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Abstract

We present a polyhedral framework for establishing general structural properties on
optimal solutions of stochastic scheduling problems, where multiple job classes vie for
service resources: the existence of an optimal priority policy in a given family, charac-
terized by a greedoid (whose feasible class subsets may receive higher priority), where
optimal priorities are determined by class-ranking indices, under restricted linear perfor-
mance objectives (partial indexability). This framework extends that of Bertsimas and
Ni~no-Mora (1996), which explained the optimality of priority-index policies under all

linear objectives (general indexability). We show that, if performance measures satisfy
partial conservation laws (with respect to the greedoid), which extend previous general-
ized conservation laws, then the problem admits a strong LP relaxation over a so-called
extended greedoid polytope, which has strong structural and algorithmic properties. We
present an adaptive-greedy algorithm (which extends Klimov's) taking as input the linear
objective coeÆcients, which (1) determines whether the optimal LP solution is achievable
by a policy in the given family; and (2) if so, computes a set of class-ranking indices that
characterize optimal priority policies in the family. In the special case of project schedul-
ing, we show that, under additional conditions, the optimal indices can be computed
separately for each project (index decomposition). We further apply the framework to
the important restless bandit model (two-action Markov decision chains), obtaining new
index policies, that extend Whittle's (1988), and simple suÆcient conditions for their va-
lidity. These results highlight the power of polyhedral methods (the so-called achievable

region approach) in dynamic and stochastic optimization.
Key words: stochastic scheduling, restless bandits, greedoids, polyhedral methods, con-
servation laws, achievable region.
Journal of Economic Literature Classi�cation: C60, C61.
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1 Introduction

The application of polyhedral methods in the problem domains of combinatorial optimiza-
tion, and of dynamic and stochastic optimization, shows remarkably disparate degrees of
development. In combinatorial optimization, the polyhedral approach has been established
as a powerful methodology for designing and analyzing both optimal and heuristic solutions,
spanning the major research area of polyhedral combinatorics. In contrast, the use of poly-
hedral (or, more generally, mathematical programming) methods in dynamic and stochastic
optimization, which has been called the achievable region approach (cf. [6]), is substantially
less developed. This is one among several emerging methodologies that aim to overcome the
limitations of the standard solution approach in that domain, based on dynamic program-
ming (DP): DP formulations, hindered by the curse of dimensionality, have not yielded a
widely applicable methodology for solving, exactly or approximately, many important models
motivated by modern applications.

The development of the achievable region approach has mainly concentrated in the area
of stochastic scheduling. Such problems are concerned with the optimal dynamic allocation
of servers/machines to jobs of multiple classes subject to random dynamics and processing
requirements. The goal is to design a scheduling policy, belonging in a typically large space
of admissible policies, which speci�es dynamically how jobs vying for a server's attention are
to be prioritized for service, with the goal of optimizing a given performance objective (e.g.,
minimizing the class-weighted time-average job delay).

Faced with a stochastic scheduling problem, the achievable region approach proceeds in
three steps: (1) the �rst step involves identifying the relevant vector of performance mea-
sures (e.g., the time-average delay for each job class), and characterizing the corresponding
achievable region, spanned by achievable performance vectors under all admissible policies;
the characterization should be in the form of tractable mathematical programming { prefer-
ably linear programming (LP) { constraints; if a full characterization is not available, a
tractable relaxation is sought instead; this yields a deterministic mathematical programming
formulation (exact or relaxed) of the given stochastic scheduling problem, which involves op-
timizing the performance objective over such constraints; (2) the second step involves solving
the mathematical programming formulation, either through general methods, or, preferably,
through a speci�c algorithm that exploits special structure; and (3) the third step involves
designing a scheduling policy out of the information provided by the optimal solution to the
mathematical program; such policy can be either optimal or heuristic; in the latter case, that
solution provides bounds on the extent of the policy's suboptimality.

This three-step plan has been successfully deployed in an increasingly general range of
stochastic scheduling models, starting with the pioneering work in [5]. That paper addressed
the problem of scheduling a single server on a multiclass M=M=1 queue to minimize a time-
average class-weighted delay objective. The achievable region of mean delays for each job
class was characterized as a polyhedron with strong structural and algorithmic properties: a
polymatroid, introduced in [7], related to a matroid over all job class subsets, whose vertices
are achieved by priority policies. The characterization followed from the satisfaction by the
performance vector of mean delays of a set of work conservation laws. The optimality of
the classical c�-rule, which computes an index for each job class, and then assigns higher
priority to classes with larger indices, was thus shown to follow from the optimality of the
greedy algorithm for solving an LP over a polymatroid. Increasingly general frameworks
for establishing the optimality of such priority-index policies were developed in [8], [18],
and [1]. The latter paper advanced beyond the polymatroidal structure, establishing that
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if performance measures satisfy generalized conservation laws, then the achievable region is
an extended polymatroid (introduced in [19]), de�ned by linear constraints associated with
all class subsets, whose vertices are also achieved by priority policies. The optimal priority
indices corresponding to an arbitrary linear objective are eÆciently computed by an adaptive-
greedy algorithm introduced by Klimov in [11]. This framework provided a new polyhedral
explanation for the optimality of the Gittins index policy in classical multiarmed bandits (see
[10]), and several extensions. Note that all such polyhedral frameworks identify conditions
on a scheduling problem's performance measures under which the problem exhibits a general
indexability property: an optimal set of priority indices can be computed for each linear
performance objective.

In many important models, however, satisfaction of general indexability is too strong a
requirement. The relevant concern is instead to establish the optimality of a given restricted
family of priority policies, where optimal priorities are detemined by ranking indices as above,
for an appropriately restricted range of linear performance objectives. We call such property
partial indexability.

A major example where partial indexability, as opposed to general indexability, is the rel-
evant concern, is given by the restless bandit problem, introduced by Whittle in [21]. This is
arguably the most promising extension of the classical multiarmed bandit model in stochastic
scheduling. It involves a given number of stochastic projects (or restless bandits), modeled as
general Markov decision chains (MDC) having two actions (active and passive) available in
each state. At each discrete time epoch, a �xed number of projects must be engaged (active).
The problem consists in designing a scheduling policy, which selects the projects to be en-
gaged at each time, in order to optimize a total expected discounted reward/cost objective.
Unlike the classical model, the restless bandit problem is computationally intractable (cf.
[16]). Yet, in a pioneering analysis, Whittle [21] presented a priority-index heuristic policy
for the problem, having good asymptotic properties (see [20]), which is motivated by the
optimal solution of a relaxed problem. The Whittle indices (associated with project states)
are computed separately for each project, as they characterize the optimal solutions to a
parametric family of single-project subproblems. Unlike the Gittins indices (which they ex-
tend), the Whittle indices are typically not de�ned for all reward/cost objective coeÆcients,
but only, possibly, for some of them. This motivated the development of alternative index
policies in [4]. Furthermore, the index de�nition given by Whittle does not provide a quali-
tative understanding of the conditions under which the indices are well de�ned. As Whittle
stated in [21],

... one would very much like to have simple suÆcient conditions for indexa-
bility. At the moment, none are known.

Motivated by the above considerations, we present in this paper a general polyhedral
framework for establishing the optimality of a given, restricted family of priority policies in a
stochastic scheduling problem, where the optimal priorities are determined by ranking indices,
under correspondingly restricted linear objectives (partial indexability). The given policy
family is characterized by the class subsets that may receive higher priority, which are assumed
to form a greedoid (cf. [12]). We show that, if system performance measures satisfy a set of
partial conservation laws (which generalize the extended conservation laws in [1]), associated
with the given greedoid, then the problem admits an LP relaxation over a certain polyhedron,
which we call an extended greedoid polytope. Such polyhedra possess, like the extended
polymatroids (cf. [1]) which they generalize, strong structural and algorithmic properties.
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We present an extension of Klimov's [11] adaptive-greedy algorithm, adapted to the greedoid
structure, which takes as input the vector of linear objective coeÆcients. The algorithm's
output (1) determines whether the corresponding optimal LP solution is achievable by a
priority policy in the given family; and (2) if so, computes a set of ranking indices that
characterize optimal priority policies in the family. In the case where the scheduling problem
corresponds to a project scheduling model, we identify additional conditions under which the
indices possess a strong decomposition property, which allows their independent computation
for each project (e.g., in parallel). We further apply the framework to the restless bandit
model, presenting new de�nitions of priority indices, which extend Whittle's, together with
suÆcient conditions for their validity.

The paper is organized as follows. Section 2 describes a motivating problem, which
involves establishing structural properties on optimal solutions of a single restless bandit
(two-action Markov decision chains). Section 3 introduces the notion of extended greedoid
polytope, and develops structural and algorithmic properties for solving LP problems over
such polyhedra. Section 4 presents the polyhedral framework of partial conservation laws,
for establishing the partial indexability property in stochastic scheduling problems. Section 5
applies the framework to the motivating single restless bandit model of Section 2, presenting
new de�nitions of priority indices, which extend those given by Whittle [21] and simple
suÆcient conditions for their validity. Finally, Section 6 illustrates the framework through a
speci�c single restless bandit example.

The results presented in this paper substantially extend those developed in [13]: in that
paper, we introduced the notion of partial conservation laws, and applied it to analyze the
indexability property of restless bandits introduced by Whittle, which is a special case of that
introduced in this paper. No greedoid structure was considered in that paper.

In the companion paper [15] we have developed a similar polyhedral framework, also based
on an underlying greedoid structure, for designing and analyzing heuristic index policies with
given structural properties.

2 Motivating problem: structured optimal solutions for single

restless bandit problems

2.1 Model formulation

Consider a single restless bandit, i.e., a two-action Markov decision chain (MDC) (cf. [17]),
whose state X(t) evolves over discrete time epochs t � 0 through a �nite state space N . The
process fX(t) : t � 0g is controlled by a policy u, which decides at each time t which of two
actions available, passive (a(t) = 0) or active (a(t) = 1), is to be taken. To be admissible,
a policy is only required to belong in the class U of nonanticipative policies, which base
decisions on the history of states visited up to and including the current time. Taking action
a 2 f0; 1g in state e 2 N has two direct e�ects: �rst, an immediate cost Ca

e is incurred;
second, the state at the next time epoch is determined through a Markovian transition rule,
being e0 2 N with probability paee0 . Costs are discounted in time by factor 0 < � < 1. The
initial state X(0) is known up to a probability distribution, being e with probability pe, for
e 2 N . We write Ca = (Ca

e )e2N , P
a = (paee0)e;e02N , for a 2 f0; 1g, and p = (pe)e2N .

Let us denote by Zu(C0;C1) the total expected net present value of costs incurred over
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an in�nite horizon under policy u 2 U , i.e.,

Zu(C0;C1) = Eu

"
1X
t=0

C
a(t)
X(t) �

t

#
: (1)

In (1), Eu [�] represents the expectation operator under policy u, conditional on initial state
distribution p. The corresponding single restless bandit problem consists in �nding a policy
uOPT 2 U that minimizes performance objective Zu(C0;C1), and in computing the corre-
sponding optimum value ZOPT(C0;C1):

ZOPT(C0;C1) = min
�
Zu(C0;C1) : u 2 U

	
: (2)

It is well known from DP theory (cf. [17]), that there exists an optimal policy to (2) that
is (i) stationary and deterministic, i.e., it assigns a �xed action to each state; and (ii) optimal
for any initial state probability vector p.

Note that each stationary deterministic policy is characterized by the set of states where
it takes the active action. Let us thus associate with each state space subset S 2 2N the
corresponding S-active policy: this takes the active action over states in S, and the passive
action otherwise. Abusing notation, we shall also denote this policy by S. This allows us to
reformulate stochastic optimization problem (2) as the combinatorial optimization problem
of �nding a subset S 2 2N whose associated cost ZS(C0;C1) is minimum:

ZOPT(C0;C1) = min
�
ZS(C0;C1) : S 2 2N

	
: (3)

Formulation (3) highlights the fundamental combinatorial nature of stochastic optimization
problem (2).

2.2 Does DP provide an eÆcient solution?

Classical DP theory provides a theoretically eÆcient solution procedure for problem (2),
which could lead us to consider it \well solved," and elementary. We argue in this section
that such is far from being the case, in general, from the practical viewpoint of actually
designing and implementing an optimal policy in a large-scale model.

In particular, it follows from DP theory that, in spite of the exponential size of the solution
space for problem (3), it can be solved in polynomial time on the size of state space N . This
is a direct consequence of two well-known results: (i) the polynomial size of the standard
LP formulation for MDC problem (1), which involves 2n variables and constraints, where
n = jN j is the cardinality of the state space; and (ii) the polynomial-time solvability of LP.

Yet in large-scale models, where the size of the state space grows exponentially on the
size of the model's de�ning parameters, such a purely computational approach does not yield
a practically eÆcient solution procedure (one that runs in polynomial time on the size of the
model's parameters).

2.3 Establishing structural properties on optimal policies

The above discussion motivates the practical interest of identifying conditions on model pa-
rameters under which a restricted family of policies, which possess a given structural property,
is optimal for problem (2), under a suitably restricted range of linear cost coeÆcients. From
the setting above, a family of policies can be characterized by a given family F � 2N of state
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subsets, where the active action can be taken. Note that sets S 2 F play the role, when
interpreted as policies, of switching surfaces in state space N , as they indicate when to switch
from one action to the other.

Consider now the following problems:

Problem 1. Obtain suÆcient conditions on model parameters under which

ZOPT(C0;C1) = min
�
ZS(C0;C1) : S 2 2N

	
= min

�
ZS(C0;C1) : S 2 F

	
; (4)

so that there exists an optimal policy within the given family F .

Problem 2. Design an eÆcient combinatorial algorithm for �nding an optimal set/policy
SOPT 2 F .

We shall return to problems 1 and 2 above in Section 5. The solutions we shall present
there will be obtained by casting the problems into the general polyhedral framework to
be developed next, in Sections 3 and 4 below. In our framework, we shall assume that set
system (N;F) is a greedoid (cf. [12]), which further satis�es N 2 F , as this seems to us the
appropriate combinatorial model for a switching surface.

3 Extended greedoid polyhedra

We introduce in this section a new type of polyhedron associated with a greedoid, which
generalizes the extended polymatroids identi�ed in [19] and further investigated in [2], [1]. As
we shall show below, such greedoid polyhedra, like extended polymatroids, possess strong
structural and algorithmic properties. They shall play a central role in the polyhedral frame-
work for stochastic scheduling problems to be presented in Section 4, in which they provide
strong LP relaxations, which, under appropriate conditions, are tight and characterize opti-
mal policies.

Let N be a �nite set with cardinality jN j = n, and let F be a collection of subsets
of N , i.e., F � 2N . Let b(S) be a nonnegative set function de�ned on S 2 F , and let
A = (AS

e )e2N;S2F be a weight matrix that satis�es

AS
e > 0; e 2 S; S 2 F : (5)

We shall assume that (N;F ; A ) is a weighted greedoid, as de�ned next, which further satis�es
N 2 F .

De�nition 1 (Weighted greedoid) Set system (N;F) is a greedoid if the following con-
ditions hold:
(i) ; 2 F ;
(ii) S 2 F , S 6= ; =) there exists e 2 S such that S n feg 2 F ;
(iii) S1; S2 2 F , jS1j > jS2j =) there exists e 2 S1 n S2 such that S2 [ feg 2 F .
If, furthermore, A = (AS

e )e2N;S2F is a real weight matrix, we say that (N;F ; A ) is a weighted
greedoid.

Greedoids were introduced in [12], as a characterization of structures in which the greedy
algorithm \works", in an appropriate sense. We de�ne next the notion of (full) ordered string
of a greedoid.
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De�nition 2 ((Full) Ordered string) We say that e = (e1; : : : ; ej) is an ordered string
of greedoid (N;F) if the following conditions hold:
(i) e1; : : : ; ej are distinct elements of N ;
(ii) fe1; : : : ; eig 2 F , for 1 � i � j.
If N = fe1; : : : ; eng; we further say that e is a full ordered string.

We shall denote by E(F) the set consisting of all the full ordered strings of greedoid
(N;F). For each e = (e1; : : : ; en) 2 E(F) and real vector x =(xe)e2N , let us write

xe = (xe1 ; : : : ; xen)
0

(where v0 denotes the transpose of a vector v),

be = (b(fe1g); : : : ; b(fe1; : : : ; eng))
0 ;

and

A
e =

0BBBB@
A
fe1g
e1

A
fe1;e2g
e1 A

fe1;e2g
e2

...
...

. . .

A
fe1;:::;eng
e1 A

fe1;:::;eng
e2 � � � A

fe1;:::;eng
en

1CCCCA : (6)

Consider the triangular system of linear equations on x given by

Afe1;:::;eig
e1

xe1 + � � �+Afe1;:::;eig
ei

xei = b(fe1; : : : ; eig); 1 � i � n;

or, in the above matrix notation,
A
e xe = be; (7)

and denote by x(e) = (xe(e))e2N its unique solution.
Let us further de�ne polyhedron P(A ; b) � R

N by

P(A ; b) =

(
x 2 R

N
+ :

X
e2S

AS
e xe � b(S); S 2 F n fNg;

X
e2N

AN
e xe = b(N)

)
; (8)

where RN+ is the space of nonnegative vectors in R
N . Note that (5) implies that P(A ; b) is a

bounded polyhedron, i.e., a polytope.

De�nition 3 (Extended greedoid polytope) We say that polytope P(A ; b) is an extended
greedoid polytope over greedoid (N;F) if, for each e 2 E(F), x(e) 2 P(A ; b).

Note further that the requirement N 2 F , together with the assumption that (N;F) is a
greedoid, implies E(F) 6= ;, and hence P(A ; b) 6= ;. De�nition 3 generalizes that for extended
polymatroids, which correspond to the case F = 2N .

The next result follows directly from De�nition 3 and the standard algebraic characteri-
zation of extreme points for polyhedra, and is thus stated without proof. It provides a partial
characterization for the extreme points of P(A ; b).

Lemma 1 (Extreme points: partial characterization) For each e 2 E(F), x(e) is an
extreme point of P(A ; b).
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3.1 LP over extended greedoid polyhedra and adaptive-greedy algorithm

Consider the LP problem of minimizing a linear cost objective, with coeÆcients vector
C = (Ce)e2N , over extended greedoid polytope P(A ; b):

ZLP(C) = min

(X
e2N

Ce xe : x 2 P(A ; b)

)
: (9)

Consider now the following related questions:

1. Given e 2 E(F), Is extreme point x(e) optimal for LP (9)?

2. What is the region C � R
N of feasible cost vectors C for which there exists an optimal

solution to LP (9) of the form x(e), for some e 2 E(F)? How to �nd such an optimal
solution?

We develop in this section a common algorithmic answer to questions 1 and 2 above. Our
main result will be given in Theorem 2 below, which concerns the adaptive-greedy algorithm
AG(�jA ; N;F) described in Figure 1. This algorithm takes as input cost vector C, and returns
an output of the form (FEASIBLE ;
; e). In the output, FEASIBLE is a 
ag that can return
the value TRUE or FALSE . When FEASIBLE = TRUE , the algorithm further computes a
real index vector 
 = (
e)e2N , and an ordered string e = (e1; : : : ; en) 2 E(F). In short, it
will be shown in what follows that the answers to the above questions are:

1. Extreme point x(e) is optimal if and only if


en � � � � � 
e1 .

2. Cost vector C belongs in region C if and only if FEASIBLE = TRUE . In such case, the
ordered string e 2 E(F) returned by the algorithm is optimal (i.e., x(e) is optimal),
as it satis�es the optimality condition in point 1 above.

We next state formally the result. A proof for it will be given later in the section.

Theorem 2 (Feasibility/optimality by adaptive-greedy algorithm) The following re-
sults hold:
(a) C 2 C if and only if FEASIBLE = TRUE.
Furthermore, if FEASIBLE = TRUE, then
(b) 
 is a univocally determined index vector that characterizes the optimal solutions to LP
(9): they are of the form x(e), where e = (e1; : : : ; en) 2 E(F) satis�es the optimality
condition


en � � � � � 
e1 : (10)

Furthermore, the e 2 E(F) produced by the algorithm satis�es (10).

Algorithm AG(�jA ; N;F) is an extension of the adaptive-greedy algorithm introduced by
Klimov in [11], which was adapted to the solution of LP problems over extended polymatroids
in [19], [2], [1]. In particular, Klimov's algorithm corresponds to the special case of algorithm
AG(�jA ; N;F) where F = 2N , so that, in that case, C = R

N and hence FEASIBLE always
returns the value TRUE .
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ADAPTIVE-GREEDY ALGORITHM AG(�jA ; N;F):
Input: C = (Ce)e2N
Output: (FEASIBLE ;
; e),
where FEASIBLE 2 fTRUE ;FALSEg, 
 = (
e)e2N , and e = (e1; : : : ; en) is a full
ordered string of (N;F).

Initialization:
let FEASIBLE := TRUE
choose en 2 arg min

�
Ce=A

N
e : e 2 N;N n feg 2 F

	
let 
en := �yN := Cen=A

N
en

if �yN > min
�
Ce=A

N
e : e 2 N

	
then

let FEASIBLE := FALSE
end fifg
let Sn = N

Loop:
let k := 1
while FEASIBLE := TRUE and k � n do

let Sn�k := Sn�k+1 n fen�k+1g

choose en�k 2 arg min
nh
Ce �

Pk�1
j=0 A

Sn�j
e �ySn�j

i
=A

Sn�k
e : e 2 Sn�k; Sn�k n feg 2 F

o
let �ySn�k :=

h
Cen�k �

Pk�1
j=0 A

Sn�j
en�k �y

Sn�j

i
=A

Sn�k
en�k

let 
en�k := 
en�k+1
+ �ySn�k

if �ySn�k > min
nh
Ce �

Pk�1
j=0 A

Sn�j
e �ySn�j

i
=A

Sn�k
e : e 2 Sn�k

o
then

let FEASIBLE := FALSE
end fifg
let k := k + 1

end fwhileg

Figure 1: Adaptive-greedy algorithm for weighted greedoid (N;F ; A ).

In the rest of this section we develop several preliminary results on the structure of optimal
solutions for LP (9), which we shall use later for presenting a proof of Theorem 2.

Our analysis of LP (9) is based on consideration of its dual problem. The dual LP, which
must have the same optimum value ZLP(C), is formulated by introducing a dual variable yS

for each S 2 F :

ZLP(C) = max
X
S2F

b(S) yS (11)

subject toX
S:e2S2F

AS
e y

S � Ce; e 2 N

yS � 0; S 2 F n fNg

yNunrestricted:

Given e = (e1; : : : ; en) 2 E(F), and variable vector y = (yS)S2F 2 R
F , let us write

ye = (yfe1g; : : : ; yfe1;:::;eng);
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and let further
Ce = (Ce1 ; : : : ; Cen) :

Consider now the triangular system of linear equations

Afe1;:::;eig
ei

yfe1;:::;eig + � � �+Afe1;:::;eng
ei

yfe1;:::;eng = Cei ; 1 � i � n;

or, in the above matrix notation,
ye A e = Ce; (12)

and let us denote its unique solution by ye(e) =
�
yfe1;:::;ejg(e)

�
1�j�n

. Let us further extend

this solution into a vector y(e) = (yS(e))S2F by letting yS(e) = 0 for all other sets S 2 F
that are not of the form S = fe1; : : : ; ejg. Note that the de�nition of the y

fe1;:::;ejg(e)'s implies
that, for any real vector x = (xe)e2N , the linear objective in LP (9) can be reformulated as

X
e2N

Ce xe =
X
S2F

yS(e)
X
e2S

AS
e xe =

nX
j=1

yfe1;:::;ejg(e)
X

e2fe1;:::;ejg

A
fe1;:::;ejg
e xe: (13)

Let T denote the n� n lower triangular matrix given by

T =

0BBB@
1 0 � � � 0
1 1 � � � 0
...

...
. . .

...
1 1 � � � 1

1CCCA , (14)

and let us de�ne, for each e = (e1; : : : ; en) 2 E(F), the real index vector 
(e) = (
e(e))e2N
given by


ej (e) =
X
S2F

yS(e) =

nX
i=j

yfe1;:::;eig(e); 1 � j � n;

or, in the matrix notation above, letting 
e(e) = (
e1(e); : : : ; 
en(e)),


e(e) = ye(e)T = Ce (A e )�1 T: (15)

Let us return now to question 1 above: given e 2 E(F), How can it be tested whether
extreme point x(e) is optimal? The next result gives the required optimality test.

Lemma 3 (Optimality conditions) The following results hold:
(a) if the condition

ye(e) = Ce (A e)�1 2 R
n�1
+ � R; (16)

or, equivalently,

en(e) � 
en�1(e) � � � � � 
e1(e); (17)

holds, then x(e) and y(e) are an optimal primal-dual solution pair for LP (9) and its dual
LP (11);
(b) if condition (16) (or (17)) fails to hold, and extreme point x(e) is nondegenerate, i.e.,
x(e) > 0 componentwise, then x(e) is not an optimal solution to LP (9).
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Proof

(a) It is straightforward to verify that conditions (16) and (17) are equivalent. Suppose
yfe1;:::;ejg(e) � 0, for 1 � j � n � 1. Then, vector y(e) is a feasible solution to dual LP
(11). Furthermore, vectors x(e) and y(e) satisfy LP complementary slackness, as follows
from their de�nitions. Therefore, they are an optimal primal-dual solution pair as stated.

(b) The result follows from standard LP theory, since the standard LP optimality criterion,
given by (16), is well known to be necessary when applied to a nondegenerate basic feasible
primal solution. 2

Let us consider next question 2 above: For which cost vectors C does there exist an
optimal solution to LP (9) of the form x(e)? The answer is suggested by the optimality
conditions in Lemma 3. Let

C = fC 2 R
N : there exists e 2 E(F) with Ce (A e )�1 2 R

n�1
+ � Rg

= fC 2 R
N : there exists e 2 E(F) with 
en(e) � 
en�1(e) � � � � � 
e1(e)g:

De�nition 4 (Feasible cost region) C is called the feasible cost region for weighted gree-
doid (N;F ; A ).

The next result shows that region C provides the required answer to question 2 above.

Lemma 4 There exists an optimal solution for LP (9) of the form x(e), for some e 2 E(F),
if and only if C 2 C.

Proof
The result is a direct consequence of the de�nition of C above, and Lemma 3(a). 2

In order to characterize C more explicitly, let us de�ne, for each e 2 E(F) as above, the
region C(e) � R

N given by

C(e) =
n
C 2 R

N : ye(e) = Ce (A e)�1 2 R
n�1
+ � R

o
:

Clearly, C(e) is a polyhedron and, furthermore,

C =
[

e2E(F)

C(e):

Therefore, feasible cost region C is a �nite union of polyhedra, though not necessarily a
polyhedron itself.

In the next result we establish an important invariance property of dual vector y(e) and
index vector 
(e) de�ned above.

Lemma 5 (Invariance of indices/dual solution) Dual vector y(e) and index vector 
(e)
are invariant under ordered strings e 2 E(F) that satisfy the optimality conditions in Lemma
3(a).

Proof
Let e = (e1; : : : ; en) be such an ordered string, and let us write Si = fe1; : : : ; eig, for 1 � i � n
(recall Sn = N). Then, by de�nition of y(e) = (yS(e))S2F , the values y

Si(e), for 1 � i � n,
are characterized as the unique solution of triangular linear system

ASi
ei
ySi + � � �+ASn

ei
ySn = Cei ; 1 � i � n: (18)
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Suppose the optimality conditions in Lemma 3(a) hold, i.e.,

ySi � 0; 1 � i � n� 1. (19)

Consider the nontrivial case where, among the sets S1; : : : ; Sn�1, there is some Si for
which ySi > 0. Label such sets as Si1 � � � � � SiK � Sn, for the appropriate 1 � K � n� 1.
We shall establish next that sets Si1 ; : : : ; SiK do not depend on e: they only depend on the
satisfaction of the optimality conditions above, and that they further characterize y(e), which
will prove the result.

The de�nition of sets Si1 ; : : : ; SiK , combined with (18), directly yields that the values of
ySi1 ; : : : ; ySiK ; yN are characterized as the solution of linear system

AN
e yN = Ce; e 2 N n SiK

A
SiK
e ySiK +AN

e yN = Ce; e 2 SiK n SiK�1

A
Sik
e ySik + � � �+A

SiK
e ySiK +AN

e yN = Ce; e 2 Sik n Sik�1
; 2 � k � K

A
Si1
e ySi1 + � � �+A

SiK
e ySiK +AN

e yN = Ce; e 2 Si1 :

This linear system, combined with the assumption that ySik > 0, for 1 � k � K, implies
that

yN = min

�
Ce

AN
e

: e 2 N

�
;

and

N n SiK = argmin

�
Ce

AN
e

: e 2 N

�
;

so that SiK and yN are univocally determined, independently of the speci�c choice of e 2 E ,
as long as it satis�es the required optimality conditions.

Similarly, we have

ySiK = min

(
Ce �AN

e y
N

A
SiK
e

: e 2 SiK

)
and

SiK n SiK�1
= argmin

(
Ce �AN

e y
N

A
SiK
e

: e 2 SiK

)
;

so that SiK�1
and ySiK are also univocally determined.

Arguing inductively, assume now that Sik ; : : : ; SiK , and hence ySik+1 ; : : : ; ySiK ; yN are
also determined independently of the choice of e. Then, it follows from the above that

ySik = min

(
Ce �AN

e y
N �A

SiK
e ySiK � � � � �A

Sik+1
e ySik+1

A
Sik
e

: e 2 Sik

)

and

Sik n Sik�1
= argmin

(
Ce �AN

e y
N �A

SiK
e ySiK � � � � �A

Sik+1
e ySik+1

A
Sik
e

: e 2 Sik

)
;

so that also Sik�1
and ySik are determined independently of e.

13



This proves the result for y(e). Since 
(e) is a linear function of y(e), it must also be
invariant in the same sense, which completes the proof. 2

In light of Lemma 5, we shall write in what follows y and 
 instead of y(e) and 
(e),
when e 2 E(F) satis�es the required optimality conditions. Note that y and 
 can be
regarded as functions of cost vector C, de�ned on domain C. Given the central role of the
indices 
e in the solution of LP (9), we next de�ne them formally.

De�nition 5 (Allocation indices) Given C 2 C, we say that the corresponding 
 = (
e)e2N
is the vector of allocation indices for cost vector C with respect to weighted greedoid (N;F ; A ).

The next result states a fundamental indexability property of LP (9). It says that,
for a feasible cost vector C 2 C, the optimal solutions to LP (9) of the form x(e) as
above are fully characterized by the allocation indices in De�nition 5. Let C 2 C, and
let e = (e1; : : : ; en) 2 E(F). Let further 
 = (
e)e2N be the corresponding allocation index
vector in De�nition 5.

Theorem 6 (Indexability) Vector x(e) solves LP (9) optimally if and only if


en � � � � � 
e1 : (20)

Furthermore, if (20) holds, then the optimal value of LP (9) is

ZOPT(C) = 
en
X
e2N

AN
e xe(e) +

n�1X
i=1

(
ei � 
ei+1)
X

e2fe1;:::;eig

Afe1;:::;eig
e xe(e): (21)

Proof
The �rst result follows by combining optimality condition (17) in Lemma 3(a) with the
invariance result in Lemma 5.

Identity (21) follows by combining (13), the de�nition of allocation indices, and the result
that x(e) is optimal under (20). 2

3.2 Analysis of adaptive-greedy algorithm

We now return to algorithm AG(�jA ; N;F), analizing it in the light of the previous results.
The algorithm has two related functions: (1) to test whether its input C is feasible (C 2 C);
and, (2) if so, to construct the vector 
 = (
e)e2N of allocation indices for LP (9) (see
De�nition 5), as well as an ordered string e = (e1; : : : ; en) 2 E(F) that satis�es optimality
condition (20) in Theorem 6, and therefore yields an optimal solution x(e) to LP (9).

Each step of the algorithm consists of two parts with di�erent purposes: (1) an element
selection part, which selects (in an adaptive-greedy fashion, hence the algorithm's name) the
next element e 2 N to be appended at the right end of the current partially constructed
ordered string; and (2) a feasibility test, which checks whether current information implies
that it is not possible to construct an ordered string e satisfying (16), i.e., whether C 2 C.
The algorithm proceeds to completion, in which case it takes jN j = n steps, only in the case
that each feasibility test is positive, and it exits prematurely otherwise.

Regarding the complexity of the algorithm, let us assume that, for each S 2 F and e 2 S,
the value AS

e is returned by an oracle. Let us further assume that another oracle provides
a membership test for determining whether S 2 F , for each S 2 2N . Then, it is immediate
from the algorithm's description that the number of calls it makes to these oracles is O(n2).
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Furthermore, the algorithm performs O(n3) multiplications and O(n2) pairwise comparisons.
Therefore, in the case where both oracles run in polynomial time on the model's de�ning data,
AG(�jA ; N;F) is a polynomial-time algorithm. adaptive-greedy algorithm AG(�jA ; N;F).

We next present the required proof for the validity of the adaptive-greedy algorithm. Let
(FEASIBLE ;
; e) be an output of algorithm AG(�jA ; N;F) corresponding to a given input
cost vector C.

Proof of Theorem 2
(a) It is immediate from the algorithm's description in Figure 1 that it constructs an ordered
string e of greedoid (N;F) spanning N for which y(e) satis�es optimality criterion (16), so
that FEASIBLE = TRUE , if and only if such an ordered string exists, i.e., if and only if
C 2 C.

(b) If FEASIBLE = TRUE , let e be an ordered string such that y(e) satis�es optimality
condition (16). Then, by the invariance result in Lemma 5, and De�nition 5, it follows from
the algorithm's description that it constructs the vector 
 of allocation indices for LP (9), and
that this satis�es the optimality condition in Theorem 6(b). Hence x(e) is optimal, which
completes the proof. 2

3.3 Feasible cost region and index decomposition

Under additional conditions, both the feasible cost region C and the indices 
e above possess
strong decomposition properties, which dramatically simplify their computation. Suppose
weighted greedoid (N;F ; A ) can be decomposed into K � 2 weighted greedoids (Nk;Fk; A

k ),
where A k = (AS

e )e2Nk;S2Fk , for 1 � k � K, satisfying the conditions given next.

Assumption 1 The following conditions hold:
(i) sets N1; : : : ; NK form a partition of N ;
(ii) (Nk;Fk) is a greedoid with Nk 2 Fk;
(iii) F = fS1 [ � � � [ SK : Sk 2 Fk; 1 � k � Kg;
(iv) AS

e = AS\Nk
e , for S 2 F , e 2 S \Nk.

Note that it follows from Assumption 1 that Fk = fS\Nk : S 2 Fg. Let us further denote
by E(Fk) the set of all full ordered strings of greedoid (Nk;Fk), and let Tk be a matrix with
the same structure as T, given by (14), having dimension n(k)�n(k), where n(k) = jNkj, for
1 � k � K. Our next result will play a key role in our proof of the decomposition results in
Theorem 8 below.

Let e = (e1; : : : ; en) 2 E(F). It should be clear at this point that Assumption 1 implies
that e induces a corresponding full ordered string ek 2 E(Fk) for each k. Let us write
ek = (ei(k;1); : : : ; ei(k;n(k))). For example, if e = (e1; e2; e3), N1 = fe2g and N2 = fe1; e3g,

then e1 = (e2) and e2 = (e1; e3). Let us further write A
e and A

k;ek as in (6), and let


e(e) 2 R
n and 
e

k
(ek) 2 R

n(k) be the appropriate index vectors as de�ned in (15). To
simplify the exposition in what follows, we shall consider (without loss of generality) that

e = (e1; : : : ; eK):

Lemma 7 Under Assumption 1, the following results hold:
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(a)

T
�1
A
e =

0BBBB@
�
T
1
��1

A
1;e1 �

T
2
��1

A
2;e2

. . . �
T
K
��1

A
K;eK

1CCCCA ;

(b)


e(e) = (
e
1
(e1) � � � � � 
e

K

(eK):

Proof

(a) From the de�nition of T in (14), it follows that

T
�1 =

0BBB@
1
�1 1

. . .
. . .

�1 1

1CCCA ;

hence,

T
�1
A
e =

0BBBB@
A
fe1g
e1 0 � � � 0

A
fe1;e2g
e1 �A

fe1g
e1 A

fe1;e2g
e2 � � � 0

...
. . .

. . .
...

A
fe1;:::;eng
e1 �A

fe1;:::;en�1g
e1 � � � A

fe1;:::;eng
en�1 �A

fe1;:::;en�1g
en�1 A

fe1;:::;eng
en

1CCCCA
and similarly, for 1 � k � K, (Tk)�1A k;ek is given by0BBBBB@

A
fei(k;1)g
ei(k;1) 0 � � � 0

A
fei(k;1);ei(k;2)g
ei(k;1) �A

fei(k;1)g
ei(k;1) A

fei(k;1);ei(k;2)g
ei(k;2) � � � 0

...
. . .

. . .
...

ANk
ei(k;1)

�ANknfei(k;n)g
ei(k;1)

� � � ANk
ei(k;n(k)�1)

�A
Nknfei(k;n)g
ei(k;n(k)�1)

ANk
ei(k;n(k)�1)

1CCCCCA :

Notice now that, if ei 2 Nk, ej+1 2 N nNk and i � j, then Assumption 1 implies

A
fe1;:::;ej+1g
ei = A

fe1;:::;ej+1g\Nk
ei = A

fe1;:::;ejg\Nk
ei = A

fe1;:::;ejg
ei ;

and, therefore,

A
fe1;:::;ej+1g
ei �A

fe1;:::;ejg
ei = 0: (22)

The identities in (22), combined with the expressions for T�1A e and (Tk)�1A k;ek above
prove part (a).

(b) This part follows directly by combining part (a) with the de�nition of the index vectors


e(e), (
e
k
(ek) in (15). 2

Let C � R
N be the feasible cost region for weighted greedoid (N;F ; A ), and let Ck � R

Nk

denote the feasible cost region for weighted greedoid (Nk;Fk; A
k ), for 1 � k � K. Given a
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cost vector C = (Ce)e2N , we further write Ck = (Ce)e2Nk
, for each k. If C 2 C, we shall

denote by 
 = (
e)e2N the corresponding index vector. Furthermore, if Ck 2 Ck, we shall
denote by 
k =

�

ke
�
e2N

the allocation index vector for Ck with respect to weighted greedoid

(Nk;Fk; A
k ), for 1 � k � K. See De�nition 5.

Theorem 8 (Feasible cost region/index decomposition) Under Assumption 1 above,
the following results hold:
(a) Feasible cost region C is decomposed as

C = C1 � � � � � CK ;

(b) if C 2 C, then

e = 
ke ; for 1 � k � K: (23)

Proof
Both results follow directly by combining Lemma 7(b), De�nition 5 (allocation indices) and
De�nition 4 (feasible cost region). 2

Theorem 8 allows to simplify considerably the computational burden required for deter-
mining whether a given cost vector C is feasible, and, if so, for computing the corresponding
allocation indices. Recall that, by Theorem 2, such information is given by the output pro-
duced by adaptive-greedy algorithm AG(�jN;F ; A ) when fed with input C. Similarly, the
determination of whether cost vector Ck = (Ce)e2Nk

is feasible, and the computation of
the corresponding allocation indices 
ke in the positive case, is accomplished by algorithm
AG(�jNk;Fk; A

k ) when fed with input Ck = (Ce)e2Nk
.

Therefore, Theorem 8 says that, under the required assumptions, the determination of
whether vector C is feasible, and the corresponding index computation, can be carried out
by running independently (e.g., in parallel) adaptive-greedy algorithm AG(�jNk;Fk; A

k ) on
input Ck = (Ce)e2Nk

, for 1 � k � K, which dramatically reduces the computation time.

4 A polyhedral framework for partially indexable scheduling

problems

In this section we develop a polyhedral framework, based on the properties of the extended
greedoid polyhedra discussed in Section 3, for establishing a wide range of of structural
properties on optimal solutions for stochastic scheduling problems. This framework extends
that given in [1]. Consider a general dynamic and stochastic scheduling model involving a
set N of job classes with �nite cardinality jN j = n. Service resources are to be allocated
to jobs on the basis of a scheduling policy u, belonging in a space U of admissible policies.
The performance of a policy u 2 U over job class e 2 N is given by a performance measure
xe(u) � 0 (we write x(u) = (xe(u))e2N ). We further assume the system admits a consistent
notion of priority between classes: to each (arbitrary) ordered string of all the elements of N ,
e = (e1; : : : ; en), we can associate a corresponding e-policy (which we shall also denote by e
when there is no confusion), which assigns higher priority to class ei over class ej if i < j, so
that class e1 has top priority. We further say that a policy gives priority to S-jobs if it gives
priority to any job class e 2 S over any job class e0 2 Sc = N n S, for S 2 2N .

We shall be concerned with priority policies having a certain special structure, given in
the form of a greedoid (N;F) (see De�nition 1) having N 2 F . Let e = (e1; : : : ; en) be an
arbitrary full ordered string of N . Recall that E(F) denotes the set of full ordered strings of
greedoid (N;F) (see De�nition 2).
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De�nition 6 (F-policy) We say that the e-policy is an F - policy if e 2 E(F).

In light of De�nition 6 and the above discussion, the notation e 2 E(F) will be interpreted
in what follows in two possible ways, which will be clear by the context: (1) e is a full ordered
string of greedoid (N;F); or (2) the e-policy is an F-policy.

Consider, for a given cost vector C = (Ce)e2N 2 R
N , the optimal scheduling problem

ZOPT(C) = inf

(X
e2N

Ce xe(u) : u 2 U

)
; (24)

which involves �nding an optimal policy uOPT 2 U that solves (24), and computing the
optimum value ZOPT(C). Consider the following questions:

1. How could it be established that F -policies are optimal for problem (24) among admis-
sible policies, i.e., that

ZOPT(C) = min

(X
e2N

Ce xe(e) : e 2 E(F)

)
?

2. When such is the case, How can an optimal F -policy eOPT 2 E(F) be found?

We shall address problems 1 and 2 above through the achievable region approach, dis-
cussed in the Introduction (cf. [6]). The �rst step of this approach involves reformulating
problem (24) as a mathematical (preferably linear) programming problem. For this purpose
we consider the system's achievable region X , spanned by performance vector x(u) under all
admissible policies u 2 U , i.e.,

X =
�
x 2 R

N : x = x(u); u 2 U
	
: (25)

This allows us to reformulate stochastic scheduling problem (24) as the deterministic
mathematical programming problem

ZOPT(C) = inf

(X
e2N

Ce xe : x 2 X

)
; (26)

de�ned on variable vector x 2 R
N .

4.1 Partial conservation laws and LP relaxation

In the framework presented in ([1]), a full polyhedral characterization of X was obtained
by assuming that performance vector x(u) satis�es a set of generalized conservation laws.
We extend those results by presenting next a set of partial conservation laws that imply
a partial polyhedral characterization of X . This will provide an LP relaxation of problem
(26) (and hence of (24)), which is tight for some objective functions. The concept of partial
conservation laws was recently introduced by the author in [13], in a less developed setting
that did not involve the greedoid structure.

Let A = (AS
e )e2N;S2F be a weight matrix satisfying (5).
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De�nition 7 (Partial conservation laws (PCL)) Performance vector x(u) satis�es par-
tial conservation laws with respect to greedoid (N;F) and weight matrix A if , letting

b(S) = inf

(X
e2S

AS
e xe(u) : u 2 U

)
; for S 2F ;

the following identities hold: for each S 2 F ,X
e2S

AS
e xe(e) = b(S); under any F-policy e = (e1; : : : ; en) 2 E(F) with S = fe1; : : : ; ejSjg;

(27)
and, for S = N , X

e2N

AN
e xe(u) = b(N); under any F-policy e 2 E(F): (28)

Note that the generalized conservation laws in [1] correspond to the special case where
F = 2N . Assume in what follows that performance vector x(u) satis�es the PCL in De�nition
7. Let P(A ; b) be the polyhedron de�ned in (8).

Theorem 9 (Achievable region: partial characterization) P(A ; b) is an extended gree-
doid polytope, which contains the achievable region X . Furthermore, the performance vectors
x(e) achieved by F-policies e are vertices of P(A ; b). Furthermore, in such case the optimum
performance objective can be expressed as

ZOPT(C) = 
en
X
e2N

AN
e xe(e) +

n�1X
i=1

(
ei � 
ei+1)
X

e2fe1;:::;eig

Afe1;:::;eig
e xe(e): (29)

Proof
Let e = (e1; : : : ; en) 2 E(F). Then, it follows immediately from the de�nition of PCL above
that (1) the vector x(e) = (xe(e)e2N de�ned by the solution of linear equation system (7)
is precisely the performance vector of the e-policy, and x(e) 2 P(A ; b); and (2) the e-policy
is an F-policy. Therefore, P(A ; b) is an extended greedoid polytope. Furthermore, it follows
from Lemma 1 that x(e) is an extreme point of P(A ; b), which completes the proof. 2

4.2 Partial indexability under PCL

If performance vector x(u) satis�es PCL as above, Theorem 9 ensures that LP (9) is an
LP relaxation of scheduling problem (24), in that ZLP(C) � ZOPT(C). Furthermore, since
Theorem 9 also guarantees that the performance vectors achieved by F -policies are vertices
of P(A ; b), it follows that such policies will be optimal for (24) under appropriately restricted
cost vectors C: speci�cally, for C 2 C, where C is the feasible cost region de�ned in Section
3.

We thus see that the strong structural properties of extended greedoid polytopes translate
directly into corresponding structural properties on the optimal policies for problem (24).

As a direct consequence of the indexability property for extended greedoid polytopes
given in Theorem 6, we obtain the following result on the structure of optimal scheduling
policies for problem (24). Let (FEASIBLE ;
; e) be an output of adaptive-greedy algorithm
AG(�jA ; N;F) corresponding to input C = (Ce)e2N . Assume that FEASIBLE = TRUE , so
that C 2 C and 
 = (
e)e2N is the vector of allocation indices in De�nition 5. See Theorem
2.
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Theorem 10 (Partial indexability) Any F-priority policy e = (e1; : : : ; en) 2 E(F) that
assigns higher priorities to classes with larger indices 
e, i.e., which satis�es


en � � � � � 
e1 ;

is optimal for scheduling problem (24).

4.3 Project scheduling: an index decomposition property

We consider in this section the important case where scheduling problem (24) corresponds to
a project scheduling model: there is collection of K projects, where project k evolves through
a �nite state space Nk, for 1 � k � K; projects must be engaged dynamically according
to an admissible project scheduling policy u 2 U . Note that this problem can be cast in
the job scheduling framework above by (1) assuming that the sets Nk are disjoint ; and (2)
identifying each project state with a corresponding job class. Hence, engaging a project
in state e corresponds to working on a class e job. The full class set is thus N = [Kk=1Nk.
Note further that the only relevant priorities in a project scheduling model are those between
classes/states corresponding to distinct projects: this follows since at each time a project is
in a given state, so that two job classes corresponding to the same project never compete
for service resources. We further assume that the weighted greedoid (N;F ; A ) above, which
de�nes the family of F-policies, is decomposed into K corresponding weighted greedoids
(Nk;Fk; A

k ), where
Fk = fS \Nk : S 2 Fg

and A
k = (AS

e )e2Nk;S2Fk , for 1 � k � K, which satisfy Assumption 1.
The index decomposition property of extended greedoid polyhedra (Theorem 8), combined

with Theorem 10, gives directly the next result. Suppose that performance vector x(u)
satis�es the PCL in De�nition 7. Assume that the greedoids (Nk;Fk), for 1 � k � K, satisfy
the conditions for Theorem 8. Let us de�ne, for each 1 � k � K, the submatrix A

k of A by
A
k = (AS

e )e2Nk;S2Fk . Let (FEASIBLEk;
k; ek) be an output produced by adaptive-greedy
algorithm AG(�jA k ; Nk;Fk) when fed with input Ck = (Ce)e2Nk

, where 
k = (
ke )e2Nk
, and

assume that FEASIBLEk = TRUE for each k. Note that the 
ke , for e 2 Nk, can be
considered, in this setting, the allocation indices for the states of project k.

Theorem 11 (Index decomposition for project scheduling) Any F-policy that assigns
higher priorities to projects whose current states have larger indices is optimal.

5 Partial indexability for restless bandits via PCL

In this section we address the problem of designing an eÆcient procedure for solving the
single restless bandit model discussed in Section 2, by establishing and exploiting appropriate
structural properties on optimal policies.

We recall that the single restless bandit problem of interest concerns a single project
modeled as a discrete-time Markov decision chain (MDC), having �nite state space N with
jN j = n, transition probability matrices P

a = (paee0)e;e02N , and immediate cost vectors
Ca = (Ca

e )e2N , corresponding to the active (a = 1) and passive (a = 0) actions, which are
available in each state. The decision of which action to take in each state is made through a
policy u, chosen from the space U of nonanticipative policies. Costs are discounted in time
by factor 0 < � < 1. The initial state probabilities are given by vector p = (pe)e2N , with pe
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being the 0/1 indicator of the initial project state being e. Let us denote by Zu(C0;C1) the
corresponding total expected discounted cost achieved by policy u 2 U , as given in (1). The
single restless bandit problem involves �nding a policy uOPT 2 U that achieves the minimum
value ZOPT(C0;C1) of performance objective Zu(C0;C1). See (2). As discussed in Section
2, such problem can be reduced to that of �nding a state space subset S 2 2N whose corre-
sponding S-active policy (which takes the active action over S and the passive action over
Sc = N n S) is optimal among such stationary and deterministic policies. See (3). We shall
be concerned with (i) identifying conditions on model parameters under which there exists
an optimal policy with a given special structure, characterized by a greedoid (N; F) having
N 2 F ; see (4); and (ii) obtain eÆciently an optimal policy, having the required structure.
Such family of F-policies (cf. De�nition 6) consists of all the S-active policies corresponding
to sets S 2 F . We shall address these problems in the PCL framework developed in Section
4.

For this purpose, we �rst introduce a performance measure xae(u) representing the total
expected discounted time that action a 2 f0; 1g is taken in state e 2 N under policy u 2 U,
i.e., using the notation in (1),

xae(u) = Eu

"
1X
t=0

1fX(t)=e; a(t)=ag �
t

#
; (30)

where 1f�g denotes the indicator of the corresponding event. In this way, we can formulate
the single restless bandit problem above as

ZOPT(C0;C1) = min
u2U

X
e2N

C0
e x

0
e(u) +

X
e2N

C1
e x

1
e(u): (31)

We next present an extension of an idea introduced by Whittle in [21], which will play
a key role in our subsequent PCL analysis: Let us attach to each project state e 2 N a
parameter 0 < �e � 1, which we shall interpret as a success probability under the active
action in state e. We write � = (�e)e2N . Let us further de�ne an associated parametric
problem family as follows: for each 
 2 R, we consider a related problem where each success
is penalized with an amount 
. This 
-penalty problem is thus formulated as

ZOPT(
;C0;C1) = min
u2U

X
e2N

C0
e x

0
e(u) +

X
e2N

(C1
e + 
 �e) x

1
e(u); 
 2 R. (32)

Consider the following structural property associated with the family of 
-penalty prob-
lems:

De�nition 8 (�-indexability) We say that problem (31) is �-indexable if the set of states
where it is optimal to take the passive action in 
-penalty problem (32) increases monoton-
ically from the empty set to the full state space as the success penalty 
 increases from �1
to +1.

We note that Whittle's de�nition of indexability in [21] corresponds to the special case
where �e = 1, for e 2 N , in the above setting. Note further that, if problem (31) is
� -indexable, it follows from De�nition 8 that there exist indices 
e, for e 2 N , which
characterize the optimal solution of the 
-penalty problem for each value of 
 2 R: take the
active action in states e 2 N where 
 < 
e, and the passive action otherwise. Note that 
e
is the unique breakpoint for parameter 
 where both the active and the passive actions are
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optimal in state e. Equivalently, the index 
e is the smallest value for success penalty 
 that
would make the active action suboptimal in state e. Note that the possibility of choosing
parameters �e < 1 allows for index de�nitions di�erent from those introduced by Whittle,
which are obtained by letting each �e = 1.

In what follows, we shall deploy the PCL framework to obtain conditions on model pa-
rameters under which (i) problem (31) is �-indexable; and, furthermore, (ii) there exists an
optimal F-policy, characterized by the resulting indices.

5.1 Standard LP formulation, and problem normalization

We review next the standard LP formulation from MDC theory (cf. [17]) for 
-penalty
problem (32), which results from taking the dual of an LP formulation of the dynamic pro-
gramming equations, and show that it implies we can focus on a normalized problem where
C1 = 0. We shall further use this LP formulation later on to obtain the required PCL. This
standard LP can be written, using vector notation, as

ZOPT(
;C0;C1) = min x0C0 + x1(C1 + 
 �) (33)

subject to

x0 (I� � P0) + x1 (I� � P1) = p (34)

x0;x1 � 0;

where xa = (xae)e2N , for a 2 f0; 1g, and p are taken to be row vectors. Note further that the
constraints (34) imply that

x1 = p (I� � P1)�1 � x0 (I� � P0) (I� � P1)�1:

A direct consequence of this observation and the above LP is the identity

ZOPT(
;C0;C1) = p (I� � P1)�1C1 + ZOPT(
;C0 � (I� � P0) (I� � P1)�1C1;0): (35)

In light of (35), we shall focus in what follows on the normalized case where all active costs
are zero, i.e., C1 = 0, without loss of generality.

5.2 PCL weight matrix de�nition

We show in this section how to de�ne and construct an appropriate matrix of weights AS
e

for applying the PCL framework. We shall �nd it convenient to use the following additional
notation: given a vector v = (ve)e2N , a matrix B = (bee0)e; e02N , and subsets S; T � N ,
we shall write vS = (ve)i2S and B ST = (bee0)e2S; e02T . We shall further write Sc = N n S,
for S 2 2N .

We next de�ne certain project parameters, which will play a key role in our results. For
each state e 2 N and state subset S 2 2N , let us denote by V S

e the total expected discounted
number of successes under the S-active policy, conditional on the initial state being e. Note
that the V S

e 's are determined as the unique solution to the linear equation system

V S
e = �e 1fe 2 Sg+ 1fe 2 Scg�

X
e02N

p0ee0 V
S
e0 + 1fe 2 Sg�

X
e02N

p1ee0 V
S
e0 ; e 2 N:

It will be convenient to rewrite this system, using the matrix notation above, as

VS
S = �S + � P1SSV

S
S + � P1SSc V

S
Sc (36)

VS
Sc = � P0ScSV

S
S + � P0ScSc V

S
Sc ; (37)

22



i.e., �S = (�e)e2S,V
S
S = (V S

e )e2S andV
S
Sc = (V S

e )e2Sc . We shall further writeVS = (V S
e )e2N .

We next use the V S
e 's as building blocks to de�ne weight matrix A = ( AS

e )e2N;S�N , by

AS
e = �e + �

X
e02N

(p1ee0 � p0ee0)V
S
e0 : (38)

Note that AS
e represents the total expected discounted di�erential number of successes that

results from taking the active action �rst, relative to taking instead the passive action, and
then proceeding with the S-active policy, conditional on the initial state being e. It follows
from (36){(38) that we can write (38) in matrix notation as

AS
S = VS

S � � P0SNV
S (39)

AS
Sc = �Sc + � P1ScN VS � VS

Sc : (40)

5.3 Reformulation as two-project scheduling problem

In order to cast 
-penalty problem (32) into the PCL framework of Section 4, we shall
reformulate it as an equivalent project scheduling problem. See Section 4.3. This involves
the dynamic scheduling of two projects on a single server: to the original restless project, we
add a calibrating project having a single state, which we denote by �. The server must engage
one of the two projects at each time, with the interpretation that the calibrating project is
engaged when the original project is rested. As discussed in Section 4.3, we shall identify a
project state e with a corresponding job class e 2 N� = N [ f�g. We shall further associate
with each policy u 2 U performance measures xe(u), for e 2 N�, given by

xe(u) =

�
x0e(u) if e 2 N ;P

e02N �e0 x
1
e0(u) if e = �:

(41)

Note that performance measure x�(u) represents the total expected discounted number of
successes, whereas xe(u) is the total expected discounted number of times the original project
is rested in state e, for e 2 N , under policy u. In this setting, the notion of service priority
required by the PCL framework is the natural one for the project scheduling model just
described. Note that the only relevant relative priorities are those between class � and each
class e 2 N , which correspond to relative priorities between the two projects.

In this way, we can reformulate problem (32) (normalized so that C1 = 0) as

ZOPT(
;C0;0) = min
u2U


 x�(u) +
X
e2N

C0
e xe(u): (42)

Formulation (42) will allow us to apply later the index decomposition result in Theorem
8.

5.4 Decomposition laws

The main result in this section, Lemma 12 below, is the key to our formulation of PCL for
system performance measures xe(u), for e 2 N�. It formulates a family of decomposition
laws, i.e., a family of linear equations {having a certain special structure{ relating active and
passive performance measures. We use the term decomposition laws because such equations
are analogous to the work decomposition laws satis�ed by certain multiclass queueing systems
(cf. Theorem 5 in [3]).
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Lemma 12 (Decomposition laws) For any policy u 2 U and state/class subset S 2 2N ,

x�(u)+
X
e2S

AS
e xe (u) =

X
e2N

pe V
S
e +

X
e2Sc

AS
e x

1
e (u); (43)

in particular, when S = N ,

x�(u)+
X
e2N

AN
e xe(u) =

X
e2N

pe V
N
e :

Proof
To simplify notation, we shall write xa(u) = xa, for a 2 f0; 1g, and consider the xa's to
be row vectors. From the standard LP formulation given in (33), we consider the system
of linear identities (34) satis�ed by these performance measures, and rewrite it, for a given
subset S 2 2N , as�
x0S x0Sc

� �IS � � P0SS �� P0SSc
�� P0ScS ISc � � P0ScSc

�
+
�
x1S x1Sc

� �IS � � P1SS �� P1SSc
�� P1ScS ISc � � P1ScSc

�
=
�
pS pSc

�
;

or, equivalently,

x0S (IS � � P0SS) = pS + � x0Sc P
0
ScS + � x1Sc P

1
ScS � x1S (IS � � P1SS)

x1Sc (ISc � � P1ScSc) = pSc + � x0S P
0
SSc + � x1S P

1
SSc � x0Sc (ISc � � P0ScSc):

Solving for x0S in the �rst of the last two equations, and substituting for it in the second,
yields

x1Sc B = pSc + � pS (IS � � P0SS)
�1

P
0
SSc

+� x1S
�
P
1
SSc � (IS � � P1SS) (I� � P0SS)

�1
P
0
SSc

�
�x0Sc

�
ISc � � P0ScSc � �2 P0ScS (IS � � P0SS)

�1
P
0
SSc

�
;

where
B =

�
ISc � � P1ScSc � �2 P1ScS (IS � � P0SS)

�1
P
0
SSc

�
Now, postmultiplying both sides of the above equation by VSc

Sc , and simplifying the resulting
expression using (36){(40), and the identity (which follows from the de�nition of ASc

S )

ASc

S = �S + �
�
P
1
SSc � (IS � � P1SS) (IS � � P0SS)

�1
P
0
SSc

�
VSc

Sc ;

we obtain
x1Sc �Sc = pVSc + x1S

�
ASc

S � �S
�
� x0Sc A

Sc

Sc :

i.e.,
x1 � + x0Sc A

Sc

Sc = pVSc + x1SA
Sc

S ;

which, in extended form, yields (43). 2
The next result follows immediately from Lemma 12.

Corollary 1 For any state subset S 2 2N , the following identities hold:
(a) under any policy u 2 U that takes the passive action over states in Sc, i.e., that gives
priority (in the equivalent project scheduling model) to class � over Sc-jobs,

x�(u)+
X
e2S

AS
e xe (u) =

X
e2N

pe V
S
e ; (44)

(b) under any policy u 2 U that takes the active action over states in S, i.e., that gives
priority to S-jobs over class �, X

e2S

AS
e xe (u) = 0: (45)
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5.5 PCL for two-project scheduling reformulation

In this section we identify conditions on model parameters under which performance vector
x(u) = (xe(u))e2N� , for the two-project scheduling problem above, satis�es an appropriate
set of PCL.

Given the greedoid (N;F) and weight matrix A discussed above, let us write

A NF = (AS
e )e2N;S2F ;

so that (N;F ; A NF ) is a weighted greedoid (see De�nition 1). Recall that the two-project
scheduling problem above can be seen as a scheduling problem over class set N� = f�g[N .
Let us further de�ne F� � 2N

�
by

F� = fS� = S1 [ S2 : S1 2 2f�g; S2 2 Fg;

and let A
f�g[S
e and AS

� , for e 2 N� and S 2 F , be given by

Af�g[S
e =

(
AS
e if e 2N ;

1 if e =�;
(46)

andAS
� = 1. This de�nes weight matrices A N�F� = (AS

e )e2N�; S2F� and A f�g2f�g = (AS
� )S22f�g =

(1; 1). Note that, by construction, (N�;F�; A N�F�) is a weighted greedoid, which is decom-
posed (cf. Sections 3.3 and 4.3) into weighted greedoids (N;F ; A NF ) and (f�g; 2N

�
; A f�g2N� ),

so that Assumption 1 in Section 3.3 holds.
We further de�ne b(S�), for S� 2 F�, by

b(S�) =

(P
e2N pe V

S
e if S� = f�g [ S; ; 6= S 2F

0 otherwise:

Consider now the conditions on weights AS
e given next.

Assumption 2 Weight matrix A NF = (AS
e )e2N;S2F satis�es

AS
e > 0; e 2 S; S 2 F

AS
e � 0; e 2 Sc; S 2 F :

Theorem 13 (PCL: discounted restless bandits) Under Assumption 2, performance mea-
sures x�(u); xe(u), e 2 N , satisfy the PCL in De�nition 7 with respect to weighted greedoid
(N�;F�; A N�F�).

Proof
The result follows immediately by combining the decomposition laws in Lemma 12 with the
identities in Corollary 1 and the inequalities on the AS

e in Assumption 2. 2
Suppose now that Assumption 2 holds. Let (FEASIBLE ;
; e) be an output of adaptive-

greedy algorithm AG(�jA NF ; N;F) corresponding to input C0 = (C0
e )e2N . Assume that

FEASIBLE = TRUE , so that passive cost vector C0 belongs in the corresponding feasible
cost region C (see De�nition 4 in Section 3), and 
 = (
e)e2N is the vector of allocation
indices in De�nition 5. See Theorem 2. Note that it is immediate that the single allocation
index for state � corresponding to cost 
 for weighted greedoid (f�g; 2N

�
; A f�g2N� ) is precisely


� = 
.
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Corollary 2 (�-indexability) If C0 2 C (i.e., FEASIBLE = TRUE), then problem (31)
(normalized so that C1 = 0) is �-indexable. Furthermore, the optimal indices are precisely
the 
e's produced by adaptive-greedy algorithm AG(�jA NF ; N;F) on input C0.

Proof
The result follows by combining Theorem 13 with the decomposition result in Theorem 11.
2

We note that all of the above results, obtained for the discounted criterion, can be easily
extended to the time-average criterion, by the same limiting argument (as � ! 1) developed
in [13].

6 A simple restless bandit example

In this section we illustrate the approach developed in the paper through a simple single
restless bandit model, motivated by a queueing input control problem (cf. [14]).

Let us consider a single restless bandit, as in Section 5, with state space N = f0; 1; 2g,
active transition probability matrix given by

P
1 =

0@ 1� �0 �0 0
�1 1� �1 � �1 �1
0 �2 1� �2

1A ;

and passive transition probability matrix

P
0 =

0@ 1 0 0
�1 1� �1 0
0 �2 1� �2

1A :

and initial state vector
p =

�
p0 p1 p2

�
:

The immediate costs are of the form C0
i = C1

i = Ci.
We shall consider the following data:

C0 = 0; C1 = 2� �1; C2 = 5� �2; �0 = 1=2; �1 = 1=3; �1 = 1=2; �2 = 2=3;

while the discount factor 0 < � < 1 will remain general.
As for the policy family of interest, we shall consider it is characterized by the greedoid

F = f;; f0g; f0; 1g; f0; 1; 2gg, which de�nes a nested family of possible active sets.
The �rst step in the analysis involves normalizing the cost coeÆcients, as discussed in

Section 5: an equivalent problem is obtained by letting all active costs to be zero, and
rede�ning the passive cost vector as:

bC0 =
�
I� (I� � P0) (I� � P1)�1

�
C =

0B@
1
6 (27 + 17�) �

�2�6
1
6 (9� + 34) �

�2�6

0

1CA :

The next step involves computing the V S
e 's and the AS

e 's, with respect to give success
probability parameters �0, �1, �2. We thus obtain0B@ V

f0g
0

V
f0g
1

V
f0g
2

1CA =

0B@
1
2
2��
1�� �0

1
2

�
1�� �0
�2

(1��)(3��)�0

1CA ;
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0B@ A
f0g
0

A
f0g
1

A
f0g
2

1CA =

0@ �0
�1
�2

1A+ �

0@ ��0 �0 0
0 ��1 �1
0 0 0

1A
0B@ V

f0g
0

V
f0g
1

V
f0g
2

1CA =

0B@
1
2 (2� �) �0

1
2
2�1(3��)��2�0

3��

�2

1CA ;

0B@ V
f0;1g
0

V
f0;1g
1

V
f0;1g
2

1CA =
1

(1� �) (6� �2)

0@ �
6� 3� � �2

�
�0 +

�
3� � �2

�
�1

(3� �) (��0 + (2� �) �1)
2� (��0 + (2� �) �1)

1A ;

0B@ A
f0;1g
0

A
f0;1g
1

A
f0;1g
2

1CA =

0@ �0
�1
�2

1A+�

0@ ��0 �0 0
0 ��1 �1
0 0 0

1A
0B@ V

f0;1g
0

V
f0;1g
1

V
f0;1g
2

1CA =

0BB@
(6�3���2)�0+(3���2)�1

6��2

��2�0+(6�2�)�1
6��2

�2

1CCA ;

0B@ V
f0;1;2g
0

V
f0;1;2g
1

V
f0;1;2g
2

1CA =
1

(1� �) (6� �2)

0@
�
6� 3� � �2

�
�0 +

�
3� � �2

�
�1 + �2�2�

3� � �2
�
�0 +

�
6� 5� + �2

�
�1 +

�
2� � �2

�
�2

2�2�0 +
�
4� � 2�2

�
�1 +

�
6� 4� � �2

�
�2

1A ;

and 0B@ A
f0;1;2g
0

A
f0;1;2g
1

A
f0;1;2g
2

1CA
0BB@

(6�3���2)�0+(3���2)�1+�2�2
6��2

��0�2+(6�2�)�1+2��2
6��2

�2

1CCA :

Let us take �0 = �0, �1 = �1 and �2 = 0. Then,

A
f0g
0 =

1

2
�

1

4
� > 0; A

f0g
1 =

1

12

12 � 4� � 3�2

3� �
> 0; A

f0g
2 = 0

A
f0;1g
0 =

1

6

18� 3� � 5�2

6� �2
> 0; A

f0;1g
1 =

1

6

12� 4� � 3�2

6� �2
> 0; A

f0;1g
2 = 0

A
f0;1;2g
0 =

3� 1
2� �

5
6�

2

6� �2
> 0; A

f0;1;2g
1 =

2� 2
3� �

1
2�

2

6� �2
> 0; A

f0;1;2g
2 = 0

Consider the performance measures:

x�(u) = �0x
1
0(u) + �1x

1
1(u)

x0(u) = x00(u)

x1(u) = x01(u):

The parametric problem family of interest (cf. (32) is

min
u2U


 x�(u) + bC0
0 x

0
0(u) + bC0

1 x
0
1(u) (47)
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Now, the above inequalities on the AS
e ensure that Assumption 2 holds. Therefore, The-

orem 13 guarantees that performance measures x�(u), x
0
0(u), x

0
1(u) satisfy PCL with respect

to the weighted greedoid having ground set N� = f�; 0; 1g, feasible set family

F� = fS1 [ S2 : S1 2 2f�g; S2 2 Fg;

and weights AS
e as de�ned above, further extended as in (46). Therefore, Corollary 2 applies,

establishing the �-indexability of the problem, and further the optimality of F-policies de�ned
by the corresponding indices 
i, under feasible cost vectors, as de�ned by the adaptive-greedy
algorithm.

We next show that the given costs are feasible, and compute the corredsponding allocation
indices.

We have

yf0;1g = 
1 =
bC0
1

A
f0;1g
1

= �
9� + 34

�12 + 4� + 3�2
;

yf0;1g �
bC0
0

A
f0;1g
0

=
�6 (� � 8)

�
�2 � 6

�
�

(�18 + 3� + 5�2) (�12 + 4� + 3�2)
< 0;

yf0g =
bC0
0 �A

f0;1g
0 yf0;1g

A
f0g
0

= 4�
8� �

(2� �) (12� 4� � 3�2)
> 0

and


0 = 
1 + yf0g = �3
�

2� �
:

Therefore, given an arbitrary 
 2 R, an optimal policy for problem (47) is given as follows:
take the active action in state i � 1 having 
i > 
, and the passive action otherwise. Note
that the action taken in state 2 is irrelevant in this example.
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