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Abstract

We extend to score, Wald and difference test statistics the scaled and
adjusted corrections to goodness-of-fit test statistics developed in Satorra
and Bentler (1988a,b). The theory is framed in the general context of multi-
sample analysis of moment structures, under general conditions on the distri-
bution of observable variables. Computational issues, as well as the relation
of the scaled and corrected statistics to the asymptotic robust ones, is discus-
sed. A Monte Carlo study illustrates the comparative performance in finite
samples of corrected score test statistics.

Keywords: Moment-structures, Goodness-of-fit test, score test, Wald test,
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1 Introduction

Moment structure analysis is widely used in behavioural, social and econo-
mic studies to analyse structural relations between variables, some of which
may be latent (i.e., unobservable); see, e.g., Bollen (1989), Yuan and Bentler
(1997), and references therein. Commercial computer programs to carry out
such analysis, for a general class of structural equation models, are availa-
ble (e.g., LISREL of Joreskog and Sorbom, 1994; EQS of Bentler, 1995).
In multi-sample analysis, data from several samples are combined into one
analysis, making it possible, among other features, to test for across-group
invariance of specific model parameters. One issue which is central in mo-
ment structure analysis is the goodness-of-fit test of the model and the test
of restrictions on parameters.

Asymptotic distribution-free (ADF) methods which do not require distri-
bution assumptions on the observable variables have been developed (Brow-
ne, 1984; Muthén, 1989; Bentler, Lee and Weng, 1987). The ADF methods,
however, involve fourth-order sample moments, thus they may lack robust-
ness to small and medium-sized samples. In the case of non-normal data,
an alternative to the ADF approach is to use a normal-theory estimation
method in conjunction with asymptotic robust standard errors and test sta-
tistics (see Satorra, 1992). Asymptotic robust test statistics may still lack
robustness to small and medium-sized samples. As an alternative to the
asymptotic robust test statistics, Satorra and Bentler (1994; Satorra and
Bentler, 1988a,b) developed a family of corrected normal-theory test statis-
tics which are easy to implement in practice, and which have been shown to
outperform the asymptotic robust test statistics in small and medium-sized
samples (e.g., Chou, Bentler and Satorra, 1991; Hu, Bentler and Kano, 1992;
Curran, West and Finch, 1996). Extension of Satorra-Bentler (SB)’s correc-
tions to goodness-of-fit test statistics in the case of the analysis of augmented
moment structures, multi-samples and categorical data, have been discussed
respectively by Satorra (1992, 1993) and Muthén (1993). In recent personal
communication, Bengt Muthén has kindly pointed to this author the need
to extend SB’s corrections to score and difference test statistics.

The purpose of the present paper is to extend SB’s corrections to score
(Lagrange multiplier), difference and Wald test statistics. This is undertaken
in the general context of multi-sample analysis. We rely heavily on the
notation and results of Satorra (1989) and Satorra and Bentler (1994; Satorra



and Bentler, 1988a,b).

The chapter is structured as follows. In Section 2 we review the general
theory of normal-theory GLS analysis of multi-sample moment structures,
placing special emphasis on goodness-of-fit test statistics. The extension of
the scaling and adjusted corrections to the restricted tests is undertaken in
Section 3. Finally, Section 4 illustrates, by means of a Monte Carlo study, the
finite sample size performance of competing score test statistics developed in
Section 3.

2 Goodness-of-fit tests

Let o and s be p-dimensional vectors of population and sample moments
respectively, with

Vin(s — 0% = N(0,T), (1)
where oY is the probability limit of s, as sample size n — +oo, I is the asymp-

totic variance matrix of \/ns, and “L7 denotes convergence in distribution
as n — oo. Consider a moment structure for o, o = o(8), where o(.) is
a twice-continuously differentiable vector-valued function of a ¢-dimensional
parameter vector § € O, a compact subset of R?. Let 0 be an estimator of ¢
that satisfies

V(= 6o) = O,(1), (2)

with 0y in the interior of ©. The usual notation of stochastic orders of mag-
nitude is used, i.e., O,(1) and o,(1) denote, respectively, “bounded” and
“tends to zero in probability”, as n — 4oo. Usually, (2) is fulfilled whenever
o = o(0) is locally identified (viz., the function () is injective in a neigh-
bourhood of the true parameter value). Denote & := O'(é) and g := o(by).
It is assumed that \/ﬁ(é —g(s)) = 0,(1), where ¢g(.) is a g-dimensional conti-
nuously differentiable vector-valued function of s, with ¢(.) Fisher-consistent
for 8, i.e. g(o(f)) = 0, § € ©. The theory discussed involves the use of
the Jacobian matrices = := (9/0s')g(s) and A := (9/06")o(0), which will be
assumed to be regular at o := o(fy) and 0y respectively. Note that Fisher-
consistency of g(s) implies that ZA = [,. In the developments that follow, A
and = denote the corresponding matrices evaluated at 6y and oy respectively.

The above mentioned properties for 0 are satisfied by most of the esti-
mators commonly in use in moment structure analysis. In particular, they



are satisfied by the ML and GLS estimators discussed below. They are also
satisfied in the case of instrumental variable estimators (e.g., Satorra and
Bentler 1991).

A Wald-type statistic for testing the goodness-of-fit of the model can be
developed. Since

Vil = &) = V(s — 0°) + V(0 = 00) — Va5 — 00).

a Taylor series expansion of /n(& — 0g) at oo, gives

Vitls = &) = /(s — 0%) + Vi(0® — 00) = Ay/n(d — 00) + 0, (1),

which combined with (1) yields

Vals — &) 5 N(r, H), (3)
where

Fim i i(e® — o0) (1)
and

We further assume

7= lim n(e®—0y) < oo,

n—4oco

which is the usual assumption of a sequence of local alternatives (needed to
ensure finite asymptotic distribution of test statistics when the model is not
exactly true).

Let Ay be an orthogonal complement of A, i.e., A} isa p X (p—¢) matrix
of full-column rank such that A, A = 0. From (3), we have

Vi (s — &) B N(A 7, AT TAL), (6)

since A HA; = A TA, as A (I — AG) = A’}; hence, a residual-based
goodness-of-fit test for the model is defined as the Wald-test statistic

Tr=n(s — )AL (A TA)TA (s — 6), (7)

where AL and T' are consistent estimators of A; and L', respectively. The
matrix A, will be taken to be an orthogonal Complement of A, the matrix
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A evaluated at the estimated value . Clearly, from the standard theory
of Wald-test statistics (e.g., Moore, 1977), Tg is asymptotically chi-square
distributed with degrees of freedom r := rank A’ 'A; and non-centrality
parameter A := 7'A (A TA)*A’ 7. When I is non-singular, we have

Tr =n(s —6){I" = T'AATTA)TTAT 1} (s — 6), (8)

When I' is the (distribution-free) consistent estimator of I' in (10) below,
then Txr will be called the asymptotic robust goodness-of-fit test statistic,
since it is an asymptotic chi-square statistic regardless of the distribution of
z. In the context of single-sample covariance structure analysis, this statistic
was first introduced by Browne (1984). Its performance was studied by Yuan
and Bentler (1998), and found to be adequate only in very large samples.

Consider now multi-sample data from G population or groups, i.e., let
{24121, 9 =1,..., G, where it is assumed that, for each group g, the z,; are
independent and identically distributed p,-dimensional vectors of observable
variables, with finite fourth-order moments. Define X, := Fz,;2/;, and let the
multi-sample vectors ¢ and s of population and sample moments, respecti-
vely, be given as 0 := (07,...,07) and s := (s},...,s])’, where o} := vec X,

!

s, = vec Sy, with

g
Sy 1= L Zzgizﬁlﬂ.
Ng i=1
Here “vec” denotes the column-wise vectorisation operator (see Magnus and
Neudecker, 1999, for full details on this operator). Clearly, when there is
independence across samples, the asymptotic variance matrix of \/ns is of
the form

I = block diag(—T1,..., —T¢), (9)

(a0 Ng
where I'; is the asymptotic variance of | /nys,. We further assume that the
matrices S, and Y, are positive definite, and that n,/n — f, > 0, as n — +o0

(9 =1,...,G); in this case, a distribution-free consistent estimator of I is
[ := block diag(ifl, cee ifg), (10)
ni e
where
A 1 g ,
Ly = n 1 Z(dgi — sg)(dgi — s4), (11)
g =1



with dg; := vec Zgiz:;i.

We consider the generalised least-square (GLS) estimation method with
normality as a working assumption; viz., the estimator 0 is defined as the
minimiser over the parameter space © of the fitting function

Fars(0) := (s — 0)V(s — o),

with

A~

V := block diag(EVl,...,n—GVG) (12)
n

n

and VQ = 2(S,7' @ 5,7Y); clearly, Fgrs(0) = %Zle “tr{(S, — X,)S; 11
For single-sample covariance structure analysis, this method of estimation
was first proposed by Browne (1974). When in the minimization process the
matrices S, in (12) are replaced iteratively by the fitted i]g, the so-called
normal-theory reweighted GLS estimates are obtained.

Differentiation with respect to 8 yields the following first-order condition

for the estimator 0 :

G
A A n A
(s—6) VA =0, (Z (s, — ) VA, = 0) : (13)
n
g=1
A related estimation method which is asymptotically equivalent to normal-
theory GLS, and which produces estimators numerically equal to the re-
weighted GLS estimators, is pseudo-ML estimation; viz., # is the minimiser
over O of

G
n
Parnl0) = 32 4P (0)
g=1
with
Py 2(0) :=1n | Sy | +t0 88,7 —1n | S, | —p},

and py denoting the dimension of the z,;.
A goodness-of-fit test statistic associated with GLS estimation is defined
as Tars := nkFgrs(s,d), which, using (13), can be written as

Taps = (s — &) (V= VAQAVA)TATV) (s - 6).

The goodness-of-fit test associated with pseudo-ML estimation is in turn defi-

N

ned as T, := nfrp(0), which corresponds to the Log-Likelihood Ratio test
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statistic for testing the model o = o(#), against the general alternative in
which the ¥, are unrestricted. Under normality, the statistics T, T and
T, are asymptotically equivalent (i.e., they have the same asymptotic dis-
tribution as that stated above for Tx). Under non-normality of the z,, Trs
and Thsr are asymptotically equivalent, though not necessarily asymptotic
chi-square. See Satorra (1989) for more details on the above goodness-of-fit
test statistics, with discussion of their equivalence.

Under general distribution of the z,, when the model holds exactly, T
and Ty are asymptotically distributed as a mixture of chi-square distri-
butions of 1 degree of freedom (df) (see Satorra and Bentler, 1986); that
is .

T4 Z Q; Xf, (14)
j=1
as n — oo, where T denotes either of the statistics Tzrs or Thp. Here
the X? are independent chi-square variables of 1 df, the «; are the non-null
eigen-values of the matrix UT", with

U=V —VAJAY,

J:=AVA (= Zle foALVyAy) and 1= rank(A' Ay ) . If the z, are nor-
mally distributed, then the «; are equal to 1 and thus one obtains an asymp-
totic exact chi-square distribution for the goodness-of-fit test statistics. This
result motivated the scaling correction to the goodness-of-fit test statistic
proposed by Satorra and Bentler (1994; Satorra and Bentler, 1988a,b), the
specialization of which to Tgrs and Ty, 1s as follows. Let

1 1
ci=—trUT = ~tr {VI = JTTAVIVA} (15)
r r

1 & 1 -
= > (VT = LA VAT T = {(A’Lv—lm) ' (A’LFAL)}
g=1

1

G -1 /q
=t (Z fg_le/:Vg_ng) (Z f;Hs/:FsJHg) ;
r g=1 g=1

where A’ = [Hy,..., H}] is partitioned conformably with the partition gi-
ven above of V as a block-diagonal matrix. From the expression (10) of a



consistent estimator of I', a consistent estimator of ¢ is

G Zs n “ n 1 -

~ I ! — !

€= ZZ 1 (dgi — 34)" { Hy Z_Hgvg H, H, (dgi — 84);
g=1i=1 ng(ny ) g=1"4

(16)

thus, the scaled (adjusted for mean) goodness-of-fit test statistic is
T="T/e, (17)

where T' denote either of the test statistics Targ or Thr,.

We now discuss the adjusted test statistic (adjusted for mean and varian-
ce) introduced in structural equation models by Satorra and Bentler (1994;
Satorra and Bentler, 1988a,b); viz.,

= d
T=vamh
where d is the integer closest to
g (tr UT)?
C ot (UT)?

and probability levels of T' computed using a chi-square distribution of d’
degrees of freedom. The statistic 7' is a Satterthwaite type test statistic
(Satterthwaite, 1941). When tables from a chi-square distribution with frac-
tional degrees of freedom are available, then d' is used instead of d.

For the sake of completeness, we also review the asymptotic variance
matrix of estimators. In the current set-up, the estimator 0 is asymptotically
normal with asymptotic variance matrix (e.g., Satorra and Neudecker, 1994)

avar(d) = n ' JTA'VIVAJ Y, (18)
where A'VI'VA = Z?Zl JoAL VIV, Ay Obviously, standard errors of pa-

rameter estimators are produced by replacing population matrices for con-
sistent estimators in the above formulae, and replacing the f, by the =£.
Clearly, when
AVIVA = A'VA, (19)
then avar(lg) = avar*(é) :=n~'J~'. Note that a sufficient condition for (19)
to hold 1s
V'V, =V, ¢g=1,....G, (20)

which is verified when the z, are normally distributed.
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3 Restricted tests

In this section we focus on testing a specific set of restrictions on the parame-
ters of the model, when the alternative hypothesis is that the restrictions do
not hold (rather than the general alternative that the ¥, are unrestricted).

Let us parameterise the fitted model o = o(6) as ¢ = ¢*(6) with the cons-
traint a(6) = ag, where ¢ is a (¢ +m)-dimensional vector of parameters, ag is
an m x 1 vector of constants, and o*(.) and «a(.) are twice-continuously diffe-
rentiable vector-valued functions of § € ©1, a compact subset of R?t™. Our
interest is in testing Hy : a(6) = ao against Hy : a(d) # ag. In multi-sample
analysis, a typical example arises when testing across-sample invariance of
model parameters (see the example in the illustration below).

Define the Jacobian matrices

II:=(0/06")o*(§) and A :=(9/98)a(d),

which we assume to be regular at the value of 6 associated with 6y, say 6o,
with A of full row rank. Let

G
P =1Vl (: S ng’ngHg)
g=1

and
A A G n oA
B = (s — o) VI (: Z —g(sg — &g)'VgHg) )
n
g=1

Generalised score and Wald-test statistics for restricted tests were investi-
gated by Satorra (1989, Section 5); viz., the generalised score test statistic
is

Ts:=nh' P71 A’ (Aﬁ—lﬂ’f/ff/ﬂﬁ—%’)_l AP~h,

where 121, Il and P are the matrices A, Il and P evaluated at é, and T is the
(distribution-free) consistent estimator of I' defined in (10).
Clearly, when
'VIVII = II'VII,

i.e., when
G G

n n
IESIANNAIES SES AN

g=1 g=1



then Ts is asymptotically equivalent to the (non-robust, asymptotically) score
test statistic
T :=nh'P7TA(APTYA) AP ).

The statistic 17 is asymptotic chi-square under the condition that the esti-
mation method is asymptotically optimal (Satorra, 1989). Specifically, when
V has the normal-theory form given above and the z, are normally distri-
buted, then T3 corresponds to the usual score test statistic. In the case of
one-dimensional restrictions, 75 is the “Modification Index” of Joreskog and
Sérbom and Sérbom (1989). T3 is the “Lagrange Multiplier” test available
in EQS (Bentler, 1995) for general multi-dimensional restrictions.

When the fitted model is the less restricted one, that is when the model
analysed is 0 = 0*(6), then the generalised Wald-test statistic for Hy : a(6) =
ag against Hy : a(6) # ag is (see Satorra, 1989, Section 5)

Ty = it (APTUVEVIPAY) 4,

where the matrices are now evaluated at the estimated value 6 under the

N

unrestricted model and @ := a(6). When II'VI'VII = J, then Tw is asymp-
totically equivalent to the (non-robust, asymptotically) Wald-test statistic

Ty = nad' (121]5_1121’)_1 a.

Under the assumption of normality of the z,, when we use ML or normal-
theory GLS estimation methods then T3, is the typical Wald-test statistic.

When both the restricted and unrestricted models are analyzed using
GLS or ML estimation methods, the restricted test of Hy : a(6) = ap can be
carried out using the difference-test statistic

DT =Ty —Th, (21)

where Ty and T; denote the goodness-of-fit test statistics (Tgrs or Tar)
associated with the restricted and unrestricted models respectively. Under an
arbitrary distribution of the observable variables, the three test statistics 775,
Ty, and DT are asymptotically equivalent (see Satorra, 1989, Theorem 4.1),
though not necessarily chi-square distributed; when the estimation method
is asymptotically optimal, then all the statistics T, Ty, DT, Ts and Ty are
asymptotically equivalent, with the same asymptotic chi-square distribution

(Satorra, 1989).
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We will now obtain the expression of T's and T7 for the particular case in
which a(é) = ag corresponds to equating parameters to specific values; in this
case, without loss of generality, we have A = [0y, x4, [;n] and A’ = [01x4, hb];
consequently,

WPVA = B P? and (APTYAN)T' = (P2)7! = Py, — Py PPy,
where we used

P = ]?H ]?12 and P!i= ]:311 ]:312
le P22 P21 P22

(partitions corresponding to h' = [014,, h5]), and standard formulae for the
inverse of partitioned matrices (e.g., Magnus and Neudecker, 1999, p.11).
Consequently,
R . . R . [ p1z -
Ts = nh!, P {( P, P2 IVIVI ( )} pP2p,

]522

A -1
Aoon A ~ [ —P3'P
= nh, {( —PpPR', I, )H’VFVH( P )} ha,
where we used P* = —P2P, P! and (P?) = P'2. Similarly, we can
express 15 as
T = nhl, P2(P*)~1 P?*h,
= nh’2 (ng — pglpl_llplg)_lhg.
Note that hy corresponds to the components of A that are not equal to zero
when evaluated at the restricted parameter value 6. Note also that P! is
the “information” matrix associated with the restricted model, and it does
not change with the restrictions being tested.
The SB scaled versions of T§, T, and DT will thus be obtained by
dividing the corresponding statistic by a consistent estimate of ¢ in (15),
where U is now given by (cf., Satorra 1989, p. 146)

U=VIIPT'A(APT A APT'TTYY, (22)
with m (the number of rows of A) replacing r; that is, the scaled statistic is

T :=1T/e,
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where here T' denotes any of the statistics T, Ty, and DT, ¢ = %tr ot

and U is the matrix U of (22) with the matrices II, P and A evaluated at
estimated values, and 14 replaces V.

We will now obtain an explicit expression for ¢ in the case of restricted
tests and multi-samples. Clearly,

c= %tr Ul = %tr (AP~'IVIVIIPT!AY) (Ap—lA')‘1 (23)

= Lt (vov) {lIP A AP A AP
m
1 - 1 1 1 1
= o X it (VLY {ILPT A (APTLA) T APTIL )
g:

where 11, := (0/96")o(6). Note that this scaling factor does not necessarily
coincide with the scaling factor associated with T, nor with that associated
with T4; i.e., the SB scaled DT is not the difference of the SB scaled goodness-
of-fit tests 77 and Ty.

We now show that when m = 1, then the scaled score statistic Ts (= T%/¢)
coincides with the robust score statistic T's. When m = 1, the scaling factor
¢ defined above is

_APTII'VIVIIPTTA

‘T APTTAT (2
and the robust and non-robust score statistics can be be expressed as
W PLA'AP~h
TS:nAA A A A A A ~ (25)
APII'VTVIIP-1 A
and o
RPAAP A
i=n — : (26)
APTA
Consequently, we have
Ts=1T%/¢, (27)
where L
APTHUI'VTVIIPLA
¢ = —— ) (28)
AP-TA
is a consistent estimator of the SB scaling factor ¢ of (23). Moreover, if
in addition to m = 1 we have that a(6) = ao restricts a parameter to a
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specific value, then ¢ of (28) is the ratio of two standard errors of the res-
tricted parameter: the asymptotic robust standard error (computed from
(18), unrestricted model), and the NT standard error (computed from J~!,
unrestricted model).

We now provide an explicit expression for ¢ when A = [0y, x4, [,n]. In this
case we have

1
c=—tr VIVIL{PT A(APT A) AP I
m

]512

1 N
= —tr vrvn{( prope ) () ( 22

1
) } II'= —tr VI'VIIMII,
m

where

Mo P12(P22)—1P21 P12 B P1—11P12P22P21P1—11 _P1—11P12P22
T P21 P22 - _P22P21P1—11 P22 :

Finally, the specialization of the SB adjusted (for mean and variance)
goodness-of-fit test to T§, Ty, and DT test statistics is as follows. We define

T :=(d/tr UD) T,

where T' denotes any of the statistics T§, Ty, or DT, and d is the integer
closest to L
d = w
tr (UT)2
with 7 being the matrix of (22) evaluated at estimated values, and r given
in (10). The null distribution of the adjusted test statistic T is taken to be
a chi-square distribution with d degrees of freedom. Here d’ also replaces d

when tables of a chi-square distribution with fractional degrees of freedom
are available.

4  Tllustration

To illustrate the performance of the above statistics in finite samples, a spe-
cific model context is used to simulate the competing score-test statistics
introduced in the previous section for various sample sizes. The performance
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of the test statistics is evaluated by comparing Monte Carlo rejection fre-
quencies with the corresponding nominal values.
We use a very simple model context. We consider a regression equation

y; = Byt vg, =1,...,n, (29)

where for case i in group ¢ (¢ = 1,2), y}; and x,; are the values of the response
and explanatory variables, respectively, vy is the value of the disturbance
term, and [ is the regression coefficient. The model assumes that x,; is
unobservable, but there are two observable variables 27, and 27 ; related to
x4 by the following measurement-error equations

* o . A .
iy = Tgi T Uigi, Tyy = Tgi + Uzgs, (30)

where uy,; and ug,; are mutually independent and also independent of vy,
and x,;. It is assumed that the observations are independent and identically
distributed within each group. Equations (29) and (30) with the associated
assumptions yield an identified model (see Fuller (1987) for a comprehensive
overview of measurement-error models in regression analysis). Inference is
usually carried out in this type of model under the assumption that the
observable variables are normally distributed.

Write the model of (29) and (30) as

Zgi:Afgia i:1,2,...,n, (31)
where
* Lgi
?in v;
Rgi = L1gi ) fgi = Uiy
x2gi U2g7
and
g1 00
A= 1 01 0. (32)
1 0 01
Define
Ope 0 0 0
0 o, 0 0
(I) = Efglfzyz = 0 0 Cun 0 9 (33)
0 0 0 ou



and the parameter vector 6 := (0, Opzy Ouu, ). Under this set-up, we obtain
the moment structure

= AGA = X(0), (34)

where ¥(.), A(.) and ®(.) are (twice-continuously differentiable) matrix-
valued functions of 8, as deduced from (32), (33) and (34). Note that the
model restricts the variances of u; and uy by equality.

The simulation of two-sample data from the above model and computati-
on of score test statistics was replicated 1000 times, for various combinations
of two-sample sizes as shown in Table 1. In all the replications we used
6o = (1,1,.3,2). The distributions of v and x were independent conveni-
ently scaled zero mean and unit variance chi-squared of 1 df (i.e., a highly
non-normal distribution); the distribution of u; and wus were set to be nor-
mal mutually, independent, and independent of v and . The normal-theory
GLS estimation method described in Section 2 was used. The model imposed
across-group invariance of model parameters. In each replication, we com-
puted the various versions of the score-test statistic of Section 3, for the null
hypothesis of across-group invariance of all model parameters. Clearly, in
our Monte Carlo set-up, the null hypothesis holds true, with the asymptotic
distribution of Ts being chi-square with m = 4 degrees of freedom. Note
that in our Monte Carlo set-up, severe non-normality of random constitu-
ents of the model requires the use of robust and/or corrected versions of the
score-test statistic.

We note that the normal-theory chi-square goodness-of-fit Ty (Tgrs or
Tar) of the unrestricted model (i.e. the model that does not restrict pa-
rameters across-groups), is an asymptotic chi-square statistic despite non-
normality of the data (this follows from the asymptotic robustness theory for
multi-sample; cf., Satorra, 1993); in contrast, the normal-theory chi-square
goodness of fit Ty of the restricted model (i.e., the model that imposes para-
meter invariance across-samples), is not necessarily an asymptotic chi-square
statistic (since variances of non-normal constituents of the model are restric-
ted by equality across-groups; cf., Satorra, 1993). Consequently, since DT
(= Ty —1Tp) is asymptotically equal to T (Satorra, 1989), the scaling factor ¢
for T% does not need to coincide with the scaling factor ¢ associated with T}
(which is 1, as deduced from the mentioned theory of asymptotic robustness),
nor with the scaling factor ¢ associated to Tp.

As shown in Table 1, in our specific model context, in the case of small
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samples, the SB scaled statistic, T&, seems to outperform the alternative

robust test statistic T's. As expected from theory, in the case of large sam-
ples, Ts outperforms the alternative test statistics. The adjusted test sta-

tistic, 7%, shows acceptable performance in various sample sizes. Clearly,

the normal-theory score-test statistic TS performs very poorly for all sample
sizes considered in this Monte Carlo study.

References

1]

2]

[3]

Bentler, P.M., (1995), EQS Structural Equations Program Manual, Mul-

tivariate Software Inc., Encino, CA.

Bentler, P. M., Lee, S.-Y., and Weng, J., (1987), Multiple population
covariance structure analysis under arbitrary distribution theory, Com-
munications in Statistics - Theory, 16, 1951-1964

Bollen, K.A., (1989), Structural Equations with Latent Variables, John
Wiley, New York.

Browne, M.W., (1974), Generalized Least Squares Estimators in the
Analysis of Covariance Structures, South African Statistical Journal, 8,
1-24.

Browne, M.W., (1984), Asymptotically Distribution-free Methods for
the Analysis of Covariance Structures, British Journal of Mathematical
and Statistical Psychology, 37, 62-83.

Chou, C.-P., P.M. Bentler and A. Satorra, (1991), Scaled Test Statistics
and Robust Standard Errors for Non-normal Data in Covariance Struc-
ture Analysis: A Monte Carlo Study. British Journal of Mathematical
and Statistical Psychology, 44, 347-357.

Curran, P. J., West, S. G., and Finch, J. F. (1996), The robustness of
test statistics to nonnormality and specification error in confirmatory
factor analysis, Psychological Methods, 1, 16-29.

Fuller, W.A., (1987), Measurement Error Models, John Wiley, New
York.

16



Table 1: Monte Carlo results

nominal significance levels: 1% 5%  10%  20%

n, = 50 and ny = 60

Ts 2.20  9.90 16.60 28.30
Tz 1.00  5.60 11.00 24.10
T 0.80 3.00 7.40 18.90
T3 14.60 33.40 45.20 59.80
ny = 100 and ny = 120
Ts 1.40 7.60 14.90 24.70
T 1.40  5.40 11.00 20.70
T 0.60 3.00 6.30 18.10
T 22.00 40.20 49.20 60.60
n; = 200 and n, = 240
Ty 1.00 4.20 10.10 22.40
T 1.60  6.60 11.30 20.40
T 0.90 3.40 8.50 18.40
T3 25.70  41.50 49.90 60.30
n; = 800 and n, = 600
Ty 0.80 5.40 10.00 20.30
T 2.60 7.70 11.60 20.80
T 1.10  4.50 9.50 17.20
T3 29.00 45.90 54.50 66.70

17



[9]

[10]

[11]

[12]

[13]

[18]

Hu, L., Bentler, P. M., and Kano, Y. (1992), Can test statistics in
covariance structure analysis be trusted? Psychological Bulletin, 112,

351-362.

Joreskog, K., and D. Sérbom, (1994), 8 User’s Reference Guide, Scien-

tific Software Inc., Mooresville, In

Magnus J. and H. Neudecker, (1999), Matriz Differential Caleulus with
Applicatons in Statistics and Fconometrics, John Wiley, New York.

Moore, D.S., (1977), Generalized Inverses, Wald’s Method, and the
Construction of Chi-squared Tests of Fit, Journal of the American
Statistical Association, 72, 131-137.

Muthén, B., (1989), Multiple Group Structural Modelling with Non-
normal Continuous Variables, British Journal of Mathematical and Sta-
tistical Psychology, 42, 55-62.

Muthén, B., (1993), Goodness of Fit Test with Categorical and Other
Non-normal Variables, in  Testing Structural Equation Models, K.A.
Bollen and J. Scott Long (eds.), Sage Publications Inc., Newbury Park.

Satorra, A., (1989), Alternative Test Criteria in Covariance Structure

Analysis: A Unified Approach, Psychometrika, 54, 131-151.

Satorra, A., (1992), Asymptotic Robust Inferences in the Analysis of
Mean and Covariance Structures, Sociological Methodology, 22, 249—
278.

Satorra, A., and P.M. Bentler, (1986), Some Robustness Properties of
Goodness of Fit Statistics in Covariance Structure Analysis, 1956 ASA
Proceedings of the Business and Economic Statistics Section, 549-554,
American Statistical Association, Alexandria (Virginia).

Satorra, A., and P.M. Bentler, (1988a), Scaling Corrections for Chi-
square Statistics in Covariance Structure Analysis, ASA 1988 Procee-
dings of the Business and Fconomic Statistics Section, 308-313, Ame-
rican Statistical Association: Alexandria (Virginia).

18



[19]

[20]

[21]

Satorra, A., and P.M. Bentler, (1988b), Scaling Corrections for Statis-
tics in Covariance Structure Analysis, UCLA Statistics Series # 2,
University of California, Los Angeles.

Satorra, A., and P.M. Bentler, (1991), Goodness-of-Fit Test under IV
Estimation; Asymptotic Robustness of a NT Test Statistic. In Gutierrez,
R. and Valderrama, M.J. (eds.), Applied Stochastic Models and Data
Analysis, World Scientific, London.

Satorra, A., and Bentler, P. M. (1994), Corrections to test statistics
and standard errors in covariance structure analysis. In von Eye, A. and

Clogg, C.C. (eds.), Latent variables analysis: Applications for develop-
mental research (pp. 399-419), Sage, Thousand Oaks, CA.

Satorra, A., and H. Neudecker, (1994), On the Asympotic Optimality
of Alternative Minimum-Distance Estimators in Linear Latent-Variable

Models, Econometric Theory, 10, 867-883.

Satterthwaite, F.E., (1941), Synthesis of Variance, Psychometrika, 6,
309-316.

Sérbom, D., (1989), Model Modification, Psychometrika, 54, 371-384.

Yuan, K.-H., and P.M. Bentler, (1997), Mean and Covariance Structu-
re Analysis: Theoretical and Practical Improvements, Journal of The
American Statistical Association, 92, T67-774.

Yuan, K. -H., and Bentler, P. M. (1998), Normal theory based test sta-
tistics in structural equation modelling, British Journal of Mathematical

and Statistical Psychology, 51, 289-309.

19



