and intronic readcounts (total number of bases 

covered by reads of the chromatin feature). (This readcount-based exonic enrichment was 

used to compute the correlations shown in Fig. 4 and Supp. Fig. 4.) We computed the peak-

based exonic enrichment of any chromatin feature as the ratio of exonic and intronic bases 

covered by peaks of the feature (to compute the correlation shown in Supp. Fig. 5). The 

exonic and intronic number of bases covered by reads or peaks of the chromatin feature for 

colorectal and bMMRD glioblastoma tumors were computed from colonic mucosa (E075) 

and brain angular gyrus (E067) cells, respectively, both obtained from the Epigenome 

Roadmap. (In the case of nucleosomes, their peaks were obtained from their occupancy 

values as explained above.) Genes were grouped into 10, 25 and 50 bins according to their 

exonic H3K36me3 enrichment, and the aggregated decrease of the exonic mutation rate of 

the genes in each bin was computed as explained above for colorectal POLE-mutants, MSI-

H and bMMRD tumors. We then computed the correlation between the median exonic 

chromatin feature enrichment and the decreased exonic mutation rate across the bins. The 

trend line and its confidence intervals were added using the bootstrapping functions of the 

python seaborn package, which confers equivalent weights in the regression to all points. In 

order to guarantee that the trend is not the results of few outliers, the correlation coefficient 

and its significance were computed using iteratively re-weighted least squares approach, 

letting the variance of exonic H3K36me3 enrichment of the bins influence the weight of 

each point.
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Exon to intron mutation rate ratio

As described above, we stacked all exon-centered and intron-centered sequences, and 

averaged the total number of mutations observed at each of the 41 central positions of each 

stack. The selection of 41 central positions guaranteed both a vast majority of exonic 

sequences contributing mutations and enough mutations for the calculation across all 

clusters at exon-centered stacks. The exon-centered and the intron-centered mutation burden 

averages were then divided by the number of sequences included in each stack (see above) 

to make them comparable. Finally, we computed the exon to intron mutation rate ratio, as 

the quotient between the corrected exon-centered and intron-centered mutation burden 

averages.

Computing the activity of NER from XR-seq data

The genome-wide maps of nucleotide excision repair (NER) of two UV-induced photo-

products, namely cyclobutane pyrimidine dimers (CPDs) and pyrimidine–pyrimidone (6–4) 

photoproducts (PP64s), in irradiated skin fibroblast cell lines were obtained from Hu et al., 

201534. This data set comprises the NER maps for the following three cell lines: (i) wild-

type NHF1 skin fibroblasts, which contain active global and transcription-coupled repair 

mechanisms; (ii) XP-C mutants, which are deficient in the global repair mechanism; and (iii) 

CS-B mutants, which are deficient in transcription-coupled repair. For each of these cell 

lines, we extracted the sequencing reads, processed and mapped to the human genome, by 

following the steps mentioned in Hu et al., 2015. Further, we selected the mapped reads that 

are of size 26nts, which is typically the size of NER excised oligomers, and classified the 

reads based on the presence of dipyrimdines (TT, CT, TC, CC) at positions 19-20 or 

20-21nts of the reads. In addition, we recorded the mapped genomic location of the

nucleotides in positions 19-20 or 20-21 of the reads. This way, we can predict the damage

site based on the excised fragments. We mapped this information to the XR-seq exon-

centered plot together with the frequency of dipyrimidines observed in each columns (see

Supplementary Figure 76).

Statistics

We used the G-test described above to compute p-values to test the significance of the 

decreased exonic mutation burden for groups of genes, or all genes in a tumor or across 

groups or clusters of tumors. (All p-values computed for all comparisons are provided in 

Supp. Table 3, which includes as well p-values computed using a permutations-based test 

also described above.) When appropriate, p-values computed with this test were corrected 

using the Benjamini-Hochberg approach. In Figure 1 we used the two tailed Mann-Whitney 

test to compare the exonic and intronic distributions of chromatin features (and corrected 

them when appropriate). Above, we describe the approach employed to compute the 

correlation coefficient (and its associated p-value) of regression lines shown in Fig. 4 and 

Supplementary Figures 4 and 5.

Code availability

All code needed to reproduce the analyses described in the paper are available at the 

Bitbucket repository (https://bitbucket.org/bbglab/intron_exon_mutrate).
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Data availability

Mutational data employed in the analyses described in the paper was obtained from three 

papers cited at the first section of Methods20,29,30. The mutations identified in four 

bMMRD glioblastomas were provided by the authors upon request (see acknowledgements 

section). All other data was obtained from public repositories included at each relevant 

Methods section. Pre-processed data needed to reproduce all analyses described here is 

provided together with the code (see above) at https://bitbucket.org/bbglab/

intron_exon_mutrate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Exonic enrichment for several histone marks.
(a) Exonic and intronic coverage of H3K4me3 and H3K36me3 peaks in primary cells of the

normal colon mucosa (E075), and of nucleosome covered regions in GM12878

(lymphoblastoid cell line). Each bar represents the coverage of the mark in exons or introns

at different positions of genes, depicted by the schematic structure of the genes at the bottom

of the figure. The distribution of the exonic and intronic coverage of each chromatin feature

across the genes structure is represented by the boxplots at the right of the panel. The pvalue

of a two-tailed Mann-Whitney test comparing the two distributions is shown.
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(b) Scatter plot representing the difference of exonic and intronic coverage of each histone

mark (log10 two-tailed Mann-Whitney p-value corrected for multiple testing) in the y axis

and the median coverage across all exons of genes in the x axis. Each dot represents one

chromatin mark in one cell type, colored according to the former. All data on exons and

introns coverage of all marks across cell types is available in Supplementary Tables 1 and 2.

(c) Proportion of bases covered by H3K36me3at internal exons and flanking introns in

primary cells of the normal colon mucosa (E075).
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Figure 2. Decreased exonic mutation burden in colorectal POLE-mutant tumors.
(a) Exon-centered 2001-nucleotide wide observed and expected profiles of mutations in 6

colorectal POLE-mutant tumors. (The light red line represents the actual mutation rate at

each position, while the red and black lines represents smoothed mutation rates using a

polynomial fit.) The bottom panel represents the distribution of the percentage of exonic

bases at each position across the 2001-nucleotide window.

(b) Schematic representation of the method used to compute observed and expected number

of mutations in exons and introns at the gene level. Rescfi represent the rescaled expected
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frequency of mutations of each nucleotide in the gene. The conditional probability of 

mutation of each site (P in the figure) is proportional to this quantity. EExonic and Eintronic 

represent the expected number of exonic and intronic mutations, respectively. (See Methods 

for details.)

(c) Density plot representation of the distribution of gene-level differences of the numbers of

observed and expected exonic mutations vs total mutations in POLE-mutant tumors. The

distribution of exonic mutations difference (right-hand one-dimensional density plot) is

biased towards negative values, indicating that a majority of genes possess lower-than-

expected numbers of mutations in exons. An analogous plot,restricted to genes with at least

one expected exonic mutation (Supp. Fig. 2b) shows similar results.

(d) An overall highly-significant 37.6% decreased exonic mutation burden (3368 fewer

observed exonic mutations than the 8996 expected) is observed in these tumors (top panel).

Both synonymous and non-synonymous mutations account for this decrease (bottom panel),

with their observed values significantly below expected (left and middle plots), and no fewer

non-synonymous mutations than expected when the latter are computed solely rom observed

exonic mutations (right plot).

(e) The decreased exonic mutation burden is maintained around the overall computed value

(37.6%) across groups of genes with different mutation rate (top panel), level of expression

(second), replication time (third), the number of genic bases covered by H3K36me3 peaks

(fourth) and across exons at different positions in the gene (bottom). The values in the

abscissa in each graph represent the ordinal number of the bins of genes, sorted in the

direction indicated in each panel.
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Figure 3. Decreased exonic mutation burden across scenarios of MMR activity.
(a) Tumor-level decreased exonic mutation burden in colorectal and uterine POLE-mutant

(left), MSI-H (center), and bMMRD (right) tumors. Dots represent individual tumors.

Broken red lines represent the median decreased exonic mutation burden of each group of

tumors.

(b) Exon-centered 2001-nucleotide wide observed and expected profiles of mutations in 6

colorectal and 10 uterine MSI-H tumors, and 2 POLE-mutant and 2 POLD-mutant bMMRD

glioblastomas.

(c) Schematic representation showing the increased efficiency of MMR at exons, and the

decreased exonic mutation burden.
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Figure 4. Decreased exonic mutation burden and H3K36me3 exon to intron ratio.
Decreased exonic mutation burden computed in (a) colorectal POLE-mutant tumors, (b) 

colorectal MSI-H, and (c) glioblastoma bMMRD tumors for 50 groups of genes with 

increasing exon to intron ratio of H3K36me3 coverage (in the corresponding cell-of-origin; 

see Methods). The trendline and its confidence intervals in graphs were added using the 

seaborn package of python;, while the correlation coefficient and its significance were 

computed using iteratively re-weighted least squares approach.
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Figure 5. Decreased exonic mutation burden across cancer types.
(a) Top panel: decreased exonic mutation burden of groups of tumors clustered according to

their underlying mutational processes. (Dots represent clusters of tumors denoted at the

bottom panel.) Middle panel: decreased non-synonymous mutation burden of the same

groups of tumors, computed as in Figure 2d. Bottom panel: ratio of exonic and intronic

mutation rates of the same groups of tumors. Clusters of tumors in the three panels are

sorted following their decreased exonic mutation burden.

(b) Decreased exonic mutation burden of individual tumors vs their mutational burden. Dots

representing individual tumors are colored according to their cancer type; dots of tumors

with significant decreased exonic mutation burden are encircled by a black ring. The table at

the top left corner of the panel presents the total number of samples, the subset of them with

decreased exonic mutation burden, and the subset of these with significant decrease.
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