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Abstract: Positive-strand RNA viruses, such as the brome mosaic virus
(BMV) and hepatitis C virus, utilize a replication cycle which involves the re-
cruitment of RNA genomes from the cellular translation machinery to the viral
replication complexes. Here, we coupled mathematical modeling with a statisti-
cal inverse problem methodology to better understand this crucial recruitment
process. We developed a discrete-delay differential equation model that de-
scribes the production of BMV protein 1a and BMV RNA3, and the effect of
protein 1a on RNA3 recruitment. We validated our model with experimental
data generated in duplicate from a yeast strain that was engineered to express
protein 1a and RNA3 under the control of inducible promoters. We used a sta-
tistical model comparison technique to test which biological assumptions in our
model were correct. Our results suggest that protein 1a expression is governed
by a nonlinear phenomenon and that a time delay is important for modeling
RNA3 recruitment. We also performed an uncertainty analysis of two experi-
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mental designs and found that we could improve our data collection procedure
in future experiments to increase the confidence in our parameter estimates.

Key Words: Positive-strand RNA virus, brome mosaic virus, Saccharomyces

cerevisiae, inverse problem, uncertainty analysis, time delay

1. Introduction

A virus is an obligate intracellular parasite forced by its limited coding capacity
to employ the machinery of its host to replicate and disperse its genome. This
relationship between viruses and their hosts has been studied extensively in
an attempt to further understand the complex molecular processes involved
in viral replication. Of particular interest are positive-strand RNA viruses
[(+)RNA], accounting for over one third of all virus genera. They contain
a large number of serious plant, animal, and human pathogens, including the
hepatitis C virus (HCV), which is a major cause of liver disease and is estimated
to have chronically infected 130-170 million people worldwide [12].

Research has revealed a number of common fundamental features in the
replication processes of all (+)RNA viruses. Unlike other viral groups, they do
not encapsulate viral polymerases required for replication. Thus, upon gaining
entry into the cytoplasm, their genomic RNA acts as mRNA to be directly
translated in order to produce the necessary viral replication factors. These
replication factors then specifically recognize viral RNA and recruit it from
translation into replication complexes where it serves as a template for replica-
tion. These two functions are mutually exclusive since the 5’ to 3’ movement
of the ribosomes directly conflicts with the 3’ to 5’ polymerase copying [11, 16].
Therefore, a key step in the replication cycle of any (+)RNA virus is the exit
of the genomic RNA from translation to replication, a process that must be
highly regulated in order to allow both sufficient translation and replication.

Due to the complexity of viral infections in eukaryotes, numerous biolog-
ical systems have been created to study infection in the simpler and better
understood yeast Saccharomyces cerevisiae [10]. One such system for studying
fundamental aspects of (+)RNA virus biology is the replication of the plant
brome mosaic virus (BMV) [1]. The BMV genome is comprised of three ge-
nomic RNAs with 5’ caps and, differing from cellular mRNAs, 3’ tRNA-like
ends that are aminoacylated in vivo by host enzymes [15]. RNA1 and RNA2
encode essential viral RNA replication factors protein 1a and 2a respectively
[15]. RNA3 encodes a cell-to-cell movement protein and, through the produc-
tion of a subgenomic RNA, the capsid protein. Both are required for systemic
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infection in BMV’s natural host but not for replication [15]. The replication
factor protein 1a plays a key role in replication. It directs itself and 2a poly-
merase to the endoplasmic reticulum (ER), where it induces the formation of
membrane-enveloped spherules that line the replication complex [5, 18]. More-
over, it acts independently of 2a polymerase through specific sequences in BMV
RNA to recruit it out of cellular translation machinery and into replication com-
plexes within the ER [13]. Here, 2a polymerase, with the help of protein 1a,
initiates BMV RNA synthesis to produce viral RNA progeny.

To date, a mathematical model has not been developed to study BMV RNA
replication. Such a mathematical model could be used to test hypotheses re-
garding molecular features and mechanisms underlying crucial steps in (+)RNA
virus replication, and to formulate new assumptions about similarities in the
replication cycles of other (+)RNA viruses, such as HCV. Here, we develop
a mathematical model of the recruitment phase of BMV RNA replication for
this purpose. We validated and refined our mathematical model using inverse
problem methods applied to protein and RNA data collected from yeast cells
expressing protein 1a from non-viral mRNA and BMV RNA3. Without RNA2
expression, this biological system allows recruitment of RNA3 to the replication
complex built by protein 1a but not synthesis of the viral progeny, thus isolating
the recruitment phase of BMV RNA replication from the synthesis phase.

2. Mathematical Model Description

Our mathematical model describes the dynamics of protein 1a and RNA3 pro-
duction and recruitment. In our model, the total amount of RNA3 is divided
into RNA3 that has not been recruited to a replication complex and recruited
RNA3. Thus, the model accounts for the amount of protein 1a, unrecruited
RNA3, and recruited RNA3; these quantities are denoted by x(t), y(t), and
z(t) in equations (1)-(3), respectively, with the corresponding compartmental
model depicted in Figure 1.

The model equations are given by

dx

dt
= h(x)− dxx (1)

dy

dt
= ry − dyy − g(x)y (2)

dz

dt
= g(x)y − dzz (3)
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Figure 1: Model diagram for equations (1) - (3).

with initial conditions

(x(0), y(0), z(0)) = (0, y0, 0). (4)

The parameters ry and di, i ∈ {x, y, z}, are production and degradation
rates, respectively. For y(t), dy represents a combination of degradation and
translation. The positive initial condition, y0, for y(t) and zero initial condi-
tions for x(t) and z(t) in (4) are described in Section 3.1 below. The function
h(x) describes the production of protein 1a. We compared the performance of
h(x) = rx to h(x) = rx

1+Ae−x in fitting our experimental data in order to test
whether protein 1a production is governed by linear or non-linear growth, re-
spectively. The function g(x) describes the interaction of protein 1a with RNA3
leading to recruitment of RNA3 to a replication complex. Our primary goal
was to determine whether the delayed effect of protein 1a induction on RNA3
recruitment is more accurately described by a time delay or a threshold in the
interaction between RNA3 and protein 1a (see Figure 2). To evaluate these
different mechanisms, we tested whether a mass action function, g(x) = mx, a

threshold function, g(x) = mxH

1+BxH , or a mass action function with a time delay,
g(x) = mx(t− τ), more accurately fit our experimental data.

3. Data and Methods

3.1. Data Sets

RNA3 and protein 1a expression were measured from yeast cells (YPH500 WT)
containing two plasmids: pB3VG1-URA, expressing RNA3 under the control
of a Copper promoter and pB1YT3H, expressing protein 1a under the control



A MATHEMATICAL MODEL OF RNA3 RECRUITMENT... 31

Figure 2: Data for protein 1a and RNA3 for replicate 1 (see Data
and Methods for details). RNA3 is initially at steady state in our
experimental setup. Once protein 1a is induced at time t = 0 hours,
protein 1a increases and RNA3 increases due to the stabilizing effect
of recruitment by protein 1a. However, there appears to be a delayed
response between the increase in protein 1a and the increase in RNA3
for the first few hours of the experiment. Between time t = .5 hours
and t = 2 hours, the fold-increase in protein 1a (15.52-fold) is much
higher than RNA3 (1.27-fold). In contrast, the fold-increase in protein
1a (2.47-fold) and RNA3 (2.39-fold) is approximately the same between
time t = 2 hours and t = 48 hours.

of a Galactose promoter. Yeast wild-type cells were transformed with the plas-
mids in a medium containing copper (0.5mM) and raffinose (2%). RNA3 is
transcribed but protein 1a is not expressed under these conditions. Cells were
allowed to grow until an optical density (OD) of approximately 0.5. At this OD,
the cell growth rate is constant and RNA3 reaches a steady state where the pro-
duction rate is equivalent to the degradation rate. Thus, the initial condition
for RNA3 is assumed to be at a positive steady state, whereas protein 1a and
recruited RNA3 are initially absent from the system. At time t = 0, Galactose
(2%) was added to the medium, inducing the expression of protein 1a. Samples
were collected from two biological replicates at 0 minutes, 30 minutes, 1 hour,
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2 hours, 4 hours, and 48 hours post-induction.

Protein and RNA expression were quantified by western and northern blot-
ting, respectively. Protein 1a levels were quantified using the Odyssey infrared
imaging system, which measures signal intensity in K Counts/mm2. RNA3
levels were quantified using a Phosphoimager, which measures the intensity of
photon emissions (in arbitrary units) released from the storage phosphor screen
during scanning. PGK and 18S RNA were used as loading controls for protein
1a and RNA3, respectively. The expression levels (intensity) of protein 1a and
RNA3 were normalized using the formula 100 ∗ ( Ni

Nmax
)/( Ci

Cmax
), where Ni and

Ci are the intensities at the i-th time point, Nmax and Cmax are the maxima
of those intensities over all time points, N is either protein 1a or RNA3, and C
is either PGK or 18S. Thus, the protein 1a and RNA3 observables (see Section
3.2) are non-dimensional. Consequently, the parameters {A,B} are also non-
dimensional, and the parameters {rx, dx, ry, dy ,m, dz} are all rates with units
hour−1.

3.2. Inverse Problem Methodology

For each mathematical model, we estimated parameters from our data using
the ordinary least squares (OLS) framework with a constant error model. The
observation operators were either f(t, q) = x(t, q) for the protein 1a data or
f(t, q) = y(t, q) + z(t, q) for the RNA data. Forward simulations were run us-
ing ode45 or dde23 in Matlab; cases where we used either solver are stated
within each section below. Initial conditions were fixed using the initial data
point from either protein 1a or RNA3 for each replicate. Parameters were
estimated separately for each replicate using the Simbiology 2012a package
from Matlab for {rx, dx, A} and either Simbiology or the lsqnonlin function for
{ry, dy,m, dz , τ, B}. We note that the number of time points in our data was
less than the total number of parameters in the system (1)-(3). In order to
numerically implement a nonlinear regression in Matlab, the number of esti-
mated parameters needs to be less than or equal to the number of data points.
To satisfy this requirement, we first used the protein 1a data to estimate the
parameters in equation (1), i.e., {rx, dx, A}. We then used these parameter
estimates as fixed values to estimate parameters in the following sets for equa-
tions (2) and (3), where our choice of parameter set depended on the form of
g(x): {ry, dy,m, dz}, {ry, dy ,m, dz, B}, or {ry, dy,m, dz , τ}. We justified this
approach based on two observations. First, we are primarily interested in the
mechanism of RNA3 recruitment and not on the production of protein 1a. Sec-
ond, the measured concentration of protein 1a is not affected by RNA3.
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3.3. Uncertainty Quantification: Asymptotic Theory

We calculated standard errors and confidence intervals [3, 4] in order to quantify
the uncertainty in estimating each element of the parameter estimate q̂n for a
given model with scalar observation f(t, q). To compute these values, we must
first define a few other terms. Recall that the statistical model in the OLS case
is of the form

Yj = f(tj, q0) + Ej , j = 1, 2, . . . , n, (5)

where f(tj, q0) (either x(tj , q0) or y(tj , q0) + z(tj , q0)) is the model observation
with the hypothesized “true” parameter vector q0, and the error terms Ej are
independent and identically distributed (i.i.d.) random variables with mean
E[Ej ] = 0 and constant variance var(Ej)=σ2

0 . Then the observations ~Y = {Yj}
are also i.i.d. with mean E[Yj] = f(tj, q0) and variance var(Yj)=σ2

0.
The n x p sensitivity matrix, where n is the number of data points and p is

the number of parameters, is given by the partial derivatives of the model with
respect to each parameter:

χjk(q) =
∂f(tj , q)

∂qk
. (6)

Given the data {yj}
n
j=1 and the resulting parameter estimate q̂n, the vari-

ance σ2
0 can be approximated by

σ2
0 ≈ σ̂2 =

1

n− p

n
∑

j=1

[yj − f(tj, q̂
n)]2. (7)

With these values, we can calculate the following approximation:

Σn
0 ≈ Σ̂n(q̂n) = σ̂2[χnT (q̂n)χn(q̂n)]−1, (8)

where χn =
∑n

j=1 χjk. This matrix is used to compute the standard errors for
each element (k = 1, 2, . . . , p) of q̂n, given by

SEk(q̂
n) =

√

Σ̂n
kk(q̂

n). (9)

The 100(1-α)% confidence intervals can be computed based on the confi-
dence level parameters associated with the parameter estimators qn = qn(~Y )

Prob{qnk − t1−α/2SEk(q
n) < q0k < qnk + t1−α/2SEk(q

n)} = 1− α, (10)

where α is chosen to be small (e.g., α=0.05 for 95% confidence intervals) and
t1−α/2 is determined by Prob(T ≥ t1−α/2) = α/2, where T ∼ tv for v = n − p
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degrees of freedom. The corresponding 95% confidence intervals are then given
by

[q̂nk − t1−α/2SEk(q̂
n), q̂nk + t1−α/2SEk(q̂

n)]. (11)

Asymptotic standard errors were calculated using the Simbiology 2012a
package in Matlab for Tables 2, 5, and 7.

3.4. Uncertainty Quantification: Bootstrapping

Rather than using asymptotic theory to compute the standard errors and confi-
dence intervals in parameter estimation, one can alternatively use the bootstrap-
ping technique, as described in [3, 6, 8, 9, 14]. As was previously stated, we
implemented the bootstrapping technique for the RNA3 delay differential equa-
tion model. To do this, an initial parameter vector estimate, q̂n, must first be
estimated using OLS techniques. The next step is to calculate the standardized
residuals, rj, of these estimates:

rj =

√

n

n− p
(yj − f(tj, q̂

n)), j = 1, ...n, (12)

where n is again the number of data points and p is the number of parame-
ters. We then create bootstrap sample points by sampling residuals rmj with
replacement from {rj}

n
j=1 and adding them to the model solution:

ymj = f(tj, q̂
n) + rmj , j = 1, ...n, m = 1, ...,M. (13)

After creating M = 1000 simulated bootstrap data sets in this fashion, this
technique is completed by conducting M inverse problems to fit the model to
each of these simulated data sets and storing the parameter estimates q̂m in a
matrix, QBOOT . With these values, the mean, variance, and standard errors
for the parameters can be calculated using the following formulas given in [3]:

q̂BOOT =
1

M

M
∑

m=1

q̂m,

V ar(q̂BOOT ) =
1

M − 1

M
∑

m=1

(q̂m − q̂BOOT )(q̂
m − q̂BOOT )

T ,

SEk(q̂BOOT ) =
√

V ar(q̂BOOT )kk.

The confidence intervals are then calculated by using equation (11).
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3.5. Model Comparison Testing

In order to compare the effectiveness of various model components, we used a
statistical model comparison test [2, 4] to test the null hypothesis, H0, that a
certain parameter is not needed to describe the system. If we can reject the
null hypothesis, then we determine that the parameter in question is needed
to accurately describe the system. The parameter vector q belongs to the
parameter set Q, and the restricted parameter set QH ⊂ Q is defined for each
model comparison test by fixing the parameter in question. For example, in
Section 4.1, QH = {rx, dx, 0} and Q = {rx, dx, A}, and in Section 4.3, QH =
{ry, dy,m, dz , 0} and Q = {ry, dy,m, dz , τ}. Given data (~t, ~y) = ({tj}, {yj}),
with n data points, one defines the OLS cost to be Jn(~y, q) = 1

nΣ
n
i=1[yj −

f(tj, q)]
2. Then the realizations of the OLS estimators over the sets Q and QH

are given by:

q̂n = argmin
q∈Q

Jn(~y, q) and q̂nH = arg min
q∈QH

Jn(~y, q). (14)

After obtaining the two values above, we calculate the following test statistics:

Tn(~y) = n(Jn(~y, q̂
n
H)− Jn(~y, q̂

n)) and Un(~y) =
Tn(~y)

Jn(~y, q̂n)
. (15)

Note that Jn(~y, q̂
n
H) is greater than or equal to Jn(~y, q̂

n), so Tn(~y) and Un(~y)

are non-negative values. One can argue [2] that Un(~Y ) is asymptotic to a χ2

distribution with r = 1 degrees of freedom which we use with parameters of
interest (ξ, α), where α is the significance level, and ξ is the threshold corre-
sponding to α in the χ2(r) table. The degrees of freedom, r, is 1 in this case,
since we are only eliminating one variable for each test. Once we calculate the
test statistic Un(~y), we find the corresponding α∗, which is the P-value. If this
P-value α∗ < α, or if the test statistic Un(~y) > ξ, then we reject H0 as false

with confidence (1− α∗)100%. Otherwise, we do not reject H0 as true.

4. Results

We developed the mathematical model in equations (1)-(3) in order to test
several biological hypotheses about protein 1a production and the recruitment
of RNA3 by protein 1a. We tested these hypotheses using inverse problem
methodology, data from two biological replicates, and statistical model com-
parison tests to evaluate different forms for h(x) and g(x) in the model (1)-(3).
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Replicate Linear P1a Non-linear P1a Model comparison
Replicate model OLSC model OLSC P-value

1 40.651 38.439 0.55679
2 52.095 7.4835 2.22 ∗ 10−9

Table 1: Ordinary least squares costs (OLSC) and model comparison
P-values for the protein 1a models. The Linear P1a model is the case
where A = 0 and the Non-linear P1a model is the case where A >
0 in equation (1) with h(x) = rx

1+Ae−x . We used a statistical model
comparison technique to test whether the OLSC was significantly lower
for the Non-linear P1a model. The resulting model comparison P-value
was significant in the second replicate, indicating that the parameter A
is important for describing protein 1a production in this data set.

Below, we comment on the consistency of our findings between the replicate
data sets. We quantified the uncertainty in our parameter estimates and pro-
pose a new experimental design to reduce this uncertainty.

4.1. Comparison of a Non-Linear vs. Linear Model for Protein 1a

Production

We tested whether protein 1a production could be described using a non-linear
equation by comparing two models represented in equation (1) with h(x) =

rx
1+Ae−x . When A = 0, equation (1) reduces to a standard linear model of
protein production with a constant expression rate, rx, and an exponential
degradation rate, dx. We refer to this case as the “Linear model”. When
A > 0, the constant expression rate becomes a threshold function which tends
to a maximum rx as x → ∞. We refer to this case as the “Non-linear model”.
We note that for these models the forward simulations were run using ode45,
the inverse problems were solved using Simbiology, and the standard errors were
also computed using Simbiology.

We found that the Non-linear model resulted in a lower OLS cost than the
Linear model for each replicate data set (Table 1). We note that this result
is expected, since the Non-linear model is a one parameter extension of the
Linear model. We used a statistical model comparison technique (see Section
3.5) in order to test whether the lower OLS cost for the Non-linear model was
significant, i.e., if A > 0 or A = 0 for each replicate data set. We found that
A > 0 for replicate 2 and that A can be taken to be zero for replicate 1.

These results suggest that using a non-linear function to describe protein
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Figure 3: The protein 1a model solution (equation (1)) is plotted to-
gether with the data for two replicates. Both the abscissa and ordinate
axes are plotted with the transformation log(w + 1).

1a production may be a correct assumption, since it improved the OLS cost in
both replicates and provided a statistically significantly lower OLS cost for the
second replicate. These results reflect the difference in the dynamics between
replicate 1 and replicate 2. The data from replicate 2 displays an inflection
point, whereas the replicate 1 data do not (Figure 3).

Taking both replicates into consideration, the Non-linear model more accu-
rately fit the experimental data than the Linear model, since it is able to cover
a wider range of biological dynamics. The parameter estimates, their standard
errors, and 95% confidence intervals are presented in Table 2. The second repli-
cate shows much lower standard errors and narrower 95% confidence intervals
than the first replicate. The high standard error for the parameter A resulted
in a negative lower bound for the 95% confidence interval for replicate 1. This
result may reflect the high P-value from the model comparison test for replicate
1 which showed that the parameter A could be taken equal to zero (Table 1).

4.2. Comparison of a Mass Action vs. Threshold Model for RNA3

Recruitment

We tested whether RNA3 recruitment could be described using a threshold
equation by comparing two models represented in equation (2) with g(x) =
mxH

1+BxH . When the Hill coefficient H = 1 and the threshold parameter B = 0,
the function g(x) represents the mass action interaction between protein 1a and
RNA3. To estimate parameters in the RNA3 model, i.e., equations (2) and (3),
we first fixed the parameters in (1) for each replicate using the values in Table 2.
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Replicate Parameter Estimate Standard Error 95% CI

1 rx 18.245 5.419 (7.62376,28.86624)
1 dx 0.18343 0.058 (0.06975,0.29711)
1 A 3.7577 8.907 (-13.70002,21.21542)
2 rx 34.691 4.166 (26.52564,42.85636)
2 dx 0.34448 .0466 (0.253144,0.435816)
2 A 22.706 6.222 (10.5148,34.8972)

Table 2: Parameter estimates, standard errors, 95% confidence intervals
(CI) for two replicate data sets using the non-linear model for protein
1a (equation (1)).

Replicate OLSC ry dy m dz B H

1 1.865 71.694 2.1907 0.046953 0.54328 4.44× 10−14 1
2 6.4498 49.118 4.7462 0.090914 0.33433 4.44× 10−14 1
1 7.2991 88.411 3.1 0.033291 0.20353 0.051429 2
2 15.447 44.535 4.8707 0.02859 0.17706 0.012453 2
1 7.4622 71.418 2.642 0.33116 0.19539 0.45694 5
2 30.441 49.104 6.0935 0.22848 0.14623 0.099123 5
1 7.4973 74.594 2.7883 0.31623 0.1951 0.43802 10
2 32.518 50.17 6.0106 1.2352 0.14448 0.55289 10

Table 3: OLS costs and parameter estimates for threshold function with
H = 1, 2, 5, 10. Hill coefficients withH > 1 resulted in higher OLS costs
than the case for H = 1. The most accurate fit when H = 1 resulted
in B ≈ 0.

We then estimated the parameters {ry, dy,m, dz , B} by fixing H = 1, 2, ..., 10.
We note that for these models the forward simulations were run using ode45
and the inverse problems were solved using lsqnonlin with parameter bounds
{[0, 100], [0, 10], [0, 8], [0, 1], [0, 2]} for {ry, dy,m, dz, B}, respectively. We found
that for H = 1 the parameter B was close to zero (see Table 3), suggesting that
B = 0 in this case. When H > 1 we found that the OLS costs were greater in
each replicate than for H = 1. Taken together, these findings suggest that the
form of g(x) with B = 0 and H = 1 is the most accurate model for these data
sets, i.e., a threshold form for g(x) is not an accurate assumption.
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Replicate RNA3 Non-delay RNA3 Delay Model comparison
Replicate model OLSC model OLSC P-value

1 1.8653 0.35928 5.302 × 10−7

2 6.4499 0.66937 6.099 × 10−13

Table 4: Ordinary least squares costs (OLSC) and model comparison
P-values for the RNA3 models. The Non-delay model is the case where
τ = 0 and the Delay model is the case where τ > 0 for equations (2)
and (3) with g(x) = mx(t− τ).

4.3. Comparison of a Delay vs. Non-Delay Model for RNA3

Recruitment

We tested whether RNA3 recruitment could more accurately be described using
a discrete time delay by comparing two models represented in equations (2) -
(3) with g(x) = mx(t − τ). We refer to the cases where τ > 0 and τ =
0 as the “Delay model” and “Non-delay model”, respectively. To estimate
parameters in the RNA3 model, i.e., equations (2) and (3), we first fixed the
parameters for (1) for each replicate using the parameter estimates in Table 2.
We note that the forward simulations for the Non-delay models were run using
ode45, the forward simulations for the the Delay models were run using dde23,
and the inverse problems were solved using lsqnonlin with parameter bounds
{[0, 100], [0, 10], [0, 8], [0, 1], [0, 3]} for {ry, dy ,m, dz, τ}, respectively. Similar to
the protein 1a model calculations, extending the model from τ = 0 to τ >
0 lowers the OLS cost for each of the two replicate data sets. However, in
contrast to the protein 1a model analysis, we found that this lower OLS cost
was statistically significant in both replicates (Table 4 and Figure 4). That is,
we used a statistical model comparison technique to test whether the OLSC
was significantly lower for the Delay model. The resulting model comparison
P-value was significant for both replicates, indicating that the time delay (τ) is
important for describing RNA3 recruitment in these data sets.

The range of parameter estimates was consistent between the two replicates
(Table 5) despite the difference in qualitative behavior in the second replicate,
i.e., the initial decrease in RNA3 intensity (Figure 4). We postulate that this
initial decrease in RNA3 intensity may have been due to a fluctuation RNA3 ex-
pression around time t = 0. Despite the possible heterogeneity in experimental
conditions, the estimate for the time delay in our model was highly consistent
between both replicates. Importantly, our parameter estimates agreed with the
biological observation that recruited RNA3 is more stable than un-recruited
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Figure 4: The RNA3 model solution (equations (2) and (3)) is plotted
together with the data for two replicates. The abscissa and ordinate
axes are plotted with the transformation log(w+1) and log(w), respec-
tively.

RNA3, i.e., dz < dy. This finding is significant because this inequality was not
imposed in any way by our inverse problem methodology.

4.4. Uncertainty Quantification for the Delay Model

We quantified the uncertainty in our parameter estimates for the Delay model
by calculating standard errors. Asymptotic standard errors were calculated
while simultaneously calculating parameter estimates using Simbiology. We
assigned a time-dependent function for x(t − τ) in Simbiology by first solving
for x(t) using fixed values for {rx, dx, A} listed in Table 2. We computed the
asymptotic estimates of the standard errors and found the standard errors to
be unreasonably high for all estimated parameters (Table 5). Since all but one
of these standard errors were larger than the parameter estimates themselves,
we did not compute 95% confidence intervals. We next computed the standard
errors using bootstrapping. We note that for bootstrapping we ran forward
simulations using dde23 and used lsqnonlin to solve each inverse problem with
the same parameter bounds stated above.

Bootstrapping results were grouped by parameter and the estimates were
plotted in histograms. Since some of the distributions were non-normal, there
were instances where the usual computation of standard errors and confidence
intervals could not be used. Details explaining the assumptions and algorithm
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Replicate Parameter Estimate SE

1 ry 31.641 53.249
1 dy 0.7562 1.7005
1 dz 0.3139 0.5047
1 m 0.5557 0.8791
1 τ 1.2374 1.2224
2 ry 27.057 47.016
2 dy 2.6264 3.3181
2 dz 0.2681 .5763
2 m 4.7993 26.707
2 τ 1.3717 0.2275

Table 5: Parameter estimates and asymptotic standard errors for the
RNA3 Delay model (equations (2) and (3) with a positive time delay
τ).

Replicate Parameter 95% CI

1 ry (24.7190, 99.9618)
1 dy (0.5523, 2.8175)
1 m (0.0578, 8)
1 dz (0.2480, 0.7795)
1 τ (0.4649, 2.0107)
2 ry (23.9962, 86.3599)
2 dy (2.1491, 7.3002)
2 m (0.0961, 8)
2 dz (0.2369, 0.5660)
2 τ (0.3217, 1.6503)

Table 6: Confidence intervals for bootstrapping estimates from repli-
cates 1 and 2.

used to calculate these quantities are found in [6, 7, 8, p. 285 - 287]. Alter-
natively, 95% confidence intervals were computed by eliminating the first and
last 2.5% of the parameter distribution. For example, given our 1000 bootstrap
sample parameter estimates, we ordered each parameter vector and selected the
26th and the 974th value to be the lower and upper bound of the confidence
interval, respectively. This process was repeated for both replicates. The re-
sulting histograms and 95% confidence intervals for the two replicates are given
in Figure 5 and Table 6, respectively.
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Figure 5: Boostrapping distributions for {ry, dy ,m, dz, τ} for replicates
1 and 2.

For replicate 1, we note that the parameter estimates are not normally
distributed, nor symmetric. For example, the distribution of parameter esti-
mates for m accumulate along the bounds of optimization, and a number of the
ry estimates accumulate at 100, which was the upper bound of optimization.
There are a number of reasons that the distributions may not be normally dis-
tributed, including the possibility that M = 1000 were not enough bootstrap
samples (since the Central Limit Theorem is based on the assumption that
M −→ ∞), or that we used constrained minimization. An exception to this
non-normality is the τ distribution, which appears to be approximately normal.
Similar results were found for replicate 2.

4.5. Proposed Experimental Design for Future Data Collections

We showed, using both asymptotic theory and bootstrapping, that the stan-
dard errors for our parameter estimates were unreasonably high for both of our
replicates. Here, we propose an experimental design that is likely to result in
significantly lower standard errors. Our current experimental design induces
RNA3 and allows it to reach steady state prior to protein 1a induction and
prior to collecting either RNA3 or protein 1a data. Under the assumption that
RNA3 is in steady state at time t = 0, i.e. the time when protein 1a is induced,
we could estimate the ratio

ry
dy

by y(0). We propose that we could also estimate
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Figure 6: A proposed data collection for RNA3 and protein 1a for future
experiments. The data after time t = 0 are the same data shown in
Figure 2, i.e., t = 0 is the time when protein 1a expression is induced.
We propose to collect data for RNA3 after removing both the protein
1a and RNA3 inducers after t = 48 hrs. An example of additional data
collection times are shown as t = 48.5, 49, 49.5, 50 hrs. The data at t >
48 are artificial and only meant to show a trend towards degradation.

dy by removing the copper and galactose inducers at t = 48 hrs and then col-
lecting RNA3 data. When there is no inducer present, ry = 0 and the model for

y(t) would then be dy
dt = −dyy. Once dy is estimated, we could then estimate ry

using the formula ry = dyy(0). Then, once we have estimates for {ry, dy}, we
could proceed to estimate {m, τ, dz} using the post-protein 1a induction data
(e.g., see Figure 6). We exemplified the theoretical effect of this design on the
standard errors by fixing {ry, dy}, re-estimating {m, τ, dz}, and then calculating
the standard errors and 95% confidence intervals for these parameter estimates.
Asymptotic standard errors were calculated and bootstrapping was run using
the same methodology as stated in Section 4.4.

We first computed the asymptotic standard errors and found that the new
design could theoretically reduce the range of the confidence intervals by sev-
eral orders of magnitude (Table 7). We found that both m and τ had larger
confidence intervals in replicate 2, indicating that the qualitatively different
behavior of this replicate may have strongly influenced the uncertainty in pa-
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rameter estimation. Thus, we recommend to repeat the replicate if an initial
decrease in RNA3 intensity is observed.

Replicate Parameter Estimate SE 95% CI

1 m 0.2343 0.0067 (0.221168,0.247432)
1 dz 0.3474 0.0031 (0.341324,0.353476)
1 τ 1.0358 0.0014 (1.033056,1.038544)
2 m 1.5665 0.3060 (0.96624,2.16576)
2 dz 0.2731 0.0446 (0.185684,0.360516)
2 τ 1.1497 0.0056 (1.138724,1.160676)

Table 7: Parameter estimates, standard errors, and 95% confidence
intervals for the delay model of RNA3 recruitment (equations (2) and
(3) with a positive time delay τ) and {ry, dy} fixed using hypothesized
data.

We verified the asymptotic results using bootstrapping and again found
that our proposed experimental design could decrease the range of the confi-
dence intervals substantially (Table 8). Fixing the parameters {ry, dy} changed
the bootstrapping distributions to be more normally distributed and narrow
than the distributions calculated for the parameters {ry, dy,m, τ, dz} (Figure
7). We note that the bootstrapping estimates in Table 8 do not agree with the
asymptotic estimates in Table 7. This disagreement reflects the differences in
the algorithm for computing parameter estimates and standard errors for each
of the methods. The Simbiology 2012a package was used to simultaneously
compute the parameter estimates and standard errors for the asymptotic esti-
mates, whereas the bootstrapping estimates used the lsqnonlin function with
the same initial guesses used in the above bootstrapping efforts. However, both
the asymptotic and bootstrapping results showed that the proposed experimen-
tal design could decrease the uncertainty in our parameter estimates, regardless
of the algorithm used to calculate them.

5. Discussion

Our results indicate that a mathematical model can accurately fit BMV recruit-
ment data and that we may be able to reduce the uncertainty in parameter esti-
mates for the model by collecting RNA3 data after removing the inducers from
the experiment. Our model accurately captured the features of two biological
replicates, even though the data were qualitatively different between replicates.
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Figure 7: Bootstrapping distributions for {m,dz , τ} for replicates 1 and
2 with {ry, dy} fixed.

Replicate Parameter Bootstrap estimate 95% CI

1 m 0.2313 (0.22514,0.23958)
1 dz 0.3459 (0.33737,0.35552 )
1 τ 1.0349 (1.0313,1.041)
2 m 3.0589 (2.6531,3.5573 )
2 dz 0.2825 (0.27613,0.28945)
2 τ 1.1458 (1.1432,1.1539)

Table 8: Bootstrapped parameter estimates and 95% confidence inter-
vals for the RNA3 model (equations (2) and (3) with a positive time
delay τ) with {ry, dy} fixed.

For example, the RNA3 data for replicate 2 showed a distinct initial decrease
before converging toward a steady state (Figure 4). The parameter estimates
for ry and dy indicate that the RNA3 steady state without protein 1a induction
for this replicate was lower than the initial condition. One possible biological
explanation for this behavior is that the values at these time points were so low
that quantification of these values are not completely accurate since they are
very close to background levels. Consequently, in these conditions fluctuations
are normally observed.

Our analysis of the protein 1a data suggest that a non-linear model governs
the production of protein 1a in one out of the two replicates. This is not
completely unexpected since transcription from a promoter does not necessarily
need to follow a linear mode. Changes in physiological state of the cells that
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affect the the uptake of galactose or the adaptation to a new carbon source
might explain the observed behavior.

Our main finding was that the delayed interaction between protein 1a and
RNA3 is likely due to a time delay rather than a threshold effect in the recruit-
ment process. We note that the nature of this interaction was not understood
prior to this study. The high accuracy of the delay model also resulted in a
consistent parameter range for the delay in RNA3 recruitment of around 1.3
hours. To the best of our knowledge, this recruitment time has not been mea-
sured experimentally. If no experimental technique exists for measuring this
recruitment time, then the methodology outlined in the paper, namely collect-
ing longitudinal protein 1a and RNA3 intensity data combined with inverse
problem methodology, may currently be the best technique for estimating this
recruitment time. Although we showed that a time delay model provided ac-
curate fits to the data, it is still unclear what this time delay may biologically
represent. For example, does the 1.3 hours correspond to a rate at which an
RNA state transition occurs, intracellular transport time, or the time needed
by protein 1a to induce the formation of the membrane-enveloped spherules
where RNA3 will be recruited? If it is any of these cases, then are there any
other observable intermediate states or interacting molecules, e.g., host factors
[17], that remain to be measured? We could explore these questions in future
models by adding intermediate transition states between y and z and using
model comparison techniques, e.g., Akaike information criteria, to test whether
such models are more accurate than a time delay model.

The purpose of our current work was to create a biological model and corre-
sponding mathematical model of RNA recruitment within the BMV replication
cycle. Thus, we collected data from a yeast system expressing protein 1a and
RNA3 alone. In order to more fully understand the dynamics of RNA repli-
cation, we would need to collect data from a yeast system that also expresses
either RNA2 or protein 2a, since protein 2a is necessary for replication once
RNA has reached the replication complex. Such data could be used in an iter-
ative modeling effort similar to this one, in which we can establish an accurate
mathematical model of the RNA replication system as depicted in Figure 8.
Solid grey lines are processes involved in virion assembly and encapsulation,
whereas all other lines are involved in RNA replication. In the BMV-yeast sys-
tem, RNA1, RNA2, and RNA3 can be expressed to mimic the introduction of
these RNAs into a cellular system by a virus. Each RNA can either be trans-
lated into its respective protein product, or transported to an RNA replication
center. The corresponding RNAs located in replication centers are denoted
by the “rep” subscript. Protein 1a is needed for the recruitment of RNAs to
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Figure 8: A model diagram of the BMV replication cycle.

replication centers and protein 2a is needed for RNA replication. RNA3 ex-
presses, through a subgenomic RNA, the capsid protein that is essential for
encapsidation of the virion. The capsid protein and all viral RNAs are used to
assemble a complete virion. Our current modeling effort incorporates only a
portion of RNA recruitment within the full viral replication cycle, i.e., protein
1a, RNA3, and RNA3rep. The next system we propose to investigate includes
RNA recruitment and replication processes, i.e., protein 1a, protein 2a, RNA3,
and RNA3rep. We propose that this system would be the next logical scenario
to analyze, since it incorporates more variables than our current model and
fewer variables than a full model of the BMV replication cycle.
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