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Abstract

In the absence of cognitive tasks and external stimuli, strong rhythmic fluctu-
ations with a frequency ∼ 10 Hz emerge from posterior regions of human neo-
cortex. These posterior α-oscillations can be recorded throughout the visual
cortex and are particularly strong in the calcarine sulcus, where the primary vi-
sual cortex is located. The mechanisms and anatomical pathways through which
local alpha oscillations are coordinated however, are not fully understood. In
this study, we used a combination of magnetoencephalography (MEG), diffusion
tensor imaging (DTI), and computational modeling to assess the role of white-
matter pathways in coordinating cortical α-oscillations. Our findings suggest
that primary visual cortex plays a special role in coordinating α-oscillations in
higher-order visual regions. Specifically, the amplitudes of α-sources through-
out visual cortex could be explained by propagation of α-oscillations from pri-
mary visual cortex through white-matter pathways. In particular, α-amplitudes
within visual cortex correlated with both the anatomical and functional con-
nection strengths to primary visual cortex. These findings reinforce the no-
tion of posterior α-oscillations as intrinsic oscillations of the visual system. We
speculate they might reflect a default-mode of the visual system during which
higher-order visual regions are rhythmically primed for expected visual stimuli
by α-oscillations in primary visual cortex.
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1 Introduction

The most salient feature of electrical activity in human neocortex in the absence
of explicit cognitive tasks are strong ∼ 10 Hz oscillations [5, 23]. These posterior
α-oscillations are typically recorded over occipital and posterior-parietal regions
and are particularly strong within and around the calcarine fissure - where the
primary visual cortex (V1) is located - as well as in the occipito-parietal fissure
[23, 11]. Although initially regarded as functionally irrelevant, evidence is now
accumulating that posterior α-oscillations do not merely reflect passive idling of
visual areas but closely follow allocation of visuo-spatial attention [57, 30, 10].
For example, during anticipatory cue-stimulus intervals, α is suppressed in those
regions of primary visual cortex that correspond to attended locations in the
visual field and is actively enhanced in unattended or distractor regions [33, 44].
Moreover, these modulations do not only pertain to spatial attention tasks but
extend to feature-based attentional processes in higher-order visual areas includ-
ing the dorsal and ventral projection systems [31, 52]. Thus, power fluctuations
in posterior α-oscillations seem to reflect modulations in cortical excitability,
constituting a fundamental mechanism for flexible routing of visual attention
[29, 47, 53]. Research on the neuronal mechanisms underlying attention-driven
α-modulation is expected to benefit from a characterization of the resting-state
organization of posterior α-oscillations.

Magnetoencephalographic (MEG) recordings in human subjects and local field
potential (LFP) recordings in dogs and macaques have shown that posterior α-
oscillations can be recorded throughout the visual system [38, 49, 23, 11, 6, 7, 53].
In addition to cortical sources of α, recordings in behaving dogs and slice prepa-
rations of cat lateral geniculate nucleus (LGN) have observed α-sources in tha-
lamic nuclei, particularly the LGN and pulvinar [35, 26]. Moreover, the time-
courses of sources in LGN and in particular the pulvinar were correlated with
various α-sources in occipital cortex [36]. Furthermore, EEG-fMRI recordings in
humans have found resting-state fluctuations in posterior α-power to be corre-
lated with fluctuations in blood-level-oxygenation-level (BOLD) signal through-
out the visual system and in several subcortical nuclei [21, 40, 19]. Thus, al-
though posterior α-oscillations seem to involve large-scale thalamo-cortical net-
works, the nature of their involvement remains controversial [51, 32].

In particular, it is unclear if cortical α-oscillations reflect independent gener-
ators, or if they arise from distant α-generators that propagate through white-
matter pathways. For example, α-oscillations in V1 might be generated within
the cortical tissue itself [34], reflect propagated oscillations from LGN [37, 26],
which is densely connected to V1 via the optic radiation, or reflect reverbera-
tion within thalamo-cortical loop [46, 43]. Similarly, α-oscillations in different
regions of the visual system might be generated locally or reflect propagated
oscillations from distant cortical or thalamic regions. In this study, we assessed
the contribution of white-matter pathways in the propagation and coordination
of posterior α-oscillations. To this end, we combined MEG source-modeling
[56], diffusion tensor imaging (DTI) based probabilistic fiber tracking [4], and
computational modeling.

We found that the assumption of a single α-source in the calcarine sulcus
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(V1) could explain the source-strengths of α-oscillations throughout the oc-
cipital lobe, medial posterior-parietal cortex and temporal lobes. Furthermore,
the source-strengths of α-oscillations in these regions correlated with both the
functional and anatomical connections to V1, consistent with the assumption
of a generator in V1. Although this study does not rule out the possibility that
α-oscillations are generated throughout the cortex [46, 43, 42], it establishes a
central role of V1-connectivity in coordinating α-oscillations in the visual system
at rest.

2 Materials and Methods

2.1 MEG recordings

Ten subjects (3 males, 20-39 years old, mean 27.9) underwent an eyes-closed
resting-state MEG scan lasting 5 min on an Elekta Neuromag (Elekta Neuromag
Oy, Helsinki, Finland). Data preprocessing included signal space separation, de-
noising with independent component analysis (ICA), source reconstruction and
bandpass filtering of the MEG signal. Signal space separation compensated for
external interference and sensor artifacts by projection of the MEG data onto
a basis set of spherical harmonics. Harmonics corresponding to sources orig-
inating from within the sensor array were preserved whilst interfering sources
from outside the environment surrounding the sensor array were rejected. The
sensor-space MEG data were de-noised using temporal ICA to remove cardiac,
50 Hz mains and, in some subjects, eye movement artifacts.

Specifically, the data were decomposed into 64 components using fastICA [27]
(64 is the rank of the MEG data after signal space separation). Prior to the
ICA decomposition, each sensor type was normalized by its smallest eigenvalue
to give an unbiased noise estimate across sensor types. Eye-blink, cardiac and
mains interference ICA components were manually identified by the combined
inspection of spatial topography and time course, kurtosis of the time course,
and frequency spectrum for all components. As shown by Mantini et al. [39], it
is best to estimate the de-noised sensor data as the subtraction of the artifact
components from the raw data. We converted this subtraction into a multiplica-
tion via a residual forming matrix. This enabled simultaneous de-noising of the
data and correction of the lead fields (via the montage function in SPM8). Each
dataset was then co-registered into the Montreal Neurological Institute (MNI)
space by registering the canonical MNI template to the Polhemus head shape
data. A local spheres forward model [25] was then estimated using the head
shape and sensor geometry. Both co-registration and forward model estimation
were performed with the matlab SPM8 package (FIL,UCL).

Subsequently, the MEG data were bandpass filtered between 1 and 80 Hz. A
LCMV beamformer was used to transform the original sensor time-series into
source-space time-series, that is, to reconstruct the activity at the 90 centre loca-
tions defined by the AAL brain parcellation. The beamformer uses the forward
model and sensor-space covariance matrix to calculate a set of weights which
spatially filter the signal so that activity from outside the source is suppressed
and the activity from the chosen sources is extracted [56]. The magnetometers
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Figure 1: Reconstruction of MEG source-strengths and DTI probabilistic trac-
tography. A. Color-coded standard-deviations of the source-projected MEG
time-series in the α frequency band (7-13 Hz) for all cortical AAL regions. The
colorscale ranges from yellow to red. B. Based on MRI images, cerebral cor-
tex is identified and parcellated using the AAL scheme. White-matter tracts
are reconstructed from the diffusion tensors using a probabilistic tractography
algorithm. The reconstructed tracts between the AAL regions constitute the
white-matter network used in this study.

and gradiometers were combined during beamforming by normalizing the data
and lead fields for each sensor type by its respective minimum eigenvalue; this
effectively gives both classes of sensor equal noise levels. We discarded the recon-
structed time-series of all subcortical regions because their lower reliability and
subsequently filtered the remaining time-series in the α frequency band (7−13)
Hz and computed their standard-deviations. This resulted in source-strength
estimates for all cortical AAL regions, which are shown in Figure 1A.

2.2 Diffusion tensor imaging

Diffusion tensor imaging (DTI) data were acquired for 21 healthy participants
(10 females, age range 22-45 years) on a Philips Achieva 1.5 Tesla Magnet in
Oxford. Diffusion weighted imaging was performed using a single-shot echo
planar sequence with coverage of the whole brain. DTI data were acquired
with 33 optimal nonlinear diffusion gradient directions (b=1200 s/mm2) and 1
non-diffusion weighted volume (b=0). The scanning parameters were echo time
(TE)=65 ms and repetition time (TR)=9390 ms. For 9 of the 21 participants

5



the reconstructed matrix size was 176×176 with voxel size of 1.8×1.8×2.0 mm,
while the remaining 12 participants used a reconstructed matrix of 128 × 128
with voxel size of 2.5 × 2.5 × 2.5 mm. The construction of structural brain
networks consisted of a two-step process. First, the nodes of the network were
defined using brain parcellation techniques. Secondly, the connections between
nodes (i.e. edges) were estimated using probabilistic tractography (see Figure
1). In the following we outline the details involved in each step.

First, we used the automated anatomical labeling (AAL) template to parcel-
late the entire brain into 90 cortical and subcortical regions (45 for each hemi-
sphere), where each region represents a node of the brain network [55]. In
addition, we created a new AALThal parcellation by combining the AAL atlas
with the Oxford Thalamic Connectivity Probability Atlas [4, 2]. The AALThal
atlas replaces the thalamus with 7 thalamic subregions and thus has 102 corti-
cal and subcortical regions. The parcellations were conducted in the diffusion
MRI native space.The parcellation was conducted in the diffusion MRI native
space. We used the Flirt tool (FMRIB, Oxford) [28] to linearly coregister the b0
image in diffusion MRI space to the T1-weighted structural image. The trans-
formed T1-weighted image was then mapped to the T1 template of ICBM152 in
MNI space [12]. The resulting transformation was inversed and further applied
to warp the Automated Anatomical Labeling (AAL) [55] from MNI space to
the diffusion MRI native space, where interpolation used the nearest-neighbor
method ensuring the preservation of discrete labeling values.

Secondly, we used the Fdt toolbox in FSL (http://www.fmrib.ox.ac.uk/fsl/,
FMRIB, Oxford) to carry out the various processing stages of the diffusion MRI
data. The initial preprocessing involved coregistering the diffusion-weighted im-
ages to a reference volume using an affine transformation for the correction of
head motion as well as eddy current induced image distortion. Following this
preprocessing, we estimated the local probability distribution of fiber direction
at each voxel [4]. We then used the probtrackx algorithm allowing for automatic
estimation of two fiber directions within each voxel, which can significantly im-
prove the tracking sensitivity of non-dominant fiber populations in the human
brain [3]. We estimated the connectivity probability by applying probabilistic
tractography at the voxel level using a sampling of 5000 streamline fibers per
voxel. The connectivity probability from a seed voxel i to another voxel j was
defined by the proportion of fibers passing through voxel i that reach voxel j
[3]. This was then extended from the voxel level to the region level, i.e. in a
brain region consisting of n voxels, 5000n fibers were sampled. The connectiv-
ity probability density Pij from region i to region j is calculated as the number
of sampled fibers in region i that connect the two regions divided by 5000n,
where n is the number of voxels in region i. The use of connectivity probability
per volume unit, calculated by normalizing the connectivity probability by the
number of voxels in each region, is required since the MEG data was projected
onto the centres of the AAL regions, rather than onto their entire volumes. For
each brain region, the connectivity probability density to each of the other 101
regions was calculated, yielding a 102 × 102 matrix P . Following [9], we sym-
metrized the structural matrix by averaging the probability densities Bij and
Bji for each pairs of regions (i, j).
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To simplify the structural matrix, we excluded all thalamic segments except
for the occipital segment, which projects mainly to the occipital lobe [2]. This
segment contains the lateral geniculate nucleus (LGN) which is possibly in-
volved in the generation of posterior α [35, 26] as well as the pulvinar, and
most likely several intra-laminar nuclei [2]. This yielded a 90 × 90 structural
probability matrix B. We subsequently averaged B over both hemispheres yield-
ing yielding a 45 × 45 connectivity matrix. The regions are listed in Table 1.
Justification for this comes from the fact that left and right intra-hemispheric
connections are correlated with ρ = 0.92 (p = 0.0000, two-sided t-test). Fur-
thermore, given the fact that there were no significant differences between MEG
α-amplitude between homologue cortical areas (the minimum p-value over ho-
mologue cortical areas obtained from 104 hemispherically-randomized ampli-
tudes equals p = 0.7461) we averaged the amplitudes over hemispheres. The
hemispheric symmetry of α amplitudes is also evident from a correlation co-
efficient of ρ = 0.97 (p = 0.0000, two-sides t-test) between the amplitudes in
left and right hemispheres. Figure 1A shows the topographies of left and right
cortical α-amplitudes.
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Region Abbr
Precentral PreCG
Frontal Sup SFGdor
Front Sup Orb ORBsup
Front Mid MFG
Front Mid Orb ORBmid
Front Inf Ope IFGoperc
Front Inf Tri IFGtriang
Front Inf Orb ORBinf
Rolandic Oper ROL
Supp Motor Ar SMA
Olfactory OLF
Front Sup Med SFGmed
Front Med Orb ORBmid
Rectus REC
Insula INS
Cingulum Ant ACG
Cingulum Mid DCG
Cingulum Post PCG
Hippocampus HPG
ParaHippocamp PHG
Amygdala AMYG
Calcarine CAL
Cuneus CUN
Lingual LING
Occipital Sup SOG
Occipital Mid MOG
Occipital Inf IOG
Fusiform FFG
Postcentral PoCG
Parietal Sup SPG
Parietal Inf IPL
SupraMarginal SMG
Angular ANG
Precuneus PCUN
Paracentr Lob PCL
Caudate CAU
Putamen PUT
Pallidum PAL
Thalamus THA
Heschl HES
Temporal Sup STG
Tempr Pol Sup TPOsup
Temporal Mid MTG
Tempr Pol Mid TPOmid
Temporal Inf ITG

Table 1: Descriptions and abbreviations of the AAL regions used in this study.
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2.3 Dynamical meanfield model

The electrical activity in individual AAL regions is modeled by adopting a
meanfield approach to neuronal dynamics [42, 18]. Specifically, and adopting
the same formalism as used in [14, 41], each region is assumed to comprise
excitatory and inhibitory neural populations. For cortical and thalamic re-
gions, the excitatory and inhibitory populations correspond to pyramidal (PY)
and inhibitory (IN) populations and thalamo-cortical (TC) and reticular (RE)
populations, respectively. Membrane excitability is modeled by the function
S(v) = 1/(1+e−ρ1(v−ρ2)), which converts average membrane potentials into av-
erage firing-rates. The parameters ρ2 and ρ1 denote the average spike-threshold
and dispersion of spike-thresholds over the population, respectively. Further-
more, the populations are assumed to integrate incoming spike-rates linearly
through synaptic responses parameterized by h(t) = εκte−tκ, where ε and κ
denote the synaptic efficacy and synaptic rate-constant, respectively. Efficacies
and rate-constants depend on the type of synapse (excitatory or inhibitory) and
on the types of pre- and post-synaptic populations (PY, IN, TC, or RE). The
excitatory and inhibitory populations of a given region are coupled through a
number of excitatory→inhibitory and inhibitory→excitatory synapses, which
are denoted by γ1 and γ2, respectively.

Figure 2: Computational model of α-oscillations. (A) Illustration of the synap-
tic organization. Local cortical circuits comprise a population of pyramidal
(PY) and inhibitory interneurons (IN). Thalamus is modeled by interconnected
populations of thalamo-cortical relay (RE) and thalamic reticular (RE) neurons.
Local circuitry in cortex and thalamus consists of an inhibitory feedback loop.
Cortical regions are coupled via excitatory PY → PY projections and cortex
and thalamus are coupled via excitatory TC → PY and PY → TC projections
which leave corraterals to reticular neurons (RE). Both PY and TC populations
are driven by a constant afferent firing-rate. (B) Autocorrelation function of the
excitatory populations for the chosen parameter values (see Appendix A). The
autocorrelation function is the inverse Fourier transform of the power spectrum,
hence determines the resonance-strength of the population for synaptic inputs
of all frequencies. Note that it behaves as a damped oscillation with period
∼ 100 ms, corresponding to α-frequency of ∼ 10 Hz.
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The synaptic organization of the model is illustrated in Figure 2A. Cortico-
cortical pathways are modeled by excitatory PY → PY projections and the
thalamo-cortico-thalamic loop consists of excitatory thalamo-cortical projec-
tions TC → PY and excitatory cortico-thalamic projections PY → TC which
leave collaterals PY→ RE to the reticular population. The coupling strengths
are assumed to be proportional to the corresponding entries of the connectivity
probability density matrix B. In addition, the excitatory populations in both
cortex and thalamus are driven by a constant afferent firing-rate which models
non-specific background activity. We use independent global coupling strengths
K1 and K2 for cortico-cortical and cortico-thalamo-cortical connections, respec-
tively. Thus, K1 corresponds to the overall strength of cortico-cortical connec-
tions and K2 to the overall strength of feedback within the cortico-thalamo-
cortical loop. They are incorporated into the model by using them as weights
in the connectivity density matrix B. Following previous modeling studies
[20, 15, 9, 16] K1 and K2 are considered free parameters and are used to tune
the model. Source-projected MEG signals are assumed to be proportional to
the average dendritic activity of the pyramidal populations in the corresponding
cortical AAL regions [42, 18]. The model equations and parameter values are
given in Table 2 in Appendix A.

The parameter values determining the dynamics of cortical and thalamic re-
gions were chosen to be identical and such that the excitatory populations had
a stable equilibrium voltage and resonated at a frequency ∼ 10 Hz. Hence we
assume that the local circuitry of all regions is tuned to resonate at α-frequency
when driven by excitatory synaptic input. Figure 2B provides an illustration.
We investigated two scenario’s for α-generation, namely, local generation in V1
and distributed generation troughout the cortex. An α-generator in primary
visual cortex was modeled by driving the excitatory population by excitatory
synaptic input, modeled as white-noise with standard deviation σ = 1 s−1.
Distributed α-generation were modeled by setting σ = 1 s−1 for all cortical
regions.

3 Results

3.1 Dynamical workingpoint

To obtain a dynamical workingpoint for the model, we first determined the
models’ stability boundary in the plane spanned by the cortico-cortical and
thalamo-cortical connection-strengths K1 and K2, respectively. In terms of dy-
namics, restricting the workingpoint to the stable region means that we assume
resting-state α-oscillations to emerge from stochastic perturbations of a sta-
ble equilibrium state, in agreement with empirical studies [54, 24] and in line
with modeling studies on fMRI resting-state dynamics [20, 17]. To determine
the stability boundary, we compute the models’ Jacobian at the steady-state
and numerically calculate its eigenvalues (see Appendix B). Each eigenvalue
λ is complex-valued and describes the resonance behavior of one of the state-
variables. Specifically, the response of the state-variable upon an instantaneous
perturbation is an exponentially damped oscillation eλ, where the damping-rate
Re(λ) and frequency Im(λ) describe the characteristic time-scale and angu-
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lar frequency of the response. The stable regime corresponds to the values of
(K1,K2) for which the damping-rate Re(λ) < 0 for all state-variables. Figure
3A and B show color-coded damping-rate and frequency of the least-damped
eigenvalue as a function of (K1,K2). The boundary in the images corresponds
to the stability boundary. Note that approaching the stability boundary leads
to increased alpha frequency. When crossed, the system destabilizes through
a supercritical Hopf bifurcation, giving rise to self-sustained α-oscillations, a
scenario that is more likely to be related to epileptic dynamics, in particular
tonic-clonic seizures [45, 8].

Figure 3: Thalamo-cortical stability and dynamical workingpoint. A Damping-
rate of the least-damped eigenvalue as a function of cortico-cortical and thalamo-
cortical coupling strength K1 and K2. B Frequency of the least-damped eigen-
value as a function of cortico-cortical and thalamo-cortical coupling strength K1

and K2. C. Pearson correlation coefficients between the observed α-amplitudes
and those predicted by the model by assuming a single α-generator in the Cal-
carine sulcus (V1). The correlation is maximal at (K∗1,K

∗
2) = (66, 40) and is

denoted by a white dot. D. Pearson correlation coefficients between the ob-
served α-amplitudes and those predicted by the model by assuming α gener-
ators to be distributed throughout the cortex. The correlation is maximal at
(K∗1,K

∗
2) = (66, 40) and is denoted by a white dot. The correlation coefficients

in the right-hand-side figure were predicted by the model in which α-generators
were assumed to be distributed throughout the cortex. The correlation is max-
imal around (K∗1,K

∗
2) = (53, 20) and is denoted by a white dot. Note the

difference in colorscaling between C and D. In all figures, K1 and K2 range from
0 to 80 and from 0 to 150, respectively, in steps of 1 and 2, respectively and the
curved white boundary coincides with the (linear) stability boundary.
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To find a dynamical workingpoint (K∗1,K
∗
2), we placed a generator in primary

visual cortex and computed the Pearson correlation coefficient between the
predicted and observed cortical α-amplitudes, that is, between the standard-
deviations of the modeled time-series and the corresponding source-projected
MEG time-series filtered in the α frequency band. We did this as a function
of (K1,K2) in the entire stable regime. The predicted amplitudes were com-
puted semi-analytically (see Appendix C). The correlation coefficients reached
a local maximum of ρ = 0.80 at (K∗1,K

∗
2) = (66, 40), which we chose as the

dynamical working point. The dynamical workingpoint is designated in Figure
3C by a white dot. Importantly, the fact that the model performs best well
away from the horizontal and vertical boundaries, which correspond to the ab-
sence of cortico-cortical and thalamo-cortical connections respectively, suggests
the involvement of both cortico-cortical as well as thalamo-cortical pathways
in shaping the distribution of cortical α-amplitudes. Also note that the model
performs best for a value of (K1,K2) that lies in the interior of the stability
region, as opposed to a best fit on the instability boundary. This shows that
the chosen workingpoint corresponds to a well-defined best fit.

Since in the above simulations, primary visual cortex displayed much larger
oscillations than other regions - in contrast to the observed oscillations - we ex-
cluded primary visual cortex before computing the correlation coefficients. This
discrepancy between model and data might be caused be passive propagation of
the magnetic field generated by cortical sources leading to an offset in the am-
plitudes of the source-projected MEG signals which is absent in the simulated
data. Alternatively, it could be that a single generator in V1 is too restricted
and that the data may be better explained by assuming multiple α-generators.
To test this possibility, we placed a generator in every cortical region and re-
peated the above assesment of how well the observed α-amplitudes are predicted
by the model. The result is shown in Figure 3D. The figure shows that although
there is a well-defined maximum in model performance, the maximal correlation
coefficient is low (ρ = 0.21).

Figure 3C and 3D show that in both model simulations, the best fit is obtained
for non-zero cortico- and thalamo-cortical coupling strengths, which suggest
involvement of both types of pathways in coordinating cortical α-oscillations.
However, when the workingpoints (white dots) are projected to the cortico-
cortical axis however, the correlation with the data remains high, while projec-
tion to the thalamo-cortical axis yields substantially lower correlations. Thus,
in both simulations, cortico-cortical pathways contribute more to structuring
α-amplitudes than thalamo-cortical connections do. This is in agreement with
the findings reported in [36] using local field potentials simultaneously recorded
from visual cortex and thalamus. Using partial coherence analysis, it was found
that cortico-cortical connections contributed more to the coherence between α-
oscillations in different cortical regions than thalamo-cortical connections did.

3.2 Spatial extent of posterior alpha oscillations

Figure 4A shows the scatterplot of the observed α-amplitudes versus those pre-
dicted by the model in the chosen workingpoint (K∗1,K

∗
2). They are correlated

with Pearson correlation coefficient ρ = 0.80. To determine the spatial ex-
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tent of posterior α-oscillations, we selected the regions that were anatomically
connected to primary visual cortex with a connection strength ≥ h and com-
puted the Pearson correlation coefficient between the predicted and observed
amplitudes within the selected regions. The regions were determined by com-
puting the correlation coefficients as a function of h and subsequently selecting
the value of h for which the correlation coefficient attained a local maximum.
This gave a threshold of h = 0.03 (see SI Figure 3). Propagation was found
to pervade the entire occipital lobe, with extensions to posterior-parietal and
temporal regions. Specifically, α propagated to the inferior, medial, and su-
perior occipital gyri (IOG, MOI, SOG), cuneus (CUN), lingual gyrus (LING),
posterior cingulate gyrus (PCG), hippocampal gyrus (HPG), parahippocampal
gyrus (PHG), fusiform gyrus (FFG), and precuneus (PCUN) and are displayed
on a glass brain in Figure 4B.

Figure 4: Model performance and spatial extent of posterior α-oscillations. A.
Scatterplot of observed versus predicted α-amplitudes for the model in the work-
ingpoint (K∗1,K

∗
2). The variance of the predicted amplitudes is scaled to unity.

The regions to which α-oscillations generated in the primary visual cortex prop-
agate are colored red. B. Glass-brain views of the posterior α-network. It
comprises the inferior, medial, and superior occipital gyri (IOG, MOI, SOG),
cuneus (CUN), lingual gyrus (LING), posterior cingulate gyrus (PCG), hip-
pocampal gyrus (HPG), parahippocampal gyrus (PHG), fusiform gyrus (FFG),
and precuneus (PCUN). Colors are insignificant and merely serve to delineate
the different regions.
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In the sequel, we collectively refer to these regions as the posterior α-network.
Note that the posterior alpha network roughly comprises visual cortical regions,
including the dorsal and ventral projection systems, and thus reinforces the
notion of posterior α-oscillations as intrinsic oscillations of the visual system.
The Pearson correlation coefficient between predicted and observed amplitudes
within the posterior α-network was ρ = 0.93, which demonstrates the model’s
ability to reproduce the relative α-amplitudes. The amplitudes within the vi-
sual system are denoted by red dots in Figure 4A. Interestingly, the regions
comprising the posterior alpha network largely coincide with those in which
resting-state BOLD-fluctuations are (negatively) correlated with simultaneously
recorded posterior α-power fluctuations [19]. This might suggest that resting-
state BOLD-fluctuations within the visual system are driven by fluctuations in
primary visual cortex.

3.3 Involvement of primary visual pathways

If the hypothesis that posterior α-oscillations propagate from primary visual
cortex to higher-order visual areas through excitatory white-matter pathways
is correct, one might suspect a positive correlation between α-amplitudes of re-
gions within the posterior α-network and corresponding structural connection-
strengths to primary visual cortex. Figure 5A, left-hand-side, shows the scatter-
plot between predicted posterior α-amplitudes and corresponding connection-
strengths, indeed predicting a positive correlation. The correlation coefficient
between observed α-amplitudes and connection-strengths to primary visual cor-
tex was ρα,sc = 0.95 (p < 0.0001, two-sided t-test), thereby confirming this
prediction.

To factor out spurious correlations due to (weak) dependence of observed α-
amplitudes and connection-strengths to primary visual cortex on Euclidean
distance to primary visual cortex (ρα,dist = −0.80, p = 0.0050 and ρsc,dist =
−0.71, p = 0.0204, two-sided t-tests), which also holds for the predicted am-
plitudes, we conditioned ρα,sc on Euclidean distance, which yielded a partial
correlation coefficient of ρα,sc|dist = 0.89 (p = 0.0012, two-sided t-test), which
shows that the correlation between α-amplitude and connection-strength can-
not be explained by their common dependence of distance to primary visual
cortex. In contrast, ρα,dist vanished when conditioned on connection-strength
(ρα,dist|sc = −0.57, p = 0.1112, two-sided t-test), which shows that the corre-
lation between α-amplitude and distance reflects the dependence of structural
connection-strength to primary visual cortex on distance.
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Figure 5: Correlations between α-amplitude and structural and functional
connections. A. Scatterplot of the predicted (left) and observed (right) α-
amplitudes of regions within the visual α-network versus corresponding struc-
tural connection-strengths with primary visual cortex. B. Scatterplots of pre-
dicted (left) and observed (right) α-amplitudes of regions within the visual α-
network versus corresponding functional connection-strengths with primary vi-
sual cortex. Observed functional correlations were quantified by bandlimited
power (BLP) correlations, that is, by pair wise Pearson correlation coefficients
between the Hilbert envelopes of the source-projected MEG signals. Superim-
posed are regression lines obtained from a linear least-squares fit. Predicted
amplitudes have been normalized to unit standard-deviation.

If α-oscillations propagate from primary visual cortex higher-order visual ar-
eas, besides a correlation between α-amplitudes and corresponding connection-
strengths to primary visual cortex, we might expect a correlation between α-
amplitudes and corresponding functional correlations with primary visual cor-
tex. This is illustrated in Figure 5B, left-hand-side, which shows that the model
indeed predicts the existence of such a correlation. Functional correlations from
the model were measured by the Pearson correlation coefficients between the
theoretical time-series and were computed semi-analytically from the linearized
model equations (see Appendix D). Figure 5B, right-hand-side, shows that this
prediction holds for the data as well (ρfc,sc = 0.94, p = 0.0001, two-sided
t-test). Observed functional correlations were quantified by the bandlimited
power (BLP) correlations between the source-projected MEG signals, that is,
by the Pearson correlation coefficients between the corresponding Hilbert en-
velopes. Although, the predicted functional correlations were quantified differ-
ently than in the model, allowing for a semi-analytical computation without
residing to numerical simulations, the two kinds of correlations are approxi-
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mately proportional within the model, justifying their use in linear correlation
analysis. To factor out spurious correlations due to the negative dependence of
functional correlation on distance (ρfc,dist = −0.87, p = 0.001, two-sided t-test)
we conditioned the correlation on Euclidean distance. The partial correlation re-
mained significant (ρfc,sc|dist = 0.92, p = 0.0004, two-sided t-test) showing that
ρfc,sc can only partially be explained by a common dependence of functional
correlation and connection-strength of distance.
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4 Discussion

In this study we combined MEG source-modeling [56], DTI probabilistic trac-
tography, connectivity-based thalamic segmentation [4, 2, 3], and computational
modeling to investigate the role of white-matter pathways in coordinating α-
oscillations in human cortex at rest. We focused on two scenario’s for the gen-
eration of α-oscillations, namely, local generation within the Calcarine sulcus
(V1) as suggested by MEG inverse-modeling studies [49, 23, 11] and distributed
generation of α-oscillations throughout the cortex. Both scenario’s suggested
that α-oscillations propagate through cortico-cortical as well as thalamo-cortical
pathways, although cortico-cortical pathways seemed to play a larger role, in
line with local field potential recordings in dogs [36]. The assumption of a sin-
gle α-generator in V1 however, led to a much better fit with the data than
the distributed scenario. While this finding does not rule out the existence of
distributed α-generators, it at least suggests that V1 plays a central role in coor-
dinating posterior α-oscillations. Furthermore, the models’ ability of predicting
MEG source-strengths of α-oscillations was limited to the occipital lobe and
parts of the temporal and medial-posterior parietal lobe, namely the inferior,
medial, and superior occipital gyri, cuneus, lingual gyrus, posterior cingulate
gyrus, hippocampal gyrus, parahippocampal gyrus, fusiform gyrus, and pre-
cuneus. This reinforces the notion that posterior α-oscillations are intrinsic to
the visual system. Both the anatomical and functional connections to primary
visual cortex correlated with the source-strengths of α-oscillations within this
network, as predicted by the model.

Equivalent-dipole modeling of resting-state MEG α-oscillations has shown that
the strongest α-sources are located in the calcarine sulcus (primary visual cor-
tex) and occipito-parietal fissure. The relative source-strengths however, differ
from subject to subject [49, 23, 11]. In line with these observations, the group-
averaged MEG source-strength of our data was highest in the calcarine sulcus,
followed by the cuneus, which extends into the medial part of the posterior wall
of the occipito-parietal fissure. However, both in the data and model, cortical
source-strengths only correlated with white-matter connections to the calcarine
sulcus and not with the cuneus. Since calcarine was most strongly connected to
the cuneus, this suggests that propagation of oscillations within the calcarine
sulcus might contribute to the strong α-sources within the occipito-parietal fis-
sure.

Since for all subjects, the α-amplitudes in the calcarine sulcus and occipito-
parietal fissure were of similar magnitude, we suspect that the estimated MEG
source-strengths are attenuated by partial cancelation of coherent oscillations
in opposite banks of the calcarine sulcus [49, 23, 42]. This remains speculative
however, and the use of MEG alone might not be sufficient to provide a def-
inite answer, because MEG is primarily sensitive to the tangential component
of current sources [22]. A more complete picture of the organization of cortical
α-sources likely has to come from combined EEG-MEG source-imaging methods
[1] as they exploit the complementary information of MEG and EEG, which is
primarily sensitive to the radial component of current sources. In addition to
combining EEG and MEG, the inverse-solution space might be reduced further
by assuming the current densities to be restricted to the cortical surface and
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their orientation to be perpendicular to it [13]. This would, however, require us-
ing a more fine-grained parcellation of the cortical surface and higher-resolution
structural matrices.

Several studies have shown that posterior α-oscillations can be actively enhanced
or suppressed in visual attention paradigms in a retinotopically specific way
[57, 33, 44, 30, 10] both in primary as well as in higher-order visual areas [31, 52].
Based on our results, we might speculate that in resting-state, propagation of α
from lower to higher-order visual areas might provide a default organization of
visual cortex in which modulation of α in primary visual cortex induces coherent
modulations of α in higher-order visual areas through retinotopically-organized
pathways. Through such a mechanism, retinotopical-specific priming of primary
visual cortex might automatically prime corresponding locations in higher-order
areas. Such a mechanism could coexest together with top-down modulating sig-
nals, which are known or be broadcasted by several regions, most notably frontal
and parietal areas [33] as well as several subcortical nuclei [19], in particular the
pulvinar [50, 48], whose connections to visual cortex are known to be organized
in a retinotopic way [50]. Most likely, the spatio-temporal organization of poste-
rior α emerges from coordinated modulating influences through both top-down
and bottom-up cortico-cortical and pulvinar-cortical pathways.

The current study is limited in several respects that need to be addressed in
subsequent studies. First, thalamic voxels were classified based on the abun-
dance of their structural connections with the major anatomical regions in cere-
bral cortex, namely occipital, parietal, temporal, frontal, motor, pre-motor, and
somato-sensory regions, hence did not allow delineation of the lateral geniculate
nucleus (LGN) and the isolation of higher-order visual thalamic nuclei [2]. As a
consequence, our findings do not allow to distinguish the different scenario’s of
α-generation, namely generation in cortical [34] or thalamic [37, 26] tissue, or
reverberation within thalamo-cortical loop [46, 43], nor allows to assess the role
of higher-order thalamic nuclei in modulation of cortical α-oscillations [19, 48].
A more fine-grained structural segmentation of thalamus might allow for a more
detailed study of the role of different thalamic nuclei in generation and modu-
lation of cortical α. Second, the MEG recordings and MRI scans were obtained
from different subject groups. Remarkably, the observed correlations between
the anatomical and functional organization of posterior α-oscillations on the
group-level reflects their robustness. Paired MEG-DTI recordings obtained in
a subsequent study will allow further validation of the findings reported in the
current study.

Third, the predicted and observed α-amplitudes differ in two respects. The
first difference is the existence of an off-set in the observed amplitudes which
is absent in the predicted amplitudes (see Figure 4A). The second difference is
that the predicted amplitude in V1 is much higher than the observe amplitude
in V1. Although these differences could be explained by passive propagation
of the generated magnetic field, a test of this possibility requires the use of a
high-resolution surface-based cortical atlas, rather then the low-resolution vol-
umetric atlas used in this study. An alternative explanation is that there exist
multiple α-generators, leading to a smoother spatial arrangement of the ampli-
tudes [46, 45]. Assuming multiple α-generators in the current model, however,
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led not lead to a good fit with the data (see Figure 3D). Thus, although a def-
inite answer to the issue of localized versus distributed generation of cortical
α-oscillations has to come from future research, our study has suggested a cen-
tral role of V1-connectivity in coordinating α-oscillations in the visual system
at rest.
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Appendices

A. Model equations

The state-variables of the k-th region (k = 1, · · · , N) are the average mem-
brane potentials of excitatory and inhibitory neurons, denoted by V ke and V ki ,
respectively. They satisfy the following equations:

V ke (t) = −hI ⊗ [γkieQ
k
i (t) +

∑
l 6=k

βlkieQ
l
i(t− τl,k)] + hE ⊗ [

∑
l 6=k

βlkeeQ
l
e(t− τl,k) + pk(t)],

V ki (t) = −hI ⊗ [γkiiQ
k
i (t) +

∑
l 6=k

βlkiiQ
l
i(t− τl,k)] + hE ⊗ [

∑
l 6=k

βlkeiQ
l
e(t− τl,k) + γkeiQ

k
e(t)],

where ⊗ denotes temporal convolution, hE and hI denote the average excitatory
and inhibitory post-synaptic potentials, respectively, γkpq denotes the number of
synaptic contacts on neurons of type q from neurons of type p within region k,
and βlkpq denotes the number of synaptic contacts on neurons of type q within
region k from neurons of type p within region l. Coupling between region k
and l is assumed to have a propagation delay τl,k = τk,l although all delays
are set to zero in the present study, since they have practically no influence on
the simulated amplitudes. Furthermore, Qlp(t) = S(V lp (t)) denotes the average

firing-rate of neurons of type p in region l at time t. Moreover, pk = p̄k +
σkξk(t) models the afferent input to region k, which is comprised of a stationary
firing-rate p̄k and a fluctuating term σkξk(t) approximating the complicated
afferent input during resting-state conditions by a white-noise process. We
assume that the incoming fluctuations to different regions are uncorrelated,
that is, < ξkξl >= δkl. The parameter values are listed in the table 1.

26



Parameter Symbol Nominal value
Average spike-threshold ρ2 1 mV
Dispersion of spike-thresholds ρ1 2 mV−1

Spike-threshold deviation σk 3.3 mV
Efficacy of PY→ IN synapses εpp 4 mV
Efficacy of IN→ PY synapses εip 32 mV
Efficacy of PY→ TC synapses εpt 8 mV
Efficacy of PY→ RE synapses εpr 0.4 mV
Efficacy of TC→ PY synapses εtp 4 mV
Efficacy of RE→ TC synapses εrt 32 mV
Efficacy of TC→ RE synapses εtr 4 mV
Excitatory synaptic rate-constant κe 162.5 s−1

Inhibitory synaptic rate-constant κi κe/4 s−1

Number of synaptic contacts excitatory→inhibitory γ1 64
Number of synaptic contacts inhibitory→excitatory γ2 64
Propagation delay between region k and l τl,k 0 s
Afferent firing-rate into region k p̄k 270 s−1

Standard-deviation of p in region k σk 0 or 1 s−1

Global cortico-cortical coupling K1 ≥ 0
Global thalamic feedback K2 ≥ 0

Table 2: Descriptions, symbols, and nominal values of the model parameters

B. Linear stability

Numerical simulations are performed by rewriting the model equations as a sys-
tem of N 8-dimensional coupled stochastic delay differential equations, which
are obtained by rewriting the convolutions hE⊗ and hI⊗ as second-order differ-
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ential operators. In this form, the dynamics of region k is governed by

V̇ ke,1(t) = Uke,1(t),

U̇ke,1(t) = −2κEU
k
e,1 − κ2EV ke,1 + κEHE[pk(t) +

∑
l 6=k

βl,kee Q
l
e(t− τlk))],

V̇ ke,2(t) = Uke,2(t),

U̇ke,2(t) = −2κIU
k
e,2 − κ2IV ke,1 + κIHI[γ

k
ieQ

k
i (t) +

∑
l 6=k

βl,kee Q
l
i(t− τlk))],

V̇ ki,1(t) = Uki,1(t),

U̇ki,1(t) = −2κEU
k
i,1 − κ2EV ki,1 + κEHE[γkeiQ

k
e(t) +

∑
l 6=k

βl,kei Q
l
e(t− τlk))],

V̇ ki,2(t) = Uki,2(t),

U̇ki,2(t) = −2κIU
k
i,2 − κ2IV ki,1 + κIHI[γ

k
iiQ

k
i (t) +

∑
l 6=k

βl,kii Q
l
i(t− τlk))],

where Ve = Ve,1 − Ve,2 and Vi = Vi,1 − Vi,2, and ˙ denotes taking the derivative
with respect to time t. Linear stability was assessed by numerically solving the
steady-state equations, which are obtained by setting all derivates to zero, the
subsequently computing the system’s Jacobian at the steady-state.

C. Source-strengths

Assuming the noise-driven fluctuations about the steady-state to be small, the
model equations can be linearized about the steady-state and the fluctuations
are found to obey the following equations in the Laplace domain:

V ke = −LI[γ
k
ieG

k
i V

k
i +

∑
l 6=k

βlkieG
l
iV

l
i ] + LE[

∑
l 6=k

βlkeeG
l
eV

l
e + σk],

V ki = −LI[γ
k
iiG

k
i V

k
i +

∑
l 6=k

βlkiiG
l
iV

l
i e
−τlks] + LE[

∑
l 6=k

βlkeiG
l
eV

l
e e
−τlks + γkeiG

k
eV

k
e ],

where

Gke =
dS

dv

(
V̄ ke
)

denotes the average gain of excitatory neurons in region k and similarly for
inhibitory neurons, and where

LE(s) =
HEkE

(s+ kE)2
,

denotes the average tranfer function of excitatory synapses and similarly for
inhibitory synapses.
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To solve this system of equations for V = (V 1
e , V

1
i , · · · , V Ne , V Ni )′, we write

M1 for the blockdiagonal matrix with k-th block given by 0 −γkieGki LI

−γkeiGkeLE −γkiiGki LI


and M2 for the blockmatrix with (k, l)-th block given by βlkeeG

l
eLE −βlkieGliLI

βlkeiG
l
eLE −βlkiiGliLI

 e−τlks,

for l 6= k. Note that M1 and M2 relate to the local and global coupling structure,
respectively. Furthermore, with Σ = (σ1LE, · · · , σ1LE)′ and M = M1 +M2, the
Laplace domain equations can be written in matrixform as

V (s) = MV (s) + Σ(s),

from which we obtain
V (s) = (I −M(s))−1Σ(s),

where I denotes the identity matrix of size 2N . The entries of V (s) correspond
to the transfer functions of the excitatory and inhibitory populations in the dif-
ferent regions. If the steady-state is stable, the Fourier spectra of the excitatory
populations can be calculated by setting s = iω. Thus, the Fourier spectra of
the MEG signals projected onto the k-th region are modeled by

V
(k)
MEG(ω) = V ke (iω).

Using the assumption that the afferent fluctuations impinging on the different
regions are uncorrelated, the MEG cross-spectral matrix is given by

SMEG(ω) = VMEG(ω)DP (ω) (VMEG(ω)DP (ω))
†
,

where DP (ω) denotes the diagonal matrix with the vector P (ω) as the diagonal
and † denotes conjugate-transpose, which can be rewritten as

SMEG(ω) = σ2VMEG(ω)VMEG(ω)†.

The strength Ak of source-region k, as measured by its standard-deviation, is
now given by

A2
k =

1

2π

∫ ∞
−∞

SkMEG(ω)dω,

where SkMEG(ω) denotes the k-th entry on the diagonal of SMEG(ω). In the
calculation of the source-strengths, we sampled SkMEG between 0 and 40 Hz
with spectral resolution ∆ω = 0.1 Hz.
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D. Functional correlations

The cross-correlation function Γk,lMEG(τ) between the MEG signals at regions
k and l at lag τ is given by the normalized inverse Fourier transform of the
cross-spectrum between regions k and l

Γk,lMEG(τ) =
1

AkAl

∫ ∞
−∞

Sk,lMEG(ω)eiτωdω,

where Sk,lMEG(ω) denotes the (k, l)-th entry of SMEG(ω). In particular, the func-
tional connectivity between region k and l as characterized by the correlation
coefficient between the corresponding MEG signals is given by Γk,lMEG(0). In
the calculation of the correlation coefficients, we sampled SkMEG with spectral
resolution

∆ω =
2π

4(2N + 1)10−3
,

Hz, which corresponds to a temporal solution of Γk,lMEG of

∆t = 2π/∆ω(2N + 1),

ms. Settting N = 200, this gives ∆t = 4 ms and a maximal observable delay of
±800 ms.
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