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● Català:
Els gens ortòlegs són crítics per a l’estudi de la funció i evolució de les proteïnes.
S’han elaborat múltiples mètodes per predir ortòlegs. Quest for Orthologs ha fet un
benchmark dels mètodes, però no ha creat una comparació completa de les
prediccions. Proposem nf-core/reportho, un pipeline que obté prediccions públiques
d’ortòlegs, realitza comparacions sistemàtiques, calcula la similitud i la presenta en
un format llegible. El pipeline demostra bon rendiment i escalabilitat. Una execució
amb una mostra representativa de proteïnes humanes mostra acord limitat entre les
fonts i destaca els reptes per al camp, especialment en l’aspecte d’integració de
dades.
● Castellà:
Los genes ortólogos son críticos para el estudio de la función y evolución de las
proteinas. Se han elaborado multiples métodos para predecir ortólogos. Quest for
Orthologs hizo un benchmark de los métodos, pero no creó una comparación
completa de las predicciones. Presentamos nf-core/reportho, un pipeline que
obtiene predicciones públicas de ortólogos, realiza comparaciones sistemáticas,
calcula la similitud y la presenta de forma legible. El pipeline demuestra buen
rendimiento y escalabilidad. Una ejecución con una muestra representativa de
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proteinas humanas demuestra acuerdo limitado entre fuentes y destaca los retos
del campo, especialmente en el aspecto de integración de datos.
● Anglès:
Orthologous genes are crucial for the study of protein function and evolution.
Multiple methods have been created to predict orthologs. Quest for Orthologs has
benchmarked those methods but has not created a comprehensive prediction
comparison. We propose nf-core/reportho, a pipeline that retrieves public ortholog
predictions, performs systematic comparisons, calculates agreement statistics, and
presents them in a human-readable format. The pipeline shows satisfactory
performance and strong scalability. A run on a representative sample of human
proteins demonstrates limited agreement between sources and highlights
challenges for the field, especially in the aspect of data integration.
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Abstract

Orthology is a highly relevant aspect of genomics, as orthologous genes allow functional inference, identify

certain evolutionary constraints, and are used for reconstructing the tree of life. This is especially important

in light of new massive sequencing initiatives, most importantly the Earth Biogenome Project, which will

require multiple efficient and robust analysis methods to exploit the vast amount of sequence data it will

generate. There is a large variety of publicly available orthology prediction methods, but the results they

provide are highly varied and agreement is limited. Significant effort is made to assess the performance of

those methods, most notably through the ongoing Quest for Orthologs, which created a comprehensive

benchmark for orthology prediction. However, there is still a need for more universal, reference-free

orthology benchmarks. We propose nf-core/reportho, a Nextflow pipeline for comparative analysis of ortholog

predictions. Given a protein, the pipeline retrieves and integrates the ortholog predictions from public sources,

performs comparative analyses, calculates agreement statistics, and creates summary visual representations.

It also provides basic downstream analysis in the form of multiple sequence alignment and phylogenetic

reconstruction. We envision that nf-core/reportho will enable and accelerate new research projects involving

specific proteins, as well as systematic investigation of orthology databases. In benchmarks, nf-core/reportho

demonstrates strong scalability. When tested with a representative sample of the human proteome, it indicates

limited agreement between the databases, highlighting both the open nature of the ortholog prediction

problem and the challenges of data interoperability.

Key words: orthology, comparative analysis, public databases, pipelines

Introduction

Although there are numerous definitions of a gene, and the concept
has varied through time, a gene is certainly an inheritable unit of
information [1]. However, genes are not merely inherited. They
are highly dynamic and undergo changes between generations [2].
This process is crucial for the long-term maintenance of life, as
it creates biodiversity and thus enables adaptation to the spatial
and temporal diversity of the environment [3]. Although the
processes that lead to the creation of new genes are diverse and
complex, they can be classified into two main classes: de novo
gene creation, where a gene is created in a previously non-coding
region of the genome, and modification of existing genes, such as
duplication, speciation, fission or fusion [2]. These processes give
rise to homologous genes, or homologs, i.e. pairs of genes that
originate from a single ancestral gene.

Orthologs are a special case of homologs. They are genes in
different species that arose from their common ancestor through
a speciation event [4]. The identification and study of orthologs
is essential for the reconstruction of the tree of life [5]. The
history of orthologous genes should recapitulate the evolutionary

history of the species involved. Although duplications are possible
in a gene tree of orthologs, they are exclusively species-specific,
and thus introduce no ambiguity. Furthermore, orthologs exhibit
more similar functions than other types of homologs. It should
be stressed that the definition of orthologs, as stated above,
does not require nor imply any functional similarity. Nonetheless,
empirical observations suggest that orthologs exhibit significantly
higher functional similarity than paralogs [6]. Finally, analysis of
orthologs can reveal evolutionary constraints acting on the genes
and resulting proteins. In particular, the preserved features of both
the sequence and the structure should to an extent be relevant to
the function, even though sequence conservation and function are
not entirely equivalent [7].

Currently, there are multiple large-scale sequencing efforts,
most notably the Earth Biogenome Project [8], which aims at
sequencing all eukaryotic species. The massive amount of data
that will be produced will create the need for accurate and efficient
annotation methods, which strongly rely on a good understanding
of ortholog history. Given the high demand and usefulness of
accurate orthology identification, various research endeavors have
targeted the orthology prediction problem [9, 10, 11, 12]. Given
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that ancient genomic sequences are highly uncommon [13], and
thus universal access to any ancestral sequence is infeasible, all
of the resulting methods rely mostly on the genomes of currently
existing species.

There are two main approaches to predicting orthologous
relationships. The distance-based approach reconstructs orthology
through the analysis of sequence divergence (distance) between
genes. One common rule underlying a vast majority of distance-
based methods is the reciprocal best hits heuristic – the notion
that if two genes are each other’s closest match in their respective
species, then they are orthologous. Each method applies different
additional corrections to this heuristic.

For instance, in the case of OMA, a pseudo-ortholog filter
is applied to the pairs of best hits. In this filter, each putative
ortholog pair is tested against a pair of closely matched outgroup
sequences. If the putative orthologs form a single branch on the
resulting phylogeny, they are considered true orthologs. Otherwise,
they are rejected as pseudo-orthologs. This operation accounts
for the problem of differential gene loss, a major confounding
factor in orthology prediction [9]. EggNOG uses another similar
approach to verify its predictions. It is based on the triangulation
concept proposed by Tatusov and Koonin [14]. It requires that
any pair of putative orthologs should be additionally supported
by another gene, which is a reciprocal best hit with both of them.
This approach naturally leads to the identification of the so-called
clusters of orthologs (COGs) [11]. Finally, OrthoInspector uses an
approach based on in-paralog groups. Putative in-paralogs in a
genome are identified as such if their BLAST score is higher than
that of the reciprocal best hit. Those in-paralogs are then verified
by testing whether their best hit in the other genome is a putative
in-paralog for the pair, and eliminated if not [15].

On the other hand, tree-based methods compare the gene
tree to a reference species tree and reconstruct a sequence of
duplication and gene loss events that could lead to the particular
gene tree [16]. Due to the high computational cost of this
operation, especially with larger inputs, the methods use different
heuristics to minimize the required computation. One notable
example of such a heuristic is species overlap. It is based on the
simple assumption that any non-leaf node in the gene tree is a
duplication if any species is found in both descendant branches,
and a speciation otherwise [17]. This approach is still used in new
orthology prediction methods [18].

Even though all the methods aim to reconstruct the same
biological reality, the agreement of their predictions remains very
limited. This is partially the result of the methods themselves,
as the approaches are diverse and prioritize different types of
signals [19]. Additionally, despite ongoing standardization efforts
[20, 21], the data used for creating the precomputed ortholog
databases is not uniform. There have been notable efforts to
assess the performance of different orthology prediction methods,
most notably the Quest for Orthologs, which has created a
standard benchmark for ortholog predictors [20]. However, as of
this manuscript being written, there is no standard method for
compiling orthology predictions across different sources.

Thus, we propose nf-core/reportho, an open-source pipeline for
the systematic retrieval and analysis of ortholog predictions. nf-
core/reportho obtains ortholog predictions for a given protein or
a list of proteins, performs automated integration and analysis
of the obtained predictions, calculates agreement statistics, and
generates a single final ortholog list. We envision that nf-
core/reportho will provide new insight into the characteristics of

ortholog prediction methods, as well as the specifics of predictions
for different protein families.

Objectives

The core objective of this project is to develop a pipeline
that performs a comprehensive comparative analysis of orthology
predictions for a particular query protein or a list of proteins.
The main facets of this objective include integration of data
from different sources, calculation of statistics providing a concise
numerical description of the agreement between the sources, as
well as informative graphical representation. An additional aim
of the project is to use current best practices of bioinformatics
method development, including reproducible Nextflow pipelining
and adhering to good software development practices enforced by
nf-core.

Methods

Pipeline implementation

Due to differences in system configurations and software versions,
workflows executed manually or created with simple tools like Bash
scripting might lead to instability, posing a significant challenge to
research reproducibility. Containerization systems in combination
with workflow management tools are commonly used to mitigate
this issue. Nextflow [22] is a Groovy-based workflow management
framework. It ensures full reproducibility through the use of
containers and is compatible with most modern container software,
including Docker [23] and Singularity [24]. It is also compatible
with many HPC systems, such as SLURM and Grid Engine,
enabling task parallelization in compute clusters. nf-core [25] is
a community effort focused on establishing high-quality Nextflow
pipelines for bioinformatics analyses. The quality of the pipeline
is ensured by providing developers with guidelines and tools for
pipeline creation, as well as through internal peer review. nf-core
uses GitHub for convenient and consistent version management
and utilizes GitHub’s continuous integration capabilities to ensure
correct pipeline function throughout the development process by
executing a test suite after every change. nf-core/reportho is
implemented in Nextflow and is an official nf-core pipeline available
on the nf-core website under: https://nf-co.re/reportho.

Selected Ortholog Repositories

For the first version of the pipeline, we chose to include data from
OMA, PANTHER, OrthoInspector, and EggNOG. Those sources
were selected by analyzing all the methods included in the Quest
for Orthologs [20, 21]. To be included, a method had to fulfill two
core criteria: have a public precomputed database, and provide
output accessions in UniProt format, or one that easily maps to it
(Ensembl, RefSeq). Additionally, each method had to provide at
least one mode of programmatic access: either an API that allows
queries in UniProt format (“online access”), or an FTP service
that provides ortholog predictions as a single file (“offline access”).
Where possible, databases were included for both online and offline
access.

Input and Pre-processing

The pipeline receives as input one protein or a list of proteins
for which the orthologs need to be retrieved. A protein can be
provided in the form of a FASTA file with the corresponding
sequence or a UniProt [26] accession number. We chose UniProt

https://nf-co.re/reportho


nf-core/reportho 3

as the main programmatic protein identifier due to its widespread
use in existing orthology resources and the straightforward access
to UniProt data. If the protein is provided as a FASTA file, the
corresponding UniProt identifier is identified using the OMA API
with the hybrid search strategy, i.e. first searching for an exact
match and then performing a BLAST [27] search if none is found.
It is reported whether the retrieved UniProt ID corresponds to the
exact match. Once the UniProt ID is identified, OMA is used to
determine the NCBI taxon identifier [28]. This is necessary for the
PANTHER API.

Ortholog Fetching

The fetching of the ortholog entries can be performed via API calls
or using local database snapshots, when available (local snapshots
currently available for OMA, PANTHER, and EggNOG; API
access available for OMA, PANTHER, and OrthoInspector). A
combination of online and local searches is also supported. Certain
databases provide ortholog predictions in non-Uniprot identifiers.
In these cases, identifier mapping is performed using the UniProt
mapping service or with a local mapping script. The script is only
used if the user specifies an offline run, and uses official identifier
maps provided by the respective databases. Unmapped identifiers
are retained in their original form for subsequent analysis. Finally,
for each database, a list with the ortholog predictions with the
unified identifiers is provided.

Integrative Analysis

The retrieved ortholog lists are combined into a single CSV file,
which reports the predicted orthologs, along with the databases
that identified them as such. The score column reports the
number of supporting databases. Additional statistics about the
agreement of the predictions across databases are calculated,
including pairwise agreement between sources (Jaccard index, see
Equation 1 and Supplementary Figure S1), percentage consensus
(the size of the intersection between all the sources), percentage
of privates (predictions identified only in one database), as well
as goodness, a custom statistic reflecting the full distribution of
scores, described in Equation 2 and Supplementary Figure S2. The
collected metrics are then visualized in graphical representations
(Figure 2). Finally, a single list of orthologs is generated according
to the selected criteria. Currently, this can be either the minimum
number of databases supporting an ortholog (score threshold), or
the predictions of the most concordant source, i.e. the database
with the highest percentage intersection with the other databases.

J(A,B) =
|A ∩B|

|A ∪B|
, (1)

where A and B are sets of predictions from different databases.

G =

∑
si

n× d
, (2)

where si are scores (numbers of supporting databases) of predicted
orthologs, n is the total number of predicted orthologs, and d is
the number of databases.

Downstream Analysis

The pipeline provides common analyses given a list of orthologs.
Currently, this includes multiple sequence alignment (MSA) and
rendering of a phylogenetic tree. Sequences for MSA are obtained
using the OMA API where possible and the Uniprot API for

IDs not found in the OMA API. If structure-based alignment is
requested, structures are obtained from the AlphaFold Protein
structure database [29]. It is an easily searchable resource, and
it has been shown that predicted structures yield an MSA quality
comparable to experimental structures [30]. Sequence-based MSAs
are computed with T-Coffee [31], a commonly used progressive
aligner. Structure-based MSAs are computed with 3D-Coffee [32].
nf-core/reportho currently supports phylogenetic reconstruction
using maximum likelihood (IQ-TREE [33]) or minimum evolution
techniques (FastME [34]). In either case, by default bootstrap
support values are computed on 100 replicates, with the possibility
of adjustment by the user.

Reporting

Optionally, an HTML report is generated for each input protein.
It is created using React [35], a JavaScript framework for
dynamic and modular web applications. The report summarizes
relevant information from the run, including the predictions
from each database, the distribution of scores and statistics,
the final ortholog list, and the results of the MSA and
phylogeny reconstruction. A run script is provided along with
the report to enable its correct visualization. The report and the
associated files are provided in a single folder per input protein,
enabling convenient distribution of pipeline results. Additionally,
a summary report is created using MultiQC [36]. It contains
statistics (see above) and the number of orthologs found for each
query in the run, as well as information about the run, including
software versions used.

Output

nf-core/reportho produces a large number of distinct result files
for each query. The key outputs, including some optional ones, are
the following:

• score table – a CSV file containing all predicted orthologs for
a query protein, the databases that predicted them, and the
score (number of those databases),

• final ortholog list – a list of orthologs chosen based on user-
defined criteria, used for alignment and phylogeny,

• agreement plots – plots representing the agreement between
databases, in the form of a bar plot colored by score, Venn
diagram, and tile plot representing the Jaccard index,

• MSA – a sequence alignment of the orthologs created with
T-Coffee, in Clustal format,

• phylogeny – a phylogenetic tree created with ML or ME
methods,

• per-query report – a detailed HTML report containing
information about the orthologs of a single query,

• summary report – an HTML report summarizing the results
for multiple queries, created with MultiQC.

Results

nf-core/reportho Workflow Overview

nf-core/reportho is a high-throughput workflow for systematic
retrieval and analysis of ortholog predictions for a protein
or a list of proteins. The key steps of the pipeline include
orthologs prediction fetching from public databases, comparison
and integration of the predictions, downstream analyses, and
reporting (see Figure 1 for detailed steps). The prediction sources
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Fig. 1: Graphical representation of the nf-core/reportho pipeline. Lighter grey boxes highlight the subworkflows. Dots represent the
steps of the main subworkflows (white) and the optional subworkflows for downstream analysis and report generation (yellow and red
correspondingly). File icons indicate key outputs.

currently supported by the pipeline are OMA [37], PANTHER
[10], OrthoInspector [15, 12], and EggNOG [11]. The sources used
in the analysis, as well as other parameters, can be provided by
the user through a command line interface or a configuration
file, as extensively described in the pipeline documentation
(see https://nf-co.re/reportho/dev/docs/usage) The input for the
pipeline is a UniProt identifier or a FASTA sequence, which will be
automatically converted to a UniProt identifier. UniProt [26] is a
common reference resource for proteins, provides stable identifiers,
and is used by multiple orthology predictors, making it the ideal
input format for the pipeline. nf-core/reportho’s key outputs
include a CSV file per input protein with the corresponding
ortholog predictions, summary plots, and a clean, human-readable
HTML report of the results. In a nutshell, nf-core/reportho is
a Nextflow pipeline that handles the fetching and subsequent
integration and analysis of ortholog predictions from multiple
public databases. We envision that it will provide valuable initial
orthology information in the study of novel proteins. In the
next sections, we will first demonstrate the detailed function of
the pipeline with a single query, and then perform a large-scale
analysis on a representative sample of the human proteome.

BicD2 Ortholog Predictions Across Databases

Proteins involved in essential cellular processes tend to be highly
conserved and are therefore good targets for the analysis of
ortholog predictions. Bicaudal D cargo adaptor 2 (BicD2) is a
fibrous protein that participates in microtubule transport [38]
and is therefore expected to have an ortholog in every eukaryotic
species, making it a reasonable target for orthology predictions.
To demonstrate the functionalities of the pipeline for a real-world
example, we perform an example run with human BicD2 as the
input protein.

The input for the pipeline in this run is the UniProt accession
of the protein (Q8TD16).

A total of 904 BicD2 orthologs were identified across databases:
347 in EggNOG, 165 in OMA, 35 in PANTHER, and 480 in

Orthoinspector (Table 1). It is noticeable that the different sources
highly differ in the number of predictions from different sources
(Table 1, Figure 1A) and the extent of the support of the
predictions, ranging from high agreement in PANTHER (77%
intersection with other sources) to high disagreement in EggNOG
(<0.1% intersection).

A natural question is whether these predictions are largely
concordant or are mostly unique to each database. Although there
is only one true evolutionary history and orthology databases
should in theory contain, at least partially, the same information,
disagreement between different orthology predictors is a known
issue [19]. In the case of BicD2, we do indeed observe that many
of the orthologs identified are identified by 1 database (Table 1,
Figure 2A). Only 15 out of the 904 identified orthologs are found
across at least 3 databases, which corresponds to less than 2%
(Table 2). This set includes orthologs from primates (e.g. Macaca

mulatta), farm animals (e.g. Bos taurus), model species (e.g.
Mus musculus) as well as a few miscellaneous ones. Notably, all
orthologs with a score of 3 and all but one with a score of 2
are identified with a UniProt accession, indicating that UniProt
is indeed the most interoperable accession format, at least with
this query, and the presence of other formats might aggravate
disagreement.

Furthermore, the pairwise overlap between the sources is rather
small, with 11.8% of all predictions being supported by more than
1 source (Table 1-2, Figure 2B) and Jaccard indices (pairwise
agreement) between databases ranging from 0 to 17% (Figure
2C). This observation demonstrates that the issue of disagreeing
predictions across sources is present in the case of BicD2. All
of the reported numbers and plots (Table 1, Figure 2A-C) are
automatically generated in nf-core/reportho and available to the
user in the output report. Here, we showcase the usefulness
of nf-core/reportho by investigating the landscape of ortholog
predictions for the BicD2 protein across orthology databases and
unsurprisingly observed a high pairwise and global disagreement
of the retrieved ortholog predictions.
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Source Number of orthologs found Number of private orthologs

EggNOG 347 345
OMA 165 70

OrthoInspector 480 374
PANTHER 35 8

Total 904 797

Table 1. Number of identified orthologs of BicD2 per source database in databases; private orthologs are orthologs that are only supported by a single

database; the counts do not sume to the total, as some orthologs were predicted by multiple sources.

Number of supporting sources (score) Count

1 798
2 92
3 15
4 0

Table 2. The distribution of scores (numbers of supporting databases) for predicted orthologs of BicD2.

Sampling the Orthology Landscape of the Human Proteome

One significant advantage of nf-core/reportho is the automated
integration of multiple databases and the retrieval of the
predictions for input proteins in a parallelized manner. This
enables automated large-scale orthology analyses that would
otherwise require considerable manual effort and computational
resources to be executed. We reasoned that an interesting
application of nf-core/reportho would be the exploration of the
available orthology predictions across the full human proteome.
However, due to the heavy computational cost of the process for
thousands of samples, we could only carry out a subset of it in the
time frame of this project.

We ran the pipeline on a sample of the single-isoform version
of the reference human proteome from UniProt [39]. The full
proteome contains 20,590 annotated proteins, out of which we
randomly selected 1,000 assuming homogeneous subsampling.
As this sample covers ~5% of the human proteome, it should
reasonably reflect its diversity. Due to the size of the dataset, we
performed the analysis fully offline, i.e. without any runtime access
to remote servers or APIs thus limiting the predictions obtained
to OMA, PANTHER, and EggNOG. The run took under 2 hours
on an HPC cluster. We observe limited agreement across the
prediction of the three inspected databases. Across all the queries,
no ortholog was found in all 3 databases. This is unexpected,
as at least the orthologs from primate species should have been
identified by any method. We were not able to identify whether
this is a result of the methods themselves or of identifier mismatch.

In about 45% of the queries, all the orthologs were reported
by exclusively one database. In the remaining queries, the
percentage of such orthologs was relatively high, above 0.9 in
most cases, further indicating limited intersection. Accounting for
the size of the intersections does not improve the result much,
as demonstrated by the distribution of goodness. In virtually all
cases, this statistic is between its minimum of 0.33 (due to 3
databases in the run) and 0.4, indicating that the support of the
predictions is very far from the theoretical maximum.

The distribution of hit counts provides additional insight into
the behavior of the predictions. The total counts are mostly in
the hundreds, with a median of 308, although there are zeros,
as well as some exceptionally high values, up to tens of thousands

(Supplementary Figure S3). The databases also vary in the number
of predictions they provide. OMA and PANTHER exhibit similar
behavior, providing tens to hundreds of predictions per query, with
a small number of zeros and a few outliers in the thousands.
In the case of EggNOG, the distribution is different, with a
very significant number of zeros and substantially larger non-zero
counts (Supplementary Figure S4).

As orthologs supported by a single source might be noise or
unmappable identifiers, it is interesting to observe how hit counts
change when those are removed. As expected, a major decrease
in total ortholog counts is observed, with most of the counts in
the scale of tens (Figure 3). The change is not uniform across
databases. OMA and PANTHER both move from several hundred
to tens, and the number of zero counts increases slightly. For
EggNOG, the counts decrease from thousands to tens, and the
number of zeros increases sharply (Supplementary Figure S5). It
can be concluded that while low-confidence hits are found in all
databases, the extent is highly variable.

Discussion

Despite its importance to evolutionary biology, ortholog prediction
remains a remarkably challenging task. As we have reported,
the degree of disagreement across databases is highly significant.
Previous efforts outlined the biases and the sensitivity-specificity
tradeoff of each method [21], but it remains unclear whether a
single optimal methodology for the orthology prediction problem
currently exists. As we have outlined in the introduction, the
knowledge of orthologs is fundamental for multiple lines of
evolutionary research. Further prediction method investigation,
and the development of robust predictors, remain a priority for
the field. This is especially relevant in the context of ongoing
large-scale sequencing efforts, including the Earth Biogenome
Project [8], as high-quality orthology prediction will be crucial to
the correct functional inference of proteins [40] and phylogenetic
placement of species [5].

nf-core/reportho cannot currently provide a definitive solution
to the problem. However, it delivers a systematic approach to
programmatically comparing existing prediction methods. This
will enable new evolutionary studies by providing high-confidence
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Fig. 2: The plots automatically produced by the pipeline. A: The number of predictions per database and the scores (number of supporting
sources) of the predictions. B: Venn diagram showing the intersection across databases. C: Tile plot with the Jaccard index for each
pair of databases.

predictions. At the same time, it will provide a novel insight into
the specifics of each prediction method, as well as identify how
specific classes of proteins behave in the prediction process.

After investigating the landscape of orthology predictions
across a large sample of the human proteome, we notice limitations
of interoperability of the available orthology prediction methods.
Although the agreement found is in the general range found in
prior studies [19], it is definitely on the lower end of this range.
This is likely caused by two main factors. The first is the inherent
difference between the methods. Even though the databases were
built with access to a set of benchmark proteomes [20], the input
data was certainly not identical, leading to limitations on the set

of predictions that can be provided. Furthermore, the technical
differences between the methods inevitably lead to disagreement.

However, this alone cannot justify the magnitude of the
differences. The second factor is data integration. During
development, we observed that all the databases use Uniprot,
Ensembl, and Refseq identifiers, as well as custom formats. The
lack of a universal vocabulary, or a comprehensive identifier
mapping system limits the possibility of full comparison between
the public ortholog prediction databases. This highlights a major
issue for the field, as a shared vocabulary is crucial to the
correct comparison and combination of data from different sources.
Benchmarks circumvent this issue by recomputing the predictions
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Fig. 3: Change in total ortholog count distribution after filtering by score in the sample of 1000 human proteins; note that for minimum
score 3 all values are equal to 0.

with coherent reference proteomes [20], but this recomputation
is a costly process and is only feasible in some studies. The
observations from this project indicate that interoperability, one
of the four pillars of the FAIR data principles [41], remains a
significant challenge in the field of orthology research, and protein
research in general.

Conclusion

As the main predictors of taxonomic relationships and protein
function, orthologs are a key component in our understanding
of life. However, the identification of orthologs remains an open
problem, and there is much work ahead in the field. With nf-
core/reportho, we propose a tool to integrate ortholog predictions
for evolutionary studies, as well as large ortholog datasets for big
data and machine learning purposes. Furthermore, the tool has the
potential to introduce new insights and increase understanding
of the various approaches currently available. In our tests, nf-
core/reportho has underlined the challenges of public orthology
predictions, and we envision that it will support further research
in this area.

We are planning to expand nf-core/reportho with new
capabilities. Currently, we want to include taxonomic analysis,
as well as the possibility to compare results between multiple
sets of queries (e.g. compare prediction quality between different
proteomes). We will also expand the pipeline with new databases
should they become sufficiently compatible.

Code and data availability

The code of the pipeline is available under the nf-core organization
at https://github.com/nf-core/reportho and released under the
MIT license. Additional code for the report rendering is available
at https://github.com/itrujnara/orthologs-report. Minimal
test datasets for the pipeline are available at https://github.

com/nf-core/test-datasets/tree/reportho. Additional scripts
used to analyze the output are available at https://github.com/

itrujnara/reportho-extra-scripts.
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