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AbstractWe extend to score, Wald and di�erence test statistics the scaled andadjusted corrections to goodness-of-�t test statistics developed in Satorraand Bentler (1988a,b). The theory is framed in the general context of multi-sample analysis of moment structures, under general conditions on the distri-bution of observable variables. Computational issues, as well as the relationof the scaled and corrected statistics to the asymptotic robust ones, is discus-sed. A Monte Carlo study illustrates the comparative performance in �nitesamples of corrected score test statistics.Keywords: Moment-structures, Goodness-of-�t test, score test, Wald test,scaling corrections, chi-square distribution, non-normality
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1 IntroductionMoment structure analysis is widely used in behavioural, social and econo-mic studies to analyse structural relations between variables, some of whichmay be latent (i.e., unobservable); see, e.g., Bollen (1989), Yuan and Bentler(1997), and references therein. Commercial computer programs to carry outsuch analysis, for a general class of structural equation models, are availa-ble (e.g., LISREL of J�oreskog and S�orbom, 1994; EQS of Bentler, 1995).In multi-sample analysis, data from several samples are combined into oneanalysis, making it possible, among other features, to test for across-groupinvariance of speci�c model parameters. One issue which is central in mo-ment structure analysis is the goodness-of-�t test of the model and the testof restrictions on parameters.Asymptotic distribution-free (ADF) methods which do not require distri-bution assumptions on the observable variables have been developed (Brow-ne, 1984; Muth�en, 1989; Bentler, Lee and Weng, 1987). The ADF methods,however, involve fourth-order sample moments, thus they may lack robust-ness to small and medium-sized samples. In the case of non-normal data,an alternative to the ADF approach is to use a normal-theory estimationmethod in conjunction with asymptotic robust standard errors and test sta-tistics (see Satorra, 1992). Asymptotic robust test statistics may still lackrobustness to small and medium-sized samples. As an alternative to theasymptotic robust test statistics, Satorra and Bentler (1994; Satorra andBentler, 1988a,b) developed a family of corrected normal-theory test statis-tics which are easy to implement in practice, and which have been shown tooutperform the asymptotic robust test statistics in small and medium-sizedsamples (e.g., Chou, Bentler and Satorra, 1991; Hu, Bentler and Kano, 1992;Curran, West and Finch, 1996). Extension of Satorra-Bentler (SB)'s correc-tions to goodness-of-�t test statistics in the case of the analysis of augmentedmoment structures, multi-samples and categorical data, have been discussedrespectively by Satorra (1992, 1993) and Muth�en (1993). In recent personalcommunication, Bengt Muth�en has kindly pointed to this author the needto extend SB's corrections to score and di�erence test statistics.The purpose of the present paper is to extend SB's corrections to score(Lagrange multiplier), di�erence and Wald test statistics. This is undertakenin the general context of multi-sample analysis. We rely heavily on thenotation and results of Satorra (1989) and Satorra and Bentler (1994; Satorra2



and Bentler, 1988a,b).The chapter is structured as follows. In Section 2 we review the generaltheory of normal-theory GLS analysis of multi-sample moment structures,placing special emphasis on goodness-of-�t test statistics. The extension ofthe scaling and adjusted corrections to the restricted tests is undertaken inSection 3. Finally, Section 4 illustrates, by means of a Monte Carlo study, the�nite sample size performance of competing score test statistics developed inSection 3.2 Goodness-of-�t testsLet � and s be p-dimensional vectors of population and sample momentsrespectively, with pn(s� �0) L! N (0;�); (1)where �0 is the probability limit of s, as sample size n! +1, � is the asymp-totic variance matrix of pns, and \ L!" denotes convergence in distributionas n ! 1. Consider a moment structure for �, � = �(�), where �(:) isa twice-continuously di�erentiable vector-valued function of a q-dimensionalparameter vector � 2 �, a compact subset of Rq. Let �̂ be an estimator of �that satis�es pn(�̂ � �0) = Op(1); (2)with �0 in the interior of �. The usual notation of stochastic orders of mag-nitude is used, i.e., Op(1) and op(1) denote, respectively, \bounded" and\tends to zero in probability", as n! +1. Usually, (2) is ful�lled whenever� = �(�) is locally identi�ed (viz., the function �(�) is injective in a neigh-bourhood of the true parameter value). Denote �̂ := �(�̂) and �0 := �(�0).It is assumed that pn(�̂� g(s)) = op(1); where g(:) is a q-dimensional conti-nuously di�erentiable vector-valued function of s, with g(:) Fisher-consistentfor �, i.e. g(�(�)) = �, � 2 �. The theory discussed involves the use ofthe Jacobian matrices � := (@=@s0)g(s) and � := (@=@�0)�(�), which will beassumed to be regular at �0 := �(�0) and �0 respectively. Note that Fisher-consistency of g(s) implies that �� = Iq. In the developments that follow, �and � denote the corresponding matrices evaluated at �0 and �0 respectively.The above mentioned properties for �̂ are satis�ed by most of the esti-mators commonly in use in moment structure analysis. In particular, they3



are satis�ed by the ML and GLS estimators discussed below. They are alsosatis�ed in the case of instrumental variable estimators (e.g., Satorra andBentler 1991).A Wald-type statistic for testing the goodness-of-�t of the model can bedeveloped. Sincepn(s� �̂) = pn(s � �0) +pn(�0 � �0)�pn(�̂ � �0);a Taylor series expansion of pn(�̂ � �0) at �0, givespn(s� �̂) = pn(s� �0) +pn(�0 � �0)��pn(�̂ � �0) + op(1);which combined with (1) yieldspn(s� �̂) L!N (�;H); (3)where � := limn!+1pn(�0 � �0) (4)and H := (I ���)�(I ���)0: (5)We further assume � = limn!+1pn(�0 � �0) < +1;which is the usual assumption of a sequence of local alternatives (needed toensure �nite asymptotic distribution of test statistics when the model is notexactly true).Let �? be an orthogonal complement of �, i.e., �? is a p�(p�q) matrixof full-column rank such that �0?� = 0. From (3), we havepn�0?(s� �̂) L! N (�0?�;�0?��?); (6)since �0?H�? = �0?��?; as �0?(I � �G) = �0?; hence, a residual-basedgoodness-of-�t test for the model is de�ned as the Wald-test statisticTR = n(s� �̂)0�̂?(�̂0?�̂�̂?)+�̂0?(s� �̂); (7)where �̂? and �̂ are consistent estimators of �? and �, respectively. Thematrix �̂? will be taken to be an orthogonal complement of �̂, the matrix4



� evaluated at the estimated value �̂. Clearly, from the standard theoryof Wald-test statistics (e.g., Moore, 1977), TR is asymptotically chi-squaredistributed with degrees of freedom r := rank�0?��? and non-centralityparameter � := � 0�?(�0?��?)+�0?�: When �̂ is non-singular, we haveTR = n(s � �̂)0f�̂�1 � �̂�1�̂(�̂0�̂�1�̂)�1�̂0�̂�1g(s� �̂); (8)When �̂ is the (distribution-free) consistent estimator of � in (10) below,then TR will be called the asymptotic robust goodness-of-�t test statistic,since it is an asymptotic chi-square statistic regardless of the distribution ofz. In the context of single-sample covariance structure analysis, this statisticwas �rst introduced by Browne (1984). Its performance was studied by Yuanand Bentler (1998), and found to be adequate only in very large samples.Consider now multi-sample data from G population or groups, i.e., letfzgigngi=1, g = 1; : : : ; G, where it is assumed that, for each group g, the zgi areindependent and identically distributed pg-dimensional vectors of observablevariables, with �nite fourth-order moments. De�ne �g := Ezgiz0gi, and let themulti-sample vectors � and s of population and sample moments, respecti-vely, be given as � := (�01; : : : ; �01)0 and s := (s01; : : : ; s01)0; where �0g := vec�g,s0g = vecSg, with Sg := 1ng ngXi=1 zgiz0gi:Here \vec" denotes the column-wise vectorisation operator (see Magnus andNeudecker, 1999, for full details on this operator). Clearly, when there isindependence across samples, the asymptotic variance matrix of pns is ofthe form � = block diag( nn1�1; : : : ; nnG�G); (9)where �g is the asymptotic variance of pngsg. We further assume that thematricesSg and �g are positive de�nite, and that ng=n! fg > 0, as n! +1(g = 1; : : : ; G); in this case, a distribution-free consistent estimator of � is�̂ := block diag( nn1 �̂1; : : : ; nnG �̂G); (10)where �̂g := 1ng � 1 ngXi=1(dgi � sg)(dgi � sg)0; (11)5



with dgi := vec zgiz0gi.We consider the generalised least-square (GLS) estimation method withnormality as a working assumption; viz., the estimator �̂ is de�ned as theminimiser over the parameter space � of the �tting functionFGLS(�) := (s� �)0V̂ (s� �);with V̂ := block diag(n1n V̂1; : : : ; nGn V̂G) (12)and V̂g = 12(Sg�1 
 Sg�1); clearly, FGLS(�) = 12PGg=1 ngn trf(Sg � �g)S�1g g2:For single-sample covariance structure analysis, this method of estimationwas �rst proposed by Browne (1974). When in the minimization process thematrices Sg in (12) are replaced iteratively by the �tted �̂g, the so-callednormal-theory reweighted GLS estimates are obtained.Di�erentiation with respect to � yields the following �rst-order conditionfor the estimator �̂ :(s� �̂)0 V̂ �̂ = 0; 0@ GXg=1 ngn (sg � �̂g)0 V̂g�̂g = 01A : (13)A related estimation method which is asymptotically equivalent to normal-theory GLS, and which produces estimators numerically equal to the re-weighted GLS estimators, is pseudo-ML estimation; viz., �̂ is the minimiserover � of FML(�) = GXg=1 ngn FML(g)(�);with FML(g)(�) := ln j �g j +trS�g�1 � ln j Sg j �p?g;and p?g denoting the dimension of the zgi.A goodness-of-�t test statistic associated with GLS estimation is de�nedas TGLS := nFGLS(s; �̂), which, using (13), can be written asTGLS = (s� �̂)0 �V̂ � V̂ �̂(�̂0V̂ �̂)�1�̂0V̂ � (s� �̂):The goodness-of-�t test associated with pseudo-ML estimation is in turn de�-ned as TML := nFML(�̂); which corresponds to the Log-Likelihood Ratio test6



statistic for testing the model � = �(�), against the general alternative inwhich the �g are unrestricted. Under normality, the statistics TR, TGLS andTML are asymptotically equivalent (i.e., they have the same asymptotic dis-tribution as that stated above for TR). Under non-normality of the zg, TGLSand TML are asymptotically equivalent, though not necessarily asymptoticchi-square. See Satorra (1989) for more details on the above goodness-of-�ttest statistics, with discussion of their equivalence.Under general distribution of the zg, when the model holds exactly, TGLSand TML are asymptotically distributed as a mixture of chi-square distri-butions of 1 degree of freedom (df) (see Satorra and Bentler, 1986); thatis T L! rXj=1�j�2j ; (14)as n ! 1, where T denotes either of the statistics TGLS or TML. Herethe �2j are independent chi-square variables of 1 df, the �j are the non-nulleigen-values of the matrix U�, withU := V � V�J�1�0V;J := �0V� (=PGg=1 fg�0gVg�g) and r := rank(�0?��?) . If the zg are nor-mally distributed, then the �j are equal to 1 and thus one obtains an asymp-totic exact chi-square distribution for the goodness-of-�t test statistics. Thisresult motivated the scaling correction to the goodness-of-�t test statisticproposed by Satorra and Bentler (1994; Satorra and Bentler, 1988a,b), thespecialization of which to TGLS and TML is as follows. Letc := 1r trU� = 1r tr nV � � J�1�0V �V�o (15)= 1r GXg=1 tr nVg�g � fgJ�1�0gVg�gVg�gJ�1o = 1r tr ���0?V �1�?��1 (�0?��?)�= 1r tr 8><>:0@ GXg=1 f�1g H 0gV �1g Hg1A�1 0@ GXg=1 f�1g H 0g�gHg1A9>=>; ;where �0? = [H 01; : : : ;H 0G] is partitioned conformably with the partition gi-ven above of V as a block-diagonal matrix. From the expression (10) of a7



consistent estimator of �, a consistent estimator of c isĉ := GXg=1 ngXi=1 nng(ng � 1)(dgi � sg)08><>:Hg 0@ GXg=1 nngH 0gV �1g Hg1A�1H 0g9>=>; (dgi � sg);(16)thus, the scaled (adjusted for mean) goodness-of-�t test statistic isT = T=ĉ; (17)where T denote either of the test statistics TGLS or TML.We now discuss the adjusted test statistic (adjusted for mean and varian-ce) introduced in structural equation models by Satorra and Bentler (1994;Satorra and Bentler, 1988a,b); viz.,T = dtr (U�)T;where d is the integer closest tod0 := (trU�)2tr (U�)2 ;and probability levels of T computed using a chi-square distribution of d0degrees of freedom. The statistic T is a Satterthwaite type test statistic(Satterthwaite, 1941). When tables from a chi-square distribution with frac-tional degrees of freedom are available, then d0 is used instead of d.For the sake of completeness, we also review the asymptotic variancematrix of estimators. In the current set-up, the estimator �̂ is asymptoticallynormal with asymptotic variance matrix (e.g., Satorra and Neudecker, 1994)avar(#̂) = n�1J�1�0V �V�J�1; (18)where �0V �V� = PGg=1 fg�0gVg�gVg�g: Obviously, standard errors of pa-rameter estimators are produced by replacing population matrices for con-sistent estimators in the above formulae, and replacing the fg by the ngn .Clearly, when �0V �V� = �0V�; (19)then avar(#̂) = avar?(�̂) := n�1J�1: Note that a su�cient condition for (19)to hold is Vg�gVg = Vg; g = 1; : : : ; G; (20)which is veri�ed when the zg are normally distributed.8



3 Restricted testsIn this section we focus on testing a speci�c set of restrictions on the parame-ters of the model, when the alternative hypothesis is that the restrictions donot hold (rather than the general alternative that the �g are unrestricted).Let us parameterise the �tted model � = �(�) as � = �?(�) with the cons-traint a(�) = a0, where � is a (q+m)-dimensional vector of parameters, a0 isan m� 1 vector of constants, and �?(:) and a(:) are twice-continuously di�e-rentiable vector-valued functions of � 2 �1, a compact subset of Rq+m. Ourinterest is in testing H0 : a(�) = a0 against H1 : a(�) 6= a0. In multi-sampleanalysis, a typical example arises when testing across-sample invariance ofmodel parameters (see the example in the illustration below).De�ne the Jacobian matrices� := (@=@�0)�?(�) and A := (@=@�0)a(�);which we assume to be regular at the value of � associated with �0, say �0,with A of full row rank. LetP := �0V� 0@= GXg=1 fg�0gVg�g1Aand h0 := (s� �̂)0V̂ �̂ 0@= GXg=1 ngn (sg � �̂g)0V̂g�̂g1A :Generalised score and Wald-test statistics for restricted tests were investi-gated by Satorra (1989, Section 5); viz., the generalised score test statisticis TS := nh0P̂�1Â0 �ÂP̂�1�̂0V̂ �̂V̂ �̂P̂�1Â0��1 ÂP̂�1h;where Â, �̂ and P̂ are the matrices A, � and P evaluated at �̂, and �̂ is the(distribution-free) consistent estimator of � de�ned in (10).Clearly, when �0V �V � = �0V�;i.e., when GXg=1 ngn �0gVg�gVg�g = GXg=1 ngn �0gVg�g;9



then TS is asymptotically equivalent to the (non-robust, asymptotically) scoretest statistic T ?S := nh0P̂�1Â0(ÂP̂�1Â0)�1ÂP̂�1h:The statistic T ?S is asymptotic chi-square under the condition that the esti-mation method is asymptotically optimal (Satorra, 1989). Speci�cally, whenV has the normal-theory form given above and the zgi are normally distri-buted, then T ?S corresponds to the usual score test statistic. In the case ofone-dimensional restrictions, T ?S is the \Modi�cation Index" of J�oreskog andS�orbom and S�orbom (1989). T ?S is the \Lagrange Multiplier" test availablein EQS (Bentler, 1995) for general multi-dimensional restrictions.When the �tted model is the less restricted one, that is when the modelanalysed is � = �?(�), then the generalisedWald-test statistic forH0 : a(�) =a0 against H0 : a(�) 6= a0 is (see Satorra, 1989, Section 5)TW := nâ0 �ÂP̂�1�̂0V̂ �̂V̂ �̂P̂�1Â0��1 â;where the matrices are now evaluated at the estimated value �̂ under theunrestricted model and â := a(�̂). When �0V �V � = J , then TW is asymp-totically equivalent to the (non-robust, asymptotically) Wald-test statisticT ?W := nâ0 �ÂP̂�1Â0��1 â:Under the assumption of normality of the zgi, when we use ML or normal-theory GLS estimation methods then T ?W is the typical Wald-test statistic.When both the restricted and unrestricted models are analyzed usingGLS or ML estimation methods, the restricted test of H0 : a(�) = a0 can becarried out using the di�erence-test statisticDT := T0 � T1; (21)where T0 and T1 denote the goodness-of-�t test statistics (TGLS or TML)associated with the restricted and unrestricted models respectively. Under anarbitrary distribution of the observable variables, the three test statistics T ?S ,T ?W and DT are asymptotically equivalent (see Satorra, 1989, Theorem 4.1),though not necessarily chi-square distributed; when the estimation methodis asymptotically optimal, then all the statistics T ?S , T ?W , DT , TS and TW areasymptotically equivalent, with the same asymptotic chi-square distribution(Satorra, 1989). 10



We will now obtain the expression of TS and T ?S for the particular case inwhich a(�) = a0 corresponds to equating parameters to speci�c values; in thiscase, without loss of generality, we have A = [0m�q; Im] and h0 = [01�q; h02];consequently,h0P̂�1Â0 = h02P̂ 22 and (ÂP̂�1Â0)�1 = (P̂ 22)�1 = P̂22 � P̂21P̂�111 P̂12;where we used̂P :=  P̂11 P̂12P̂21 P̂22 ! and P̂�1 :=  P̂ 11 P̂ 12P̂ 21 P̂ 22 !(partitions corresponding to h0 = [01�q; h02]), and standard formulae for theinverse of partitioned matrices (e.g., Magnus and Neudecker, 1999, p.11).Consequently,TS = nh02 P̂ 22 (� P̂ 21; P̂ 22 � �̂0V �V �̂ P̂ 12P̂ 22 !)�1 P̂ 22h2= nh02 (� �P̂21P̂�111 ; Im � �̂0V �V �̂ �P̂�111 P̂12Im !)�1 h2;where we used P̂ 21 = �P̂ 22P̂21P̂�111 and (P̂ 21)0 = P̂ 12. Similarly, we canexpress T ?S as T ?S = nh02 P̂ 22(P̂ 22)�1P̂ 22h2= nh02 (P̂22 � P̂21P̂�111 P̂12)�1h2:Note that h2 corresponds to the components of h that are not equal to zerowhen evaluated at the restricted parameter value �̂. Note also that P̂�111 isthe \information" matrix associated with the restricted model, and it doesnot change with the restrictions being tested.The SB scaled versions of T ?S , T ?W and DT will thus be obtained bydividing the corresponding statistic by a consistent estimate of c in (15),where U is now given by (cf., Satorra 1989, p. 146)U = V�P�1A0(AP�1A0)�1AP�1�0V; (22)with m (the number of rows of A) replacing r; that is, the scaled statistic isT := T=ĉ;11



where here T denotes any of the statistics T ?S , T ?W and DT , ĉ = 1mtr Û �̂and Û is the matrix U of (22) with the matrices �, P and A evaluated atestimated values, and V̂ replaces V .We will now obtain an explicit expression for c in the case of restrictedtests and multi-samples. Clearly,c = 1mtrU� = 1mtr �AP�1�0V �V �P�1A0� �AP�1A0��1 (23)= 1mtr (V �V )n�P�1A0(AP�1A0)�1AP�1�0o= 1m GXg=1 fgtr (Vg�gVg)n�gP�1A0(AP�1A0)�1AP�1�0go ;where �g := (@=@�0)�?g(�). Note that this scaling factor does not necessarilycoincide with the scaling factor associated with T0, nor with that associatedwith T1; i.e., the SB scaled DT is not the di�erence of the SB scaled goodness-of-�t tests T1 and T0.We now show that whenm = 1, then the scaled score statistic TS (= T ?S=ĉ)coincides with the robust score statistic TS. When m = 1, the scaling factorc de�ned above is c = AP�1�0V �V�P�1A0AP�1A0 ; (24)and the robust and non-robust score statistics can be be expressed asTS = n h0P̂�1Â0ÂP̂�1hÂP̂�1�̂0V̂ �̂V̂ �̂P̂�1Â0 (25)and T ?S = nh0P̂�1Â0ÂP̂�1hÂP̂�1Â0 : (26)Consequently, we have TS = T ?S=ĉ; (27)where ĉ = ÂP̂�1�̂0V̂ �̂V̂ �̂P̂�1Â0ÂP̂�1Â0 ; (28)is a consistent estimator of the SB scaling factor c of (23). Moreover, ifin addition to m = 1 we have that a(�) = a0 restricts a parameter to a12



speci�c value, then ĉ of (28) is the ratio of two standard errors of the res-tricted parameter: the asymptotic robust standard error (computed from(18), unrestricted model), and the NT standard error (computed from J�1,unrestricted model).We now provide an explicit expression for c when A = [0m�q; Im]. In thiscase we have c = 1mtrV �V �nP�1A0(AP�1A0)�1AP�1o�0= 1mtrV �V �(� P̂ 21 P̂ 22 � (P̂ 22)�1  P̂ 12P̂ 22 !)�0 = 1mtr V �V �M�0;whereM :=  P 12(P 22)�1P 21 P 12P 21 P 22 ! =  P�111 P12P 22P21P�111 �P�111 P12P 22�P 22P21P�111 P 22 ! :Finally, the specialization of the SB adjusted (for mean and variance)goodness-of-�t test to T ?S , T ?W and DT test statistics is as follows. We de�neT := (d=tr Û �̂)T;where T denotes any of the statistics T ?S , T ?W or DT , and d is the integerclosest to d0 := (tr Û �̂)2tr (Û �̂)2 ;with Û being the matrix of (22) evaluated at estimated values, and �̂ givenin (10). The null distribution of the adjusted test statistic T is taken to bea chi-square distribution with d degrees of freedom. Here d0 also replaces dwhen tables of a chi-square distribution with fractional degrees of freedomare available.4 IllustrationTo illustrate the performance of the above statistics in �nite samples, a spe-ci�c model context is used to simulate the competing score-test statisticsintroduced in the previous section for various sample sizes. The performance13



of the test statistics is evaluated by comparing Monte Carlo rejection fre-quencies with the corresponding nominal values.We use a very simple model context. We consider a regression equationy?gi = �xgi + vgi; i = 1; : : : ; ng; (29)where for case i in group g (g = 1; 2), y?gi and xgi are the values of the responseand explanatory variables, respectively, vgi is the value of the disturbanceterm, and � is the regression coe�cient. The model assumes that xgi isunobservable, but there are two observable variables x?1gi and x?2gi related toxgi by the following measurement-error equationsx?1gi = xgi + u1gi; x?2gi = xgi + u2gi; (30)where u1gi and u2gi are mutually independent and also independent of vgiand xgi. It is assumed that the observations are independent and identicallydistributed within each group. Equations (29) and (30) with the associatedassumptions yield an identi�ed model (see Fuller (1987) for a comprehensiveoverview of measurement-error models in regression analysis). Inference isusually carried out in this type of model under the assumption that theobservable variables are normally distributed.Write the model of (29) and (30) aszgi = ��gi; i = 1; 2; : : : ; n; (31)where zgi := 0B@ y?gix?1gix?2gi 1CA ; �gi := 0BBB@ xgivgiu1giu2gi 1CCCAand � := 0B@ � 1 0 01 0 1 01 0 0 1 1CA : (32)De�ne � := E�gi�0gi = 0BBB@ �xx 0 0 00 �vv 0 00 0 �uu 00 0 0 �uu 1CCCA ; (33)14



and the parameter vector � := (�vv; �xx; �uu; �)0. Under this set-up, we obtainthe moment structure � := ���0 = �(�); (34)where �(:), �(:) and �(:) are (twice-continuously di�erentiable) matrix-valued functions of �, as deduced from (32), (33) and (34). Note that themodel restricts the variances of u1 and u2 by equality.The simulation of two-sample data from the above model and computati-on of score test statistics was replicated 1000 times, for various combinationsof two-sample sizes as shown in Table 1. In all the replications we used�0 = (1; 1; :3; 2)0. The distributions of v and x were independent conveni-ently scaled zero mean and unit variance chi-squared of 1 df (i.e., a highlynon-normal distribution); the distribution of u1 and u2 were set to be nor-mal mutually, independent, and independent of v and x. The normal-theoryGLS estimation method described in Section 2 was used. The model imposedacross-group invariance of model parameters. In each replication, we com-puted the various versions of the score-test statistic of Section 3, for the nullhypothesis of across-group invariance of all model parameters. Clearly, inour Monte Carlo set-up, the null hypothesis holds true, with the asymptoticdistribution of TS being chi-square with m = 4 degrees of freedom. Notethat in our Monte Carlo set-up, severe non-normality of random constitu-ents of the model requires the use of robust and/or corrected versions of thescore-test statistic.We note that the normal-theory chi-square goodness-of-�t T1 (TGLS orTML) of the unrestricted model (i.e. the model that does not restrict pa-rameters across-groups), is an asymptotic chi-square statistic despite non-normality of the data (this follows from the asymptotic robustness theory formulti-sample; cf., Satorra, 1993); in contrast, the normal-theory chi-squaregoodness of �t T0 of the restricted model (i.e., the model that imposes para-meter invariance across-samples), is not necessarily an asymptotic chi-squarestatistic (since variances of non-normal constituents of the model are restric-ted by equality across-groups; cf., Satorra, 1993). Consequently, since DT(= T1�T0) is asymptotically equal to T ?S (Satorra, 1989), the scaling factor cfor T ?S does not need to coincide with the scaling factor c associated with T1(which is 1, as deduced from the mentioned theory of asymptotic robustness),nor with the scaling factor c associated to T0.As shown in Table 1, in our speci�c model context, in the case of small15
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