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Abstract

In this work, we present new approaches for solving multiagent planning and tempo-

ral planning problems. These planning forms are two types of concurrent planning,

where actions occur in parallel. The methods we propose rely on a compilation to

classical planning problems that can be solved using an off-the-shelf classical planner.

Then, the solutions can be converted back into multiagent or temporal solutions.

Our compilation for multiagent planning is able to generate concurrent actions that

satisfy a set of concurrency constraints. Furthermore, it avoids the exponential

blowup associated with concurrent actions, a problem that many multiagent plan-

ners are facing nowadays. Incorporating similar ideas in temporal planning enables

us to generate temporal plans with simultaneous events, which most state-of-the-art

temporal planners cannot do.

In experiments, we compare our approaches to other approaches. We show that the

methods using transformations to classical planning are able to get better results

than state-of-the-art approaches for complex problems. In contrast, we also highlight

some of the drawbacks that this kind of methods have for both multiagent and

temporal planning.

We also illustrate how these methods can be applied to real world domains like the

smart mobility domain. In this domain, a group of vehicles and passengers must

self-adapt in order to reach their target positions. The adaptation process consists

in running a concurrent planning algorithm. The behavior of the approach is then

evaluated.

Keywords: Classical planning; Concurrent planning; Multiagent planning; Temporal

planning





Chapter 1

Introduction

In this chapter, the research concerning this thesis is contextualized and motivated.

Finally, the structure of the report is described.

1.1 Context

Concurrent planning is one of the most promising planning forms. Solutions to

concurrent planning problems consist of sequences of joint actions. Each joint action

is formed by atomic actions that are simultaneously performed. Restrictions on

concurrent actions, called concurrency constraints, can be imposed to ensure they

are well-formed, i.e. that there are not inconsistencies between them.

There are many real world applications where concurrency is required. For example,

RoboCup [1] is a competition where two teams of robots play football. The robots

act simultaneously in order to score a goal. Another simple example could consist

of two robots that want to move a table from one room to another. To do so, they

must lift the table at the same time; otherwise, the table would be tipped and the

objects on it would fall.

Concurrency is inherent to certain forms of planning like temporal planning. More-

over, it can be also seen as an extension of other planning forms like multiagent

planning.

1



2 Chapter 1. Introduction

Research in multiagent planning has seen a lot of progress in recent years, in part due

to the first competition of distributed and multiagent planners, CoDMAP 2015 [2].

Many recent multiagent planners are based on the MA-STRIPS formalism [3], and

can be loosely classified into one of two categories: centralized and distributed.

In CoDMAP 2015, the most successful centralized planners were ADP [4], MAP-

LAPKT [5] and CMAP [6], while prominent distributed planners included PSM [7],

MAPlan [8] and MH-FMAP [9].

Although concurrency is a major problem in real world applications, none of the do-

mains in CoDMAP has concurrency constraints. Besides, the solutions produced by

most of the above planners are sequential, i.e. at each time step, a single agent takes

an action. Actually, compared to other settings, concurrent multiagent planning

has been less studied in the literature. There are several approaches that allow for

concurrent actions [9, 10], but few that are capable of reliably generating plans that

solve complex concurrent multiagent problems. A notable exception is the work by

Crosby et al. [11], who associate concurrency constraints with the objects of a mul-

tiagent planning problem and transform the problem into a sequential, single-agent

problem that can be solved using an off-the-shelf classical planner.

In the case of temporal planning, the International Planning Competition (IPC) has

included a temporal track for many years. Thus, the work on this form of planning

is more advanced than for concurrent multiagent planning. However, although con-

currency is inherent to it, no temporal planner can currently deal with simultaneous

events, i.e. events that occur exactly at the same time.

1.2 Problem

As explained in Section 1.1, both temporal planning and multiagent planning can

be related to concurrent planning. We provide definitions for concurrent planning

that can be used to define both temporal and multiagent planning problems.

As it has not been deeply studied so far, we focus on the problem of concurrent

multiagent planning, where several agents can act at each time step. This problem
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is challenging for different reasons: the number of concurrent actions is worst-case

exponential in the number of agents, and we must deal with an explicit way to

specify concurrency constraints [12, 13, 14] to guarantee that concurrent actions are

well-formed. To do so, we propose a method for compiling the concurrent multiagent

planning problem into a classical planning problem. In the new problem, the number

of actions to choose from at each step is polynomial, and can be solved using any

off-the-shelf classical planner.

Compilation from temporal planning to classical planning has already been used in

the past [15]. We propose a new compilation that supports arbitrary concurrency

and simultaneous events.

To sum up, the goal of this thesis is to provide methods for converting concurrent

planning problems into classical problems while respecting concurrency constraints.

1.3 Structure of the Report

In Chapter 2, we present some background regarding different forms of planning and

the relationship between them.

Chapter 3 introduces a compilation for converting concurrent multiagent problems

into classical problems while avoiding the exponential blowup in the total number

of joint actions. A temporal planner that is able to deal with simultaneous events

is presented in Chapter 4. This planner also relies in a compilation to classical

planning. Chapter 5 shows a real application of concurrent planning: the smart

mobility domain.

Approaches related to the works explained in the previous chapters are introduced

in Chapter 6. Finally, conclusions and future work are detailed in Chapter 7.



Chapter 2

Background

Planning is the model-based approach to autonomous behavior where the agent

selects the action to do next using a model of how actions and sensors work, what

is the current situation, and what is the goal to be achieved. The main challenge in

this kind of approach consists in dealing with problems that can be computationally

intractable (even the simplest ones) [16].

In the following subsections, we will introduce four different forms of planning: clas-

sical planning, concurrent planning, concurrent multiagent planning and temporal

planning.

2.1 Classical Planning

Given a set of propositional variables or fluents F , a literal l is a valuation of a

fluent in F , i.e. l = f or l = ¬f for some f ∈ F . A set of literals L represents a

partial assignment of values to fluents in F ; we assume that literal sets do not assign

conflicting values to any fluent. Given L, let ¬L = {¬l : l ∈ L} be the complement

of L. Finally, we define L (F ) as the set of all literals that can be formed from a

set of fluents F , i.e. L (F ) = {f,¬f : f ∈ F}. We abuse notation and assume that

no subset of L (F ) contains conflicting literals, i.e. for a given f ∈ F , they do not

contain both f and ¬f .

4



2.1. Classical Planning 5

A state s ⊆ L (F ) is a subset of literals. We abuse notation and define states only

in terms of the fluents that are true. A subset of literals L (F ) holds in state s if

and only if L (F ) ⊆ s.

A classical planning problem is a tuple Π = 〈F,A, I,G〉, where F is a set of fluents,

A is a set of actions, I ⊆ L (F ) is an initial state, and G ⊆ L (F ) is a goal condition

(usually satisfied by multiple states). Each action a ∈ A has a set of preconditions

pre(a) ⊆ L (F ) and a set of positive and negative effects eff(a) ⊆ L (F ), each a

subset of literals. Action a is applicable in state s ⊆ F if and only if pre(a) holds in

s, and applying a in s results in a new state s⊕ a = (s \ ¬eff(a)) ∪ eff(a).

A plan for Π is a sequence of actions π = 〈a1, . . . , ak〉 such that a1 is applicable in

I and, for each 2 ≤ i ≤ k, ai is applicable in I ⊕ a1 ⊕ · · · ⊕ ai−1. The plan π solves

Π if and only if G holds after applying a1, . . . , ak, i.e. if G ⊆ I ⊕ a1 ⊕ · · · ⊕ ak.

We sometimes define classical planning problem whose actions include conditional

effects. For the notation to be consistent, we include conditional effects as part of

the effects of an action, i.e. each action a ∈ A has a set of conditional effects cond(a)

and, as before, a set of preconditions pre(a). Each conditional effect C�E ∈ cond(a)

consists of a condition C ⊆ L (F ) and an effect E ⊆ L (F )1. As before, action a is

applicable in state s if and only if the precondition holds in s, i.e. pre(a) ⊆ s. The

actual effect eff(s, a) of a is conditional on s, and is composed as

eff(s, a) =
⋃

C � E ∈ cond(a), C ⊆ s

E,

i.e. effects whose condition holds in s. As before, the result of applying a in s is a new

state s⊕ a = (s \ ¬eff(s, a)) ∪ eff(s, a). Although an action with conditional effects

can be compiled into multiple actions without conditional effects, it may cause an

exponential increase in the number of actions [17].

1Note that those effects that are not conditioned to anything, can be expressed as conditional
effects by setting C to the empty set ∅.
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2.2 Concurrent Planning

Concurrent planning is the extension of classical planning where each action is a

combination of atomic actions that are performed simultaneously. Actions in con-

current planning are named joint actions or concurrent actions.

Given a set of atomic actions B, the size of the set of actions A in a concurrent

planning problem will be the number subsets of B, i.e. |A| = 2|B|. Therefore,

we can define a concurrent planning problem as a classical planning problem Π =

〈F,A, I,G〉 where A = 2B is the power set of B, i.e. the set of all subsets of B.

Given a concurrent action a =
(
a1, . . . , ak

)
, we define the precondition and the effect

of a as the union of preconditions and effects of the constituent atomic actions2:

pre(a) =
k⋃
j=1

pre(aj), eff(s, a) =
k⋃
j=1

eff(s, aj)

Concurrent actions can be ill-defined. For example, two atomic actions of a joint

action a could have incompatible effects, i.e. one of them adds literal l, and the other

one deletes l. To make sure that concurrent actions are well-defined, concurrency

constraints are used. Constraints can be defined on pairs of atomic actions, and

they can be of two types:

• Positive concurrency constraints state that two atomic actions must be done

at the same time.

• Negative concurrency constraints state that two atomic actions cannot be done

at the same time.

If none of the previous constraints is specified for a given pair of actions, there is no

restriction on their concurrency.

2Note that we use the notation of effects that depend on the current state s introduced in
Section 2.1.
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By using concurrency constraints, the set A of possible concurrent actions is a subset

of 2B.

In Section 2.3, we introduce state-of-the-art notation of concurrency constraints in

multiagent planning problems.

2.3 Concurrent Multiagent Planning

In this section, we introduce the main concepts concerning multiagent planning.

We concretely focus on centralized multiagent planning: the agents share a common

goal and planning consists in achieving this goal.

2.3.1 Definition

A multiagent planning problem (MAP) is a tuple Π =
〈
N,F, {Ai}ni=1 , I, G

〉
, where

N = {1, . . . , n}, and Ai is the action set of agent i ∈ N . The set of fluents F , the

initial state I and the goal condition G are defined as for classical planning.

Concurrent multiagent planning can be viewed as a special case of concurrent

planning (see Section 2.2) where the set of atomic actions is partitioned as B =

A1 ∪ . . . ∪ An.

A concurrent multiagent planning problem can be represented as a classical planning

problem Π = 〈F,A, I,G〉 where A ⊆ A1 × · · · × An is the set of concurrent actions

satisfying the concurrency constraints.

2.3.2 Concurrency Constraints

As stated in Section 2.2, concurrency constrains are usually introduced for resolving

conflicting effects. In this section, we introduce different existing approaches for

modeling these constraints.

Boutilier and Brafman (2001) extended the STRIPS language to make the defini-

tion of MAPs (including concurrency constraints) possible [12]. The first parameter

always corresponds to the associated agent. Then, they introduced the notion of
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concurrent action list. These lists are attached to each actions’ preconditions or to

conditional effects, and they contain both state variables and references to concur-

rently executed actions. If an action ai appears in the list of action aj, then the

two actions must be concurrently performed (positive concurrency constraint). If an

action ai appears negated in the list of action aj, then they cannot be concurrently

performed (negative concurrency constraint).

Although Boutilier and Brafman’s method is a natural way of modeling concurrent

actions, they did not use explicit quantifiers (e.g. for all, exists) for many variables

which appear out of scope. For this reason, Kovacs (2012) extended the PDDL

language to propose an standard definition of MAPs [13]. In this approach, concur-

rent actions are directly referenced in actions’ preconditions and conditional effects

instead of using an explicit concurrency action list. Moreover, as stated before, no

variable is out of scope unlike in the original approach.

To give an example of the notation proposed by Kovacs, we use the TableMover

domain created by Boutilier and Brafman (2001) [12]3. In this domain, two agents

move blocks between rooms. There are two possible strategies:

1. They move blocks one by one using their arms.

2. They put all the blocks on a table and move the table from one room to

another. Both agents must lift the table at the same time; otherwise, the

table will be tipped and the blocks will fall. However, in case they want to

quickly leave the blocks on the floor, the table can be tipped by lowering only

one side of it.

The lift-side action in Figure 1 models an agent ?a who wants to lift one side ?s of

the table. To do the action, ?a has to be at side ?s of the table, the side ?s must be

down (i.e. on the floor) and the agent cannot be holding anything. Moreover, the

concurrent action list indicates that another agent ?a2 cannot lower side ?s2 at the

same time. When the action is applied, ?s is not longer touching the floor (i.e. it is

3See Appendix A for a complete specification of the TableMover domain.
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up), and ?a is busy lifting ?s. The action also has a conditional effect (represented

by the when clause): if no agent ?a2 lifts side ?s2 of the table, then all blocks on the

table will fall to the floor.

Note that we have used forall quantifiers in the concurrency constraints. It might

look unnatural that we do not explicitly state, for example, that ?a2 and ?s2 must

be different from ?a and ?s respectively. Writing such constraints usually requires

complex formulations. However, in this case it is not necessary to impose such

restrictions because (1) if nobody is lowering a side of the table, we can lift ?s, and

(2) if nobody apart from ?a is lifting a side of the table that was originally on the

floor, then the blocks will fall.

Crosby et al. (2014) also extended the PDDL language to define MAPs with con-

currency constraints [11]. The authors use the Maze domain [18] to show their

approach. This domain consists of a grid of interconnected locations. Each agent

must move from an initial location to a target location. The connection between

two adjacent locations can be one of the following:

• Door: can only be traversed by one agent at a time. Some are initially locked.

They are unlocked by pushing a specific switch, placed anywhere in the maze.

• Bridge: can be crossed by multiple agents at once, but it is destroyed after

being crossed.

• Boat: can only be used by two or more agents in the same direction.

The authors do not use concurrent action lists as concurrency constraints. Instead,

these constraints are defined as affordances on subsets of objects. Affordances are

defined as intervals, e.g. the affordance on the subset of objects {location, boat} in

the Maze domain is [2,∞], representing that at least two agents have to row the

boat between the same two locations at once (since the boat always travels between

the same two locations, only one location is needed to indicate the direction of

movement), while the affordance on {door} is [1, 1], representing that at most one

agent can traverse the door at once.
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(:action lift-side
:agent ?a - agent
:parameters (?s - side)
:precondition (and

(at-side ?a ?s)
(down ?s)
(handempty ?a)
(forall

(?a2 - agent ?s2 - side)
(not (lower-side ?a2 ?s2))

)
)

:effect (and
(not (down ?s))
(up ?s)
(lifting ?a ?s)
(not (handempty ?a ?s))
(forall

(?b - block ?r - room ?s2 - side)
(when

(and
(inroom Table ?r)
(on-table ?b)
(down ?s2)
(forall

(?a2 - agent)
(not (lift-side ?a2 ?s2))

)
)
(and

(on-floor ?b)
(inroom ?b ?r)
(not (on-table ?b))

)
)

)
)

)

Figure 1: Definition of the TableMover’s action lift-side using Kovac’s (2012)
notation.
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(:action row
:agent ?a - agent
:parameters (?b - boat ?x - location ?y - location)
:precondition (and

(at ?a ?x)
(has-boat ?b ?x ?y)

)
:effect (and

(at ?a ?y)
(not (at ?a ?x))

)
)

(:concurrency-constraint v2
:parameters (?bb - boat ?xx - location)
:bounds (2 inf)
:actions ( (row 1 2) )

)

Figure 2: Definition of the Maze’s cross action using Crosby et al. (2014) notation.

The row action in Figure 2 models an agent ?a that wants to go from location ?x to

location ?y using boat ?b4. To do the action, agent ?a must be at ?x and the boat

?b must connect ?x and ?y.

Note that the concurrency constraint is given a name, v2. They specify the list

of parameters on which the affordance is defined (a boat ?bb and a location ?xx),

as well as the bounds of the constraint which are [2,∞]. Finally, a list of actions

is given. In this case, only the row action is associated to this constraint. The

numbers next to the action name represent the parameter number in the original

action (?a→ 0, ?b→ 1, ?x→ 2 and ?y→ 3) and their association with the constraint

parameters, i.e. ?bb is associated to parameter 1 in row, while ?xx is associated to

parameter 2.

Kovacs’s approach is more expressive than Crosby’s et al. because of the following

reasons:

1. In Kovacs’s, actions can be used in conditional effects, while Crosby’s et al.

cannot.

4See Appendix B for a complete specification of the Maze domain.
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(:action row
:agent ?a - agent
:parameters (?b - boat ?x - location ?y - location)
:precondition (and

(at ?a ?x)
(has-boat ?b ?x ?y)
(exists

(?a2 - agent)
(and

(not (= ?a ?a2))
(row ?a2 ?b ?x ?y)

)
)
(forall

(?a2 - agent)
(not (row ?a2 ?b ?y ?x))

)
)

:effect (and
(at ?a ?y)
(not (at ?a ?x))

)
)

Figure 3: Definition of the Maze’s cross action using Kovacs (2012) notation.

2. Crosby et al. can represent concurrency constraints on multiple action tem-

plates as long as they are defined on the same subset of objects. In contrast, in

Kovacs’s, concurrency constraints can be specified between any pair of actions.

For these reasons, Crosby’s et al. approach cannot model the TableMover do-

main, while the Kovacs’s can. On the other hand, Kovacs’s can model the Maze

domain as shown in Figure 3.

2.4 Temporal Planning

A temporal planning problem is also a tuple Π = 〈F,A, I,G〉, where F , I, and G are

defined as for classical planning. However, each element a ∈ A is a temporal action

composed of:

• d(a): duration.

• pres(a), preo(a), pree(a): preconditions of a at start, over all, and at end, re-
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a[5]

pres(a)

conds(a)

preo(a) pree(a)

conde(a)

Time

Figure 4: Example temporal action a with duration d(a) = 5.

spectively.

• conds(a), conde(a): conditional effects of a at start and at end. Note that

they respectively replace effs(a) and effe(a) as we did in classical planning (see

Section 2.1).

Although a has a duration, its effects conds(a) and conde(a) apply instantaneously

at the start and at the end respectively. The preconditions pres(a) and pree(a) are

also checked instantaneously, but the precondition preo(a) has to hold for the entire

duration of a. Figure 4 shows a graphical representation of a temporal action a,

with preconditions appearing above a, and effects below.

The semantics of temporal actions can be defined in terms of two discrete events

starta and enda, each of which is naturally expressed as a classical action as follows

[19]:

• 〈pre(starta) = pres(a), cond(starta) = conds(a)〉

• 〈pre(enda) = pree(a), cond(enda) = conde(a)〉

Starting temporal action a in state s is equivalent to applying the classical action

starta in s, first verifying that pre(starta) holds in s. Ending a in state s′ is equivalent

to applying enda in s′, first verifying that pre(enda) holds in s′. The duration d(a) and

precondition over all preo(a) impose restrictions on this process: enda has to occur

exactly d(a) time units after starta and preo(a) has to hold in all states between

starta and enda. We use the term context to refer to a precondition over all, while

Fo is the set of fluents used in contexts.
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a[3]

b[5]

Time

Figure 5: Temporal plan with concurrent actions a and b, action a has duration 3
while action b has duration 5.

A temporal planning problem can be viewed as a concurrent planning problem

where the set of atomic actions is B = {start(a1), end(a1), start(a2), end(a2), . . .}.

Specifically, a temporal plan induces a concurrent plan over the actions in B.

Since temporal actions have durations and can overlap, in general we cannot define

a temporal plan as a simple sequence of actions. Instead, a plan for Π is a set of

action-time pairs π = 〈(a1, t1), . . . , (ak, tk)〉. Each action-time pair (a, t) ∈ Π is

composed of a temporal action a ∈ A and a scheduled start time t of a. We say that

π has concurrent actions if there exist two pairs (ai, ti) and (aj, tj) in π such that

ti < tj < ti + d(ai), i.e. aj starts after ai starts but before ai ends. Figure 5 shows

an example of a temporal plan with two concurrent actions a and b, action a has

duration 3 while action b has duration 5.

Each action-time pair (a, t) induces two events: starta, with associated time t, and

enda, with associated time t + d(a). If we order the 2k events induced from π =

〈(a1, t1), . . . , (ak, tk)〉 by their associated times, we obtain an event sequence πE =

〈E1, . . . , Em〉 satisfying 1 ≤ m ≤ 2k. Each Ej, 1 ≤ j ≤ m, is a joint event composed

of one or more individual events of π that all have the same associated time. Note

that joint events can be seen as the joint actions we defined for the concurrent

planning formalism (see Section 2.2) since, as explained before, events represent

atomic actions.

For each j, 1 < j ≤ m, the individual events of a joint event Ej−1 are scheduled to

occur before the events of Ej. We say that π has simultaneous events if m < 2k,

i.e. if at least one joint event is composed of multiple individual events. By imposing
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the restriction m = 2k, we disallow simultaneous events, i.e. no pair of events of π

can have the same associated time. Figure 6 shows an example temporal plan with

simultaneous events enda and endb. Note that in this case actions a and b are also

concurrent.

a[5]

b[2]

Time

Figure 6: Temporal plan with simultaneous events enda and endb.

When multiple events occur simultaneously, it is necessary to verify that the result-

ing joint event is valid, i.e. that individual events do not interact in undesired ways.

We adopt the definition of valid joint events from PDDL 2.1 [19]:

Definition 2.1. Let E = {e1, . . . , ek} be a joint event, i.e. a set of simultaneous

events. E is valid if and only if there exists no event e ∈ E with an effect on a

fluent that is mentioned by another event in E.

As a consequence of Definition 2.1, given an individual event e, no effect of e can be

mentioned by another event simultaneous with e, not even as a precondition. The

only way that a fluent f can be mentioned by two simultaneous events e and e′ is if

f is a precondition of both e and e′. Although it is a rather strong limitation, this

definition is commonly accepted in temporal planning and, crucially, is implemented

as part of VAL [20], the program used at the IPC (and by us) to validate temporal

plans.

The above conditions do not apply to contexts, which only have to hold from imme-

diately after the start of a temporal action until immediately before its end. If the

start of a temporal action a is part of a joint event E, it is safe for another event

in E to add a context of a. Likewise, if the end of a is part of a joint event E, it is

safe for another event in E to delete a context of a.
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We are now able to define when a temporal plan π solves a temporal planning

instance Π = 〈F,A, I,G〉. Let πE = 〈E1, . . . , Em〉 be the sequence of joint events

induced by π, and let E = {e1, . . . , ek} be a joint event in πE. If E is invalid,

then so is π. In addition, πE has to respect the contexts of temporal actions in π.

Specifically, for each (a, t) ∈ π, let Ei be the joint event that includes starta and let

Ej be the joint event that includes enda. The context preo(a) of a has to hold in

each intermediate state sk, i ≤ k < j.

The quality of a temporal plan is given by its makespan, i.e. the temporal duration

from the the start of the first action execution to the end of the last action execution.

Formally, the makespan of a temporal plan π is defined as max(a,t)∈π(t+ d(a)). The

first action is assumed to start a time 0, i.e. min(a,t)∈π t = 0.

One of the most common forms of required concurrency is given by single hard

envelopes [15]. A single hard envelope is a temporal action a that adds a fluent

f ∈ F, f /∈ I at start and deletes it at end, i.e. f ∈ conds(a),¬f ∈ conde(a).

Besides, there has to exist another action b with shorter duration than a that has f

as context, i.e. d(b) < d(a) and f ∈ preo(b).



Chapter 3

Compilation of Multiagent Planning

to Classical Planning

In this chapter, we describe our approach for transforming a multiagent planning

problem (MAP) Π = 〈N,F, {Ai}ni=1, I, G〉 into a classical planning problem Π′ =

〈F ′, A′, I ′, G′〉.

As described in Section 2.3.1, we can naively convert a MAP into a classical planning

problem making A′ equal to all valid concurrent actions of the MAP, i.e. A′ ⊆

A1 × · · · × An. Therefore, the purpose of our work is not so much to compile the

problem into classical planning. Instead, our aim is to transform the MAP into

an alternative classical planning problem whose action set A′ is much smaller than

A1 × · · · × An.

3.1 Description

Our compilation assumes that if a concurrent action a = (a1, . . . , ak) satisfies all

concurrency constraints, then a is well-formed, i.e. does not introduce conflicting

effects. Moreover, we also make the following assumptions:

1. The input MAP is specified using Kovacs (2012) notation (see Section 2.3.2).

17
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2. Each agent performs at most once in a joint action, i.e. an agent cannot perform

two actions simultaneously.

Note that this assumption determines the kind of solutions that the classical

planner will provide. Nevertheless, if we want an agent to do two actions

simultaneously, we can derive two subagents, each of them doing one of the

actions.

In any planning problem, each step is divided in two phases: (1) the selection of an

action, and (2) the application of the selected action. Any planner must be able to

do these steps in the resulting classical planning problem. However, we have to take

into account that we are not selecting and applying atomic actions, instead we are

selecting and applying joint actions.

The compilation introduces mechanisms (fluents and actions) that allow to select

and apply joint actions while respecting concurrency constraints. Besides, given

the addition of new fluents, a third step is required to clean these fluents after the

selection and execution of each joint action. The details of each step are described

below and illustrated in Figure 7:

1. Each agent optionally looks for an atomic action to select (i.e. it is not required

that all agents choose an action). The preconditions of the atomic actions must

be satisfied in order to be selected. At this point, the negative concurrency

constraints must also be respected.

The result of this selection is a joint action a =
(
a1, . . . , ak

)
corresponding to

a subset of agents.

2. The effects of the atomic actions in a are applied. At this point, if an agent

has selected an action b that has positive concurrency with c, then this agent

can check whether c is in a. On the other hand, it is also possible to check

whether actions used in conditional effects are in a.

3. The actions in a reset auxiliary fluents (later introduced) so that another joint

action can be started.
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Action Selection
Each agent (optionally) selects an action

respecting negative concurrency constraints.

Action Application
Action effects are applied.

Agents can check which actions have been selected by other agents.

Resetting
Agents become free to choose a new action.

Figure 7: Process of selection and application of a joint action.

In the next sections we describe the new fluents and actions of the classical problem

Π′1. Moreover, we also prove that the compilation is sound and complete.

3.1.1 Fluents

We describe the fluents in PDDL format, i.e. each fluent is associated with a predi-

cate.

The set of fluents F ′ includes all fluents in F . Besides, F ′ also includes different

fluents corresponding to the previously described steps/phases:

• A fluent free indicating that a joint action can be started, i.e. we are not

currently composing a joint action.

• A fluent selecting indicating that each agent is (optionally) selecting an atomic

action to do (i.e. the joint action is being formed).

• A fluent applying indicating that those agents which selected actions are ap-

plying them.

• A fluent resetting indicating that actions have been applied. Some fluents are

being cleaned up to make another concurrent action possible.
1The code of the compilation is available in the following repository: https://github.com/

aig-upf/universal-pddl-parser-multiagent.

https://github.com/aig-upf/universal-pddl-parser-multiagent
https://github.com/aig-upf/universal-pddl-parser-multiagent
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There are also fluents that model the state of an agent i ∈ N :

• A fluent free-agent(i) indicating that agent i is free to select an atomic action.

• A fluent busy-agent(i) indicating that agent i has selected an atomic action to

do.

• A fluent done-agent(i) indicating that agent i has applied its selected atomic

action.

Finally, for each action ai ∈ Ai, i ∈ N , the following fluents are added:

• A fluent active-ai indicating that the atomic action ai has been selected. These

fluents are helpful to:

1. Implicitly represent the joint action a (all those actions set to active form

the joint action).

2. Avoid selecting an atomic action bj that has negative concurrency with

ai.

3. Check if an atomic action bj that has positive concurrency with ai has

been selected.

4. Check if an atomic action bj in a conditional effect of ai has been selected.

• A fluent req-neg-ai indicating that the atomic action ai cannot be selected.

This kind of fluents complement active-ai fluents to help satisfy negative con-

currency constraints.

Therefore, the resulting set of fluents F ′ can be expressed as follows:

F ′ = F ∪
{

active-ai, req-neg-ai : ai ∈ Ai, i ∈ N
}

∪ {free-agent(i), busy-agent(i), done-agent(i) : i ∈ N}

∪ {free, selecting, applying, resetting} .

(3.1)
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Lemma 3.1. The resulting number of fluents in the single-agent planning problem

Π′ is

|F ′| = |F |+ 2
∑
i∈N

∣∣Ai∣∣+ 3n+ 4.

Proof. By equation 3.1, the set of fluents F ′ in the single-agent problem Π′ contains

all the fluents F in the MAP Π. Besides, we add two new fluents active-ai and

req-neg-ai for each agent action ai ∈ Ai, i ∈ N . Thus, the size of F ′ is increased by

2
∑

i∈N |Ai|. Then, three more fluents (free-agent(i), busy-agent(i), done-agent(i))

are added for each agent i ∈ N , so the size is increased by 3n. Finally, four more

fluents are introduced: free, selecting, applying and resetting.

Note that Lemma 3.1 states which is the number of fluents taking into account the

assumption presented at the beginning of the section: each agent performs at most

once in a joint action. We can overcome this problem if for each agent i ∈ N we

derive |Ai| subagents (i.e. we get as many subagents as actions the agent can do).

In the worst case, we will have to add maxi |Ai| , i ∈ N agents; that is, we want all

agents to be capable of doing all their actions at the same time. Therefore, the size

of F ′ can be bounded by:

|F ′| = |F |+ 2nm+ 3nm+ 4

= |F |+ 5nm+ 4,

m = max
i

∣∣Ai∣∣ , i ∈ N.
Take into account that the maximum number of actions that can be taken by an

agent (m) will typically be much higher than the number of agents (n). Thus, we

can say that |F ′| is bounded by the maximum number of actions an agent can do

and the size of the original set of fluents F . Note that this number of fluents is still

polynomial, as the one in Lemma 3.1.
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The initial state I ′ is defined as

I ′ = I ∪ {free} ∪ {free-agent(i) : 1 ≤ i ≤ n}.

That is, we are initially free to start a concurrent action, and all agents are free to

select an action. On the other hand, the goal condition is defined as G′ = G ∪ {free}.

3.1.2 Actions

The first kind of actions in the new action set A′ are those which allow us to switch

from one phase to another during the execution of a joint action. They are defined

as follows:

start: pre = {free},

cond = {∅� {¬free, selecting}}.

apply: pre = {selecting},

cond = {∅� {¬selecting, applying}}.

reset: pre = {applying},

cond = {∅� {¬applying, resetting}}.

finish: pre = {resetting, free-agent(i) : 1 ≤ i ≤ n},

cond = {∅� {¬resetting, free}}.

For each agent action ai ∈ Ai, i ∈ N , we create three new actions: select-ai, do-ai

and end-ai. These actions represent each of the three steps that an agent must

perform during each of the three phases.

The precondition of a select-ai action checks whether ai is selectable by an agent

that has not chosen any action, i.e. it respects the original preconditions of ai and
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its associated negative concurrency constraints. It is specified as follows:

pre = {selecting, free-agent(i),¬req-neg-ai}

∪ {l,¬l : l,¬l ∈ pre(ai), l,¬l ∈ L(F )}

∪ {¬active-bj : ¬bj ∈ pre(ai), bj ∈ Aj},

cond = {∅� {busy-agent(i),¬free-agent(i), active-ai}}

∪ {∅� {req-neg-bj : ¬bj ∈ pre(ai), bj ∈ Aj}}.

Figure 8 shows the compilation from the original lift-side action described in Figure

1 to a select-ai action.

Lemma 3.2. The selected ai actions (i.e. those actions for which select-ai is done)

satisfy all negative concurrency preconditions.

Proof. Because of the precondition ¬active-bj, ai is not selected if there is an action

bj with which it has negative concurrency. On the other hand, by adding req-neg-bj

we prevent bj from being selected later.

The do-ai actions are used for applying the effects of a selected action ai; therefore,

they are the only ones that change the values of fluents in F (the set of fluents of the

MAP). At this point, the set of selected agent actions is fixed, each represented by

a fluent of type active. Thus, we can use the active fluents to verify (1) the positive

concurrency constraints to apply the action, and (2) whether some conditional effects

should also be applied. Their specification is the following:

pre = {applying, busy-agent(i), active-ai}

∪ {active-bj : bj ∈ pre(ai), bj ∈ Aj},

cond = {∅� {done-agent(i),¬busy-agent(i)}}

∪ {C ′ � E : C � E ∈ cond(ai)},

where C ′ is the set of literals C with all bj ∈ Aj replaced by active-bj if bj ∈ C, and

¬active-bj if ¬bj ∈ C.
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(:action select-lift-side
:parameters (?a - agent ?s - side)
:precondition (and

(selecting)
(free-agent ?a)
(not (req-neg-lift-side ?a ?s))
(down ?s)
(at-side ?a ?s)
(handempty ?a)
(forall

(?a2 - agent ?s2 - side)
(not (active-lower-side ?a2 ?s2))

)
)

:effect (and
(not (free-agent ?a))
(busy-agent ?a)
(active-lift-side ?a ?s)
(forall

(?a2 - agent ?s2 - side)
(req-neg-lower-side ?a2 ?s2)

)
)

)

Figure 8: Compilation of TableMover’s lift-side into a classical planning select-ai

action.
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The resulting compilation from the original lift-side action to a do-ai one is shown

in Figure 9. In this case, observe that the active fluent is being used to determine if

the conditional effect should be applied: if any other agent is lifting the other side

of the table, the blocks fall to the ground.

The actions end-ai are needed to reset auxiliary fluents to their original values. They

can be understood as cleanup actions. They have the following preconditions and

conditional effects:

pre = {resetting, done-agent(i), active-ai},

cond = {∅� {free-agent(i),¬done-agent(i),¬active-ai}}

∪ {∅� {¬req-neg-bj : ¬bj ∈ pre(ai), bj ∈ Aj}}.

By applying this action, the agent i becomes free again and the action ai is not

longer active. Furthermore, those actions bj that were marked as incompatible in

select-ai become selectable again (i.e. the req-neg-bj is reset to false). Figure 10

shows the resulting compilation of the lift-side action into an end-ai action.

The resulting action set of the single-agent planning problem Π′ is

A′ =
{

select-ai, do-ai, end-ai : ai ∈ Ai, i ∈ N
}

∪ {start, apply, reset, finish} .
(3.2)

Lemma 3.3. The resulting number of actions of the single-agent planning problem

Π′ is

|A′| = 3
∑
i∈N

∣∣Ai∣∣+ 4.

Proof. By equation 3.2, we know that the action set A′ in the single-agent problem

Π′ contains four parameter-free actions: start, apply, reset, finish. Thus, A′ has base

size of 4. Then, we add three actions (select-ai, do-ai, end-ai) for each agent action

ai ∈ Ai, i ∈ N . For this reason, the size of A′ is increased by 3
∑

i∈N |Ai|.
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(:action do-lift-side
:parameters (?a - agent ?s - side)
:precondition (and

(applying)
(busy-agent ?a)
(active-lift-side ?a ?s)

)
:effect (and

(not (busy-agent ?a))
(done-agent ?a)
(not (down ?s))
(up ?s)
(lifting ?a ?s)
(not (handempty ?a))
(forall

(?b - block ?r - room ?s2 - side)
(when

(and
(inroom Table ?r)
(on-table ?b)
(down ?s2)
(forall

(?a2 - agent)
(not (active-lift-side ?a2 ?s2))

)
)
(and

(on-floor ?b)
(inroom ?b ?r)
(not (on-table ?b))

)
)

)
)

)

Figure 9: Compilation of TableMover’s lift-side into a classical planning do-ai

action.
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(:action end-lift-side
:parameters (?a - agent ?s - side)
:precondition (and

(resetting)
(done-agent ?a)
(active-lift-side ?a ?s)

)
:effect (and

(not (done-agent ?a))
(free-agent ?a)
(not (active-lift-side ?a ?s))
(forall

(?a2 - agent ?s2 - side)
(not (req-neg-lower-side ?a2 ?s2))

)
)

)

Figure 10: Compilation of TableMover’s lift-side into a classical planning end-ai

action.

Note that the number of actions |A′| grows linearly in the description of the MAP.

In contrast, in the worst case, the number of concurrent actions grows exponentially

in the number n of agents:

∏
i∈N

∣∣Ai∣∣ = O(An),

where A = maxi |Ai| is the size of the largest action set.

Finally, we provide some figures to show and exemplify which is the flow of actions in

a plan. Figure 11 shows which is the order in which single-agent actions are selected

to form a joint action. Joint actions begin with a start action and end with a finish

action. When the finish action ends, a new joint action can be started. The select

actions are executed t times, where t is the number of agents that have applied an

action of this kind. Those same t agents will also do a do and an end action.

To give an actual plan example, we use a simple instance of the TableMover

domain. The following lines show a possible plan for the example in Figure 12. In

this problem, block b1 must be moved from room r1 to room r2.
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start select-ai

apply do-ai

reset end-ai

finish

Start new joint action

Joint action
repeat t, 1 ≤ t ≤ n

repeat t

repeat t

Figure 11: Actions in the single-agent problem that represent the selection of a joint
action of the MAP.

a1

a2

b1

r1 r2

s1 s2Table

Figure 12: Initial state of a simple TableMover instance.

1 (start )
2 (select-to-table a1 r1 s2)
3 (select-pickup-floor a2 b1 r1)
4 (apply )
5 (do-to-table a1 r1 s2)
6 (do-pickup-floor a2 b1 r1)
7 (reset )
8 (end-to-table a1 r1 s2)
9 (end-pickup-floor a2 b1 r1)

10 (finish )
11 (start )
12 (select-putdown-table a2 b1 r1)
13 (apply )
14 (do-putdown-table a2 b1 r1)
15 (reset )
16 (end-putdown-table a2 b1 r1)
17 (finish )
18 (start )
19 (select-to-table a2 r1 s1)
20 (apply )
21 (do-to-table a2 r1 s1)

22 (reset )
23 (end-to-table a2 r1 s1)
24 (finish )
25 (start )
26 (select-lift-side a1 s2)
27 (select-lift-side a2 s1)
28 (apply )
29 (do-lift-side a1 s2)
30 (do-lift-side a2 s1)
31 (reset )
32 (end-lift-side a1 s2)
33 (end-lift-side a2 s1)
34 (finish )
35 (start )
36 (select-move-table a1 r1 r2 s2)
37 (select-move-table a2 r1 r2 s1)
38 (apply )
39 (do-move-table a2 r1 r2 s1)
40 (do-move-table a1 r1 r2 s2)
41 (reset )
42 (end-move-table a1 r1 r2 s2)
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43 (end-move-table a2 r1 r2 s1)
44 (finish )
45 (start )
46 (select-lower-side a1 s2)
47 (apply )

48 (do-lower-side a1 s2)
49 (reset )
50 (end-lower-side a1 s2)
51 (finish )

As each joint action begins with an start action and ends with a finish action, this

plan contains 6 joint actions. Each of the joint actions goes through the three phases

previously explained: action selection, action application and resetting.

The actions being selected are those that compound the actual joint action in the

MAP. Therefore, if we transform the single-agent plan into a multiagent plan, there

would be the following actions:

1 (to-table a1 r1 s2), (pickup-floor a2 b1 r1)
2 (putdown-table a2 b1 r1)
3 (to-table a2 r1 s1)
4 (lift-side a1 s2), (lift-side a2 s1)
5 (move-table a1 r1 r2 s2), (move-table a2 r1 r2 s1)
6 (lower-side a1 s2)

3.1.3 Properties

We show that the compilation is both sound and complete.

Lemma 3.4. When applying action start, fluent free-agent(i) is true for each agent

i ∈ N .

Proof. The start action can only be done if the fluent free is true. This happens in

two situations:

1. In the initial state I, where the fluent free-agent(i) is also true for each agent

i ∈ N . Then, these fluents are true when applying the start action.

2. After doing a finish action. This action requires free-agent(i) fluents to be true

for i ∈ N . Then, these fluents are still true when applying the start action.
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Lemma 3.5. When applying action apply, fluent busy-agent(i), i ∈ N is true for a

subset of agents, and in this case, active-ai is true for some action ai ∈ Ai.

Proof. The only precondition of the apply action is that the selecting fluent is true.

While the selecting fluent is true, we can only apply actions of type select-ai or the

apply action to change phase. If a select-ai action is applied, the fluents busy-agent(i)

and active-ai corresponding to agent i and the original action ai ∈ Ai become true.

At most N select-ai actions can be applied (it depends on the negative concurrency

constraints and the original preconditions of the action). Therefore, before doing

the apply action, we will have a set of agents with busy-agent(i) and active-ai set to

true for their associated action.

Lemma 3.6. When applying action reset, fluent done-agent(i) is true for the same

subset of agents, and active-ai is still true if positive concurrency constraints hold.

Proof. For an agent i ∈ N to have fluent done-agent(i), it is required it applies

action do-ai for the action ai ∈ Ai that was previously selected (i.e. select-ai action).

Moreover, to apply a do-ai action, the fluent busy-agent(i) has to be true. Therefore,

only those agents whose fluent busy-agent is true will be able to apply the do-a

action and make their corresponding done-agent fluent true. This will only happen

if positive concurrency constraints (if any) hold.

Although the reset action does not indicate it explicitly, all agents with busy-agent

fluent set to true will do a do-a action (again, if positive concurrency constraints

hold). To explain the reason, we have to go through the whole cycle for choosing a

joint action. To end a joint action, the fluent free-agent must be true for all agents

(precondition of the finish action). To make free-agent true, all those agents having

busy-agent true have to end the whole cycle, i.e. first become done-agent and then

free-agent. This forces them to perform the do-a action and, thus, the done-agent

fluent will be true for all agents that were busy-agent before applying the reset action.

On the other hand, the fluents active-a are not changed by actions do-a (they only

use them as preconditions). Thus, their value for actions chosen by agents being
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busy-agent are that moment is still true.

Lemma 3.7. When applying action finish, fluent free-agent(i) is again true for each

agent, and all active-ai fluents become false.

Proof. In Lemma 3.6, we showed that before doing a reset action, the set of agents

that are performing the joint action have their done-agent fluent set to true. The

finish action requires that all agents have their corresponding free-agent fluent set

to true. The agents become free by applying the reset-ai actions, where ai is the

atomic action agent i ∈ N chose in the selection phase. The corresponding active-ai

fluents become false as an effect of reset-ai actions.

Theorem 3.8 (Soundness). A sequential plan π′ that solves Π′ can be transformed

into a concurrent plan π that solves Π.

Proof. The start action represents the beginning of a joint action. In Lemma 3.4, we

showed that any agent is free to start a joint action. All agents doing an select-ai

action indicate that they participate in the joint action using atomic action ai.

Because of Lemma 3.5, in the moment of doing the apply action, a subset of agents

will have chosen atomic actions to do (one each); besides, all selected atomic actions

satisfy all negative concurrency constraints, as Lemma 3.2 states.

In Lemma 3.6, we demonstrated that at the end of the application phase (if positive

concurrency constraints are respected), each of the agents have applied the effects

of their chosen atomic actions ai by using the corresponding do-ai actions. Hence,

the joint action satisfies all concurrency constraints (positive and negative). By

assumption, all such joint actions are well-formed, i.e. do not introduce conflicting

effects.

Finally, because of Lemma 3.7, when the joint action finishes, all auxiliary fluents

reset to its previous state for either (1) do a new joint action, or (2) end the process.

Since π′ solves Π′, the sequence π of concurrent actions induced by the plan π′

achieves the goal condition G′ = G ∪ {free}, implying that π solves Π.
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Theorem 3.9 (Completeness). A concurrent plan π that solves Π can be trans-

formed into a classical plan π′ that solves Π′.

Proof. For each concurrent action aj of the plan π, we form a sequence of actions

of Π′ that emulates aj. An start action is used to represent the beginning of a

concurrent action in Π′. After doing this action, we are in the select phase, where

the atomic actions forming the concurrent actions are chosen. Thus, for each of

the constituent actions ai of the concurrent action aj, we do select-ai in π′. Since

by definition aj is well-formed, the order in which we do select-ai does not matter:

all the original preconditions in Π and the negative concurrency constraints will be

satisfied.

Once all the required select-ai actions have been done, the apply action is performed

for changing from the selection to the application phase. Analogously to the selection

phase, a do-ai action is applied for each atomic action ai in aj. Again, since aj is

well-defined, the order of the do-ai actions does not matter: the positive concurrency

constraints will be satisfied. Since the effect of aj equals the union of the individual

effects, applying all do actions results in the same new state on fluents in F .

After doing the do-ai actions, the reset action is applied for changing from the

application to the resetting phase. In this phase, an end-ai action is applied for each

atomic action ai in joint action aj. These actions do not modify any of the original

fluents in F ; therefore, the state on fluents in F after doing the end-ai actions is

the same than the one we had before starting the reset phase (i.e. only some of the

auxiliary fluents in Π′ have been modified).

The emulated joint action ends with the finish action, which makes the emulation

of another joint action possible. Since π achieves the goal G on F , π′ achieves the

goal G′ = G∪{free} since the fluent free is true following the last concurrent action,

which is a finish action.

In the following lines, we want to emphasize the utility of this approach. Although

the search space is the same, the number of actions has been reduced from expo-
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nential to linear. This relies on having a classical planner that exploits heuristics to

avoid having to search the entire search space of solutions (planners have a small

representation of the planning problem and can often solve such problems even when

the search space is exponential).

3.2 Results

Experiments have been performed in three domains: TableMover, Maze and

Workshop. To solve single-agent problems we used the classical planner Fast

Downward [21] in the LAMA setting [22], with a timeout of 3,600 seconds.

The domains and their respective results are described in the following subsections.

The results are summarized in one table per domain. For each problem size we

generated 5 random instances and we report three parameters:

• na: the average number of actions of the single-agent plan π′.

• nse: the average number of select actions of the plan π′, which indicates how

many individual actions are applied.

• nst: the average number of start actions of the plan π′, which indicates the

number of concurrent actions.

The cells containing a dash represent cases for which a minimum number of instances

has not been solved after one hour. Thus number varies between domains: in

TableMover and Workshop we required all 5 instances to be solved, while we

required 3 instances to be solved in Maze.

3.2.1 TableMover Domain

The TableMover domain, described in Section 2.3.2, is used with some modi-

fications: there is more than one table and more than two agents. To promote

concurrent plans, agents can only move between rooms if they are carrying a table.
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Table 1: Results for the TableMover domain (a = agents, r = rooms, b = blocks).

a = 2 a = 4 a = 8
na nse nst na nse nst na nse nst

r = 2

b = 1 41 7 5 52 9 6 64 11 8
b = 2 78 14 9 112 19 14 - - -
b = 4 97 18 11 211 37 25 - - -
b = 8 110 21 12 - - - - - -

r = 8

b = 1 93 17 11 172 31 20 - - -
b = 2 168 30 19 - - - - - -
b = 4 212 39 24 - - - - - -
b = 8 1106 196 129 - - - - - -

r = 20

b = 1 190 36 21 179 33 20 - - -
b = 2 172 33 18 - - - - - -
b = 4 834 155 93 - - - - - -
b = 8 1067 196 120 - - - - - -

We have generated 5 instances for different combinations of agents (2, 4, 8), rooms

(2, 8, 20) and blocks (1, 2, 4, 8). The instances are characterized by:

• Rooms are linked such that they form a tree structure.

• Blocks and tables are randomly placed in rooms.

• For each table, two agents start in the same room.

• All blocks must be moved to the same random room.

Table 1 shows the results for TableMover. The minimum number of instances to

be solved is 5 (i.e. all of them).

We observe that the higher the parameter values are, the longer plans become. There

are many cases that cannot be solved in the given time, concretely those with many

agents. Even in simple cases with 2 rooms, 2 blocks and 8 agents, the planner does

not generate any solution.

In large instances, agents tend to prefer moving few blocks using the table. In some

instances, the agents may leave a room without collecting the blocks there. This

strategy is inefficient since they eventually have to return to that room.
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Table 2: Results for the Maze domain (a = agents, n =
rows and columns of the n× n grid).

a = 5 a = 10 a = 15 a = 20
na nse nst na nse nst na nse nst na nse nst

n = 4 81 18 7 117 28 8 165 43 9 238 56 18
n = 8 163 33 16 308 70 25 - - - - - -
n = 12 - - - - - - - - - - - -
n = 16 456 83 52 510 124 34 - - - - - -
n = 20 475 88 53 - - - - - - - - -

We experimented with a cost function that made the start action more expensive.

The objective was to minimize the number of start actions, thus increasing the

number of blocks the agents would move simultaneously on the table. However, it

barely had any effect, no matter the amplitude of the cost.

3.2.2 Maze Domain

In the case of the Maze domain (described in Section 2.3.2), we randomly generated

5 instances for grids of size 4x4, 8x8, 12x12, 16x16 and 20x20, and for 5, 10, 15 and

20 agents.

Table 2 shows the results for this domain. The minimum number of instances to

be solved is 3 since it was more difficult to obtain solved instances than in Table-

Mover. Part of the explanation may be that we did not explicitly test whether

a given randomly generated instance was solvable; moving between rooms some-

times introduces intricate interactions, since agents have to collaborate by pushing

switches that unlocks certain doors, or rowing a boat together. As in TableMover,

longer plans are generated for larger parameter values. Again, the number of agents

seems to be the main bottleneck that prevents solving more complex problems.

The number of solved cases is less than that reported in the experiments by Crosby

et al. (2014) using their MAP transformation algorithm [11]. Table 3 reports these

results, where L′ is the average length of the single-agent plan, and L is the average

length of the compressed plan (i.e. number of joint actions). We conjecture that when

applicable, their transformation is slightly more efficient; this could be attributed

to the fact that our concurrency constraints are more expressive, and hence the
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Table 3: Results for the Maze domain using the Crosby et al. (2014) multiagent to
single-agent compilation.

a = 5 a = 10 a = 15 a = 20
L′ L L′ L L′ L L′ L

n = 4 8 5 28 16 39 24 43 21
n = 8 29 24 52 41 56 39 88 60
n = 12 38 31 43 31 - - 97 49
n = 16 59 50 56 38 153 133 127 98
n = 20 55 47 - - 81 63 132 104

resulting problems may be more difficult to solve.

3.2.3 Workshop Domain

We introduce a new domain called Workshop, in which the objective is to do

inventory in a high-security storage facility. The actions and their constraints are

the following:

• To open a door, one agent has to press a switch while another agent simulta-

neously turns a key.

• To do inventory on a pallet, one agent has to use a forklift to lift the pallet while

another agent examines it (for security reasons, labels are located underneath

pallets).

• There are also actions for picking up a key, entering or exiting a forklift, moving

an agent, and driving a forklift.

The instances we generated have the following features:

• There are connected sections forming a tree. Sections are linked through locked

security doors.

• Each section has a number of subsections (i.e. rooms) which are connected via

unlocked doors, forming a tree.

• In each section there is a switch and a key for each of the security doors it is

connected to. The key and the switch are randomly placed in one of its rooms.
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• Pallets and forklifts are randomly placed in rooms.

• Two agents are placed in the same room as a forklift.

We generated 5 random instances for certain combinations of agents (2, 4, 8), pallets

(1, 4, 8) and rooms (2, 16, 32, 64). The number of rooms represents the product

between the number of sections and the number of subsections.

Table 4 shows the experiments for this domain. The minimum number of instances

to be solved is 5. Almost all cases have been solved for this domain. Only those

with a large number of parameters are not solved. However, note that unlike the

number of rooms and the number of pallets, increasing the number of agents results

in shorter plans. This happens because it is more likely that a pallet is near to two

agents when there are more agents; therefore, the agents do not run many actions for

moving or driving a forklift between rooms. For example, if we look at the average

number of move and drive actions with r = 64 and p = 1, we get the following:

• When a = 2, the agents move 33.6 times on average.

• When a = 4, the agents move 21.6 times on average.

• When a = 8, the agents move 15.8 times on average.

Thus, it is reasonable to think that the fact that smaller plans are obtained is due

to shorter distances between the agents and the pallets.
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Table 4: Results for the Workshop domain (a = agents, r = rooms, p = pallets).

a = 2 a = 4 a = 8
na nse nst na nse nst na nse nst

r = 2
p = 1 24 4 3 20 3 2 17 3 2
p = 4 63 12 6 50 11 4 47 10 4
p = 8 100 20 10 82 19 6 91 18 9

r = 16
p = 1 99 18 11 81 16 9 50 9 6
p = 4 242 46 26 206 40 21 155 30 16
p = 8 364 68 40 287 58 28 230 42 26

r = 32
p = 1 160 30 18 108 20 12 58 11 6
p = 4 389 72 44 312 59 34 169 30 19
p = 8 517 95 58 515 94 58 - - -

r = 64
p = 1 262 48 29 168 29 20 124 23 14
p = 4 601 108 69 - - - - - -
p = 8 946 172 107 - - - - - -



Chapter 4

STP: Simultaneous Temporal

Planner

In this chapter, we introduce a temporal planner that is capable to handle simulta-

neous events, i.e. events that occur at exactly the same time. Firstly, we justify the

need for this kind of planner by introducing the AIA domain, which uses simulta-

neous events. Then, we explain how the planner works. Finally, we show the results

of some experiments using this planner and compare them to other state-of-the-art

planners.

4.1 The AIA Domain

Allen’s interval algebra [23] is a calculus for temporal reasoning in logic that defines

possible relations between time intervals. Specifically, there are seven possible rela-

tions on interval pairs (X, Y ), illustrated in Figure 13. The first six relations also

have an inverse, for a total of 13 unidirectional relations.

In this section we describe the AIA domain, a novel domain for temporal planning

based on Allen’s interval algebra. Specifically, the domain was designed with two

goals in mind: 1) incorporate diverse forms of required concurrency, not only in the

form of single hard envelopes (see Section 2.4); and 2) include temporal planning

39
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X
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X

Y
X finishes Y

X

Y
X equals Y

Figure 13: The seven relations on interval pairs (X, Y ) in Allen’s interval algebra.

instances that require simultaneous events.

To model Allen’s interval algebra in PDDL, we define a single type interval and

a function length on intervals that represent their duration. We also define predi-

cates started and ended on intervals to indicate that a given interval has started or

ended, predicates nstarted and nended to preserve positive preconditions, and seven

predicates on interval pairs corresponding to the seven relations in Figure 13. For

example, the binary predicate (before ?i1 ?i2 - interval) is used to represent the

first relation in Figure 13.

The domain has a single action template apply-interval with a single argument that

is an interval. The action aX = apply-interval(X) associated with interval X has



4.1. The AIA Domain 41

Relation preo(aX) pres(aY ) preo(aY ) pree(aY )
before(X, Y ) - {ended(X)} - -
meets(X, Y ) - - {ended(X)} -

overlaps(X, Y ) - {started(X), nended(X)} - {ended(X)}
starts(X, Y ) {started(Y )} - {started(X)} {ended(X)}
during(Y,X) - {started(X)} - {nended(X)}
finishes(Y,X) {nended(Y )} {started(X)} {nended(X)} -
equal(X, Y ) {started(Y ), nended(Y )} - {started(X), nended(X)} -

Table 5: Modifications to actions aX and aY as a result of a desired relation on X
and Y .

duration d(aX) = length(X) and is defined as follows:

pres(aX) = {nstarted(X)},

preo(aX) = pree(aX) = ∅,

conds(aX) = {∅� {started(X),¬nstarted(X)}},

conde(aX) = {∅� {ended(X),¬nended(X)}}.

To make sure that aX is only applied once, precondition nstarted(X) ensures that

aX has not previously been started. The effect at start is to add started(X) and

delete nstarted(X), and the effect at end is to add ended(X) and delete nended(X).

We now define instances of the domain. Each instance consists of intervalsX1, . . . , Xm,

each with a given duration. Each interval Xi, 1 ≤ i ≤ m, is initially marked

as not started and not ended. The goal state is a series of relations on interval

pairs expressed in Allen’s interval algebra that we want to achieve. For example,

overlaps(X1, X2) ∧ overlaps(X2, X3) ∧ overlaps(X3, X4).

Given an instance of AIA, we compile the domain and instance into new PDDL

domain and instance files. The reason is that we want to modify the individual

action aX = apply-interval(X) of each interval X depending on the desired relations

in the goal state. Table 5 lists the modifications to actions aX and aY as a result of

a desired relation on intervals X and Y , in terms of additional preconditions on aX

and aY . We explain these modifications below.

• before(X, Y ): Action aX has to end before aY starts.
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• meets(X, Y ): Action aX has to end exactly when aY starts (possibly simulta-

neously).

• overlaps(X, Y ): Action aX has to start before aY starts, end after aY starts,

and end before aY ends.

• starts(X, Y ): Actions aX and aY have to start simultaneously (represented by

contexts started(Y ) of aX and started(X) of aY ), and aX has to end before aY

ends.

• during(Y,X): Action aX has to start before aY starts and end after aY ends.

• finishes(Y,X): Actions aX and aY have to end simultaneously (represented by

contexts nended(Y ) of aX and nended(X) of aY ), and aX has to start before

aY starts.

• equal(X, Y ): Actions aX and aY have to start and end simultaneously.

With these modifications, the temporal planning instance has a plan if and only if

all relations on interval pairs are satisfied, with one exception: we cannot model

the relation meets(X, Y ) such that Y is forced to start at the same time as X ends,

and Y starting after X ends also satisfies the precondition over all ended(X) of

aY . To model the relation meets(X, Y ), we use an auxiliary interval Z satisfying

length(Z) = length(X) + length(Y ), starts(X,Z) and finishes(Y, Z). An example of

the PDDL domain and instance representation is shown in Appendix C.

4.2 Description

In this section, we describe an extension of the TP planner [15], that we call Simul-

taneous TP (STP), to handle simultaneous events. Recall that simultaneous events

are those that occur at exactly the same time, and that we have to check whether

or not the resulting joint event is valid.

Just as for TP, we use a modified version of Fast Downward [21] in order to get

temporal solutions. Simple Temporal Networks (STN) [24] are used to represent



4.2. Description 43

temporal constraints. An STN is a directed graph with time variables τi as nodes,

and an edge (τi, τj) with label c represents a constraint τj−τi ≤ c. Scheduling fails if

and only if an STN contains negative cycles. Else, the range of feasible assignments

to a time variable τi is given by [−di0, d0i], where dij is the shortest distance in the

graph from τi to τj, and τ0 is a reference time variable whose value is assumed to be

0. In TP (and STP), there is a time variable for each temporal action. During the

search process, a branch is pruned if the temporal constraints are violated. At the

end of the section, we explain the additional modifications we introduced in Fast

Downward to support STP.

Like TP, we impose a bound K on the number of active actions. Besides, we add the

maximum value C of a cyclic counter (i.e. a counter that starts from 1 and resets to

1 after reaching the maximum value C). This cyclic counter increases each time an

specific phase in the resulting compilation, called ending phase, is reached (detailed

later).

Let Π = 〈F,A, I,G〉 be a temporal instance. The compilation of the STP(K,C)

planner is a classical instance ΠK,C = 〈FK,C , AK,C , IK,C , GK,C〉. The new compilation

has to ensure that joint events are valid, taking special care of the contexts of

temporal actions. Recall that a context f of a temporal action a may be added by

an event that is simultaneous with the start of a, and that f may be deleted by

an event that is simultaneous with the end of a. To properly handle contexts, our

compilation divides each joint event into three phases:

1. End phase (immediately before the event). This is where active actions are

scheduled to end during the joint event. In doing so, the counts of the corre-

sponding contexts are decremented (else a context could not be deleted in the

joint event itself).

2. Event phase (joint event itself). This is where the simultaneous events take

place, both ending and starting actions. Thus, we check that preconditions

hold and apply effects, simultaneously verifying that we do not violate the

validity of the joint event.
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3. Start phase (immediately after the event). Here we check that the contexts

of active actions that just started are satisfied (possibly as a result of being

added during the joint event) and increment the context counts.

In the next sections we describe the new fluents and actions of the classical problem

ΠK,C .

4.2.1 Fluents

The set of fluents FK,C extends F with the following new fluents:

• For each a ∈ A, fluents freea and activea indicating that a is free (i.e. did not

start) or active.

• For each f ∈ Fo and each c, 0 ≤ c ≤ K, a fluent countcf indicating that c active

actions have f as context.

• For each c, 0 ≤ c ≤ K, a fluent concurc indicating that there are c concurrent

active actions.

• Fluents endphase, eventphase and startphase corresponding to the three phases

described above.

• For each a ∈ A, fluents startinga, endinga, nstartinga and nendinga indicating

that a is starting, ending, not starting and not ending respectively.

• For each f ∈ F , fluents canpref and canefff indicating that we can use f as a

precondition or effect.

• Fluents endingcounti, 1 ≤ i ≤ C indicating the state of the ending counter.

This counter works cyclically, i.e. if i = C, then i+ 1 = 1. These fluents help

to distinguish between different states that share the same fluents but have

different temporal meanings.

As it may not be clear why endingcount fluents are needed, we give an example

using the AIA domain (see Figure 14). In this example, the planner must find
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i1[5] i3[5]

i2[11]

Time

Figure 14: Example of the AIA domain: i1 and i2 start at the same time, while i2
and i3 end at the same time.

a solution such that i1 and i2 start simultaneously, while i2 and i3 end simul-

taneously. Figure 15 shows two different intermediate solutions the planner

might visit. The black dotted lines indicate the execution of an end phase.

The solid red line indicates the time at which A and B are considered equal

to the planner if we did not take the number of ending phases into account.

Although the time at which i3 starts is different for each solution, the classical

planner does not have this temporal information: it just knows that i2 and i3

are executing simultaneously.

Assuming no counters for ending phases are maintained, if the classical plan-

ner first visits A, it will mark A as visited and it will not find the solution

(attempting to end i3 at the same time as i2 will violate the temporal con-

straints). Therefore, if the planner reaches B, then it will detect that it is in

the visited list, and will skip it! Consequently, the planner will state that no

solution could be found although there was one. If we add the ending coun-

ters, the planner can distinguish between A and B since they have run 2 and

3 ending phases respectively.

The resulting set of fluents FK,C can be expressed as follows:
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i1[5]

i2[11]

i3[5]

Time

Solution A

i1[5]

i2[11]

i3[5]

Time

Solution B

Figure 15: Possible intermediate solutions the planner can find for the example in
Figure 14 (see text for more information).

FK,C = F ∪ {freea, activea : a ∈ A}

∪ {countcf : f ∈ Fo, 0 ≤ c ≤ K}

∪ {concurc : 0 ≤ c ≤ K}

∪ {endphase, eventphase, startphase}

∪ {startinga, endinga, nstartinga, nendinga : a ∈ A}

∪ {canpref , canefff : f ∈ F}

∪ {endingcounti : 1 ≤ i ≤ C}.

(4.1)

Lemma 4.1. The resulting number of fluents in the classical planning problem ΠK,C

is

|FK,C | = |F |+ 2 |A|+ (K + 1) |Fo|+ (K + 1) + 3 + 4 |A|+ 2 |F |+ C

= 3 |F |+ 6 |A|+ (K + 1) (|Fo|+ 1) + C + 3.

Proof. By equation 4.1, the set of fluents FK,C in the classical problem ΠK,C contains

all the fluents F in the temporal planning problem Π. Besides, we add two new

fluents (canpref , canefff ) for each fluent f ∈ F . This results in 3 |F | fluents.

We add 6 new fluents for each action (freea, activea, startinga, endinga, nstartinga,

nendinga); thus, the size of the set increases 6 |A|. Then, we add (K + 1) |Fo| countcf

fluents, and (K + 1) concurc fluents; this results in an increase of (K + 1) (|Fo|+ 1)

fluents.
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We add C endingcount fluents, and three more fluents: endphase, eventphase and

startphase.

The initial state is defined as follows:

IK,C = I ∪ {freea : a ∈ A} ∪ {count0f : f ∈ Fo} ∪ {concur0}

∪ {endphase, endingcount1}

∪ {nstartinga, nendinga : a ∈ A} ∪ {canpref , canefff : f ∈ F}.

The goal condition is:

GK,C = G ∪ {concur0} ∪ {startphase}.

4.2.2 Actions

In the STP(K,C) encoding, the action set AK,C contains several actions correspond-

ing to each temporal action a ∈ A: dostartca and launcha for starting a, and doendca

and finisha for ending a. For each c, 0 ≤ c < K, action dostartca is defined as

pre = pres(a)

∪ {eventphase, concurc, freea}

∪ {count0f : f ∈ Fo ∩ f ∈ ¬conds(a)}

∪ {canpref : f ∈ pres(a)}

∪ {canefff : f ∈ conds(a)},

cond = conds(a)

∪ {∅� {concurc+1, startinga}}

∪ {∅� {¬concurc,¬freea,¬nstartinga}}

∪ {∅� {¬canefff : f ∈ pres(a)}}

∪ {∅� {¬canpref ,¬canefff : f ∈ conds(a)}}.
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For a given value of c < K, we can only start a in the event phase if there are c

active actions and a is free. All contexts deleted at start of a need a count of 0, and

all preconditions and effects at start of a have to be available. Starting a adds fluent

startinga, deletes freea and nstartinga, and increments the number of active actions.

Moreover, deleting fluents of type canpref and canefff prevents invalid joint events.

Specifically, if f is a precondition at start of a, f can no longer be used as an effect

in this event phase. Likewise, if f is an effect at start of a, f can no longer be used

neither as a precondition nor as an effect.

For each c, 0 ≤ c < K, action doendca is similarly define as

pre = pree(a)

∪ {eventphase, concurc+1, endinga}

∪ {count0f : f ∈ Fo ∩ f ∈ ¬conde(a)}

∪ {canpref : f ∈ pree(a)}

∪ {canefff : f ∈ effe(a)},

cond = conde(a)

∪ {∅� {concurc, freea, nendinga}}

∪ {∅� {¬concurc+1,¬endinga}}

∪ {∅� {¬canefff : f ∈ pree(a)}}

∪ {∅� {¬canpref ,¬canefff : f ∈ conde(a)}}.

For a given value of c, we can only end a in the event phase if there are c + 1

active actions and a is already ending, represented by fluent endinga. Ending a

adds fluents freea and nendinga and decrements the number of active actions. The

remaining action definition is analogous to dostartca and controls the validity of the

joint event.
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Action launcha is responsible for completing the start of a during the start phase:

pre = preo(a)

∪ {startphase, startinga},

cond = {∅� {activea, nstartinga,¬startinga}}

∪ {countcf � countc+1
f , f ∈ preo(a) ∧ 0 ≤ c < K}

∪ {countcf � ¬countcf , f ∈ preo(a) ∧ 0 ≤ c < K}.

This is where we check that the contexts of a hold, and due to the precondition

startinga we can only launch a if a was started during the event phase. The result

is adding activea and nstartinga and deleting startinga. Moreover, the context counts

are incremented.

Finally, action finisha is needed to schedule a for ending during the end phase:

pre = {endphase, activea},

cond = {∅� {endinga,¬activea,¬nendinga}}

∪ {countc+1
f � countcf , f ∈ preo(a) ∧ 0 ≤ c < K}

∪ {countc+1
f � ¬countc+1

f , f ∈ preo(a) ∧ 0 ≤ c < K}.

The result is adding endinga and deleting activea and nendinga. Context counts are

also decremented.

The action set AK,C also needs three actions setevent, setstart and setend for switch-

ing between phases. Action setevent is defined as

pre = {endphase},

cond = {∅� {eventphase,¬endphase}}.
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Action setstart is defined as

pre = {eventphase} ∪ {nendinga : a ∈ A},

cond = {∅� {startphase,¬eventphase}}.

Note that we cannot leave the event phase unless all actions have ended. Action

setend is defined as

pre = {startphase} ∪ {nstartinga : a ∈ A} ∪ {canpref , canefff : f ∈ F},

cond = {∅� {endphase,¬startphase}}

∪ {endingcounti � endingcountj, 1 ≤ i ≤ C, j = (i+ 1) mod C}

∪ {endingcounti � ¬endingcounti, 1 ≤ i ≤ C}.

Note that we cannot leave the start phase unless all actions have started and all

fluents are available as preconditions or effects. Moreover, the counter of end phases

updates.

Finally, AK,C includes a reset action resetf for each fluent f ∈ F , defined as

pre = {startphase},

cond = {∅� {canpref , canefff}}.

These can only be applied in the start phase.

Figure 16 shows the interconnection between the different phases and the actions

introduced in the compilation. Some actions allow to change the current phase,

whereas others can be repeatedly applied (if the preconditions hold) while their

associated phase is active. The execution begins with the endphase, as explained

before.

Figure 17 focuses on the cycle each of the actions a ∈ A passes through in the

compilation. Note that after applying an action, the previous fluent is deleted,
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endphase finisha

setevent

eventphase
dostartca

doendca

setstart

startphase
launcha

resetf

setend

Figure 16: Interaction between the different actions introduced by the STP planner
in the different phases.

freea
dostartca startinga

launcha activea
finisha endinga

doendca

Figure 17: Fluents that are enabled each time an action in the compilation is exe-
cuted.

e.g. when dostartca is applied, freea is deleted and startinga is added. Besides, take

into account that, at any time, the predicates nstartinga and nendinga have the

opposite value than startinga and endinga respectively.

The action set of the resulting classical planning problem ΠK,C is

AK,C = {dostartca, doendca : a ∈ A, 0 ≤ c < K}

∪ {launcha, finisha, seteventa, setstarta, setenda : a ∈ A}

∪ {resetf : f ∈ F}.

(4.2)

Lemma 4.2. The resulting number of actions of the classical planning problem ΠK,C

is

|AK,C | = 2K |A|+ 4 |A|+ |F |

= (2K + 4) |A|+ |F | .
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Proof. By equation 4.2, the set of actions AK,C in the classical problem ΠK,C contains

two actions for each pair of a ∈ A and 0 ≤ 0 < K (dostartca and doendca). This results

in 2K |A| actions. Then, for each a ∈ A, we add four actions: launcha, finisha,

seteventa, setstarta and setenda; thus, we add 4 |A| actions more. Finally, we have a

resetf action for each f ∈ F , so we add |F | actions to the actions set.

Theorem 4.3 (Soundness). Let π′ be a plan that solves the classical planning in-

stance ΠK,C. Given π′, we can always construct a temporal plan π that solves the

temporal planning instance Π.

Proof. Clearly, the system can only be in one of the three phases at once, and we can

only cycle through the phases in the order endphase → eventphase → startphase →

endphase using actions setevent, setstart and setend. The system is initially in the

end phase, and the goal state requires us to be in the start phase with no actions

active (due to the fluent concur0 of GK,C).

A temporal action a can start in the event phase and launch in the start phase.

Specifically, the fluent nstartinga is deleted by dostartca and added by launcha. After

starting a in the event phase, we cannot end a until another subsequent event phase

since the precondition endinga of action doendca is only added by finisha, which is

only applicable in the end phase. Together with the fact that no action is active

in the goal, starting a implies that we have to fully cycle through all the phases

at least one more time. In turn, this requires us to apply action setend. Due to

the precondition nstartinga of setend, we cannot start a in the event phase without

launching a in the very next start phase.

Likewise, a temporal action a can finish (i.e. be scheduled for ending) in the end

phase, and end in the event phase. Specifically, the fluent nendinga is deleted by

finisha and added by doendca. After ending a in the event phase, we have to apply

action setstart at least one more time since the goal state requires us to be in the

start phase. Due to the precondition nendinga of setstart, we cannot finish a in the

end phase without ending a in the very next event phase.

For each fluent f ∈ F , we show that the fluents canpref and canefff are true each
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time we apply action setevent, i.e. when we enter the event phase. The fluents in

question are true in the initial state, i.e. in the end phase, and are only deleted

by actions of type dostart and doend, which are only applicable in the event phase.

However, the precondition {canpref , canefff} of action setend requires us to reset f

in the start phase using action resetf , and there are no actions that delete these

fluents that are applicable in the end phase.

We have thus shown that any solution plan π′ for ΠK,C has the following form:

〈setevent, dostarta, setstart, launcha, resetf , setend, . . . , setend, finisha, setevent, doenda, setstart〉

For clarity, actions that alter the phases are underlined. We may, of course, start

and launch multiple actions at once, as well as finish and end multiple actions at

once. We may also start and end actions during the same event phase.

We show that each joint event induced by π′ is valid. Each time a fluent f appears as

an effect of an event in the event phase, deleting fluents canpref and canefff prohibits

f from appearing as a precondition or effect of another event in the same event

phase (note that resetf is not applicable until the following start phase). Likewise,

each time a fluent f appears as a precondition, deleting fluent canefff prohibits f

from appearing as an effect of another event. Because of the mechanism for finishing

and launching temporal actions, however, the context of a temporal action a may be

added by an event simultaneous with starting a and deleted by an event simultaneous

with ending a.

To obtain a temporal plan π, we associate each temporal action a that occurs in π′

with the starting time τa = −da0 given by the STN. The modified time constraints

are defined such that all events that are part of a joint event are scheduled to occur

at the same time. Hence the events of the induced event sequence πE occur exactly

in the same order as the events in π′. Since π′ solves ΠK,C , πE solves Π with respect

to fluents in Π, and contexts are respected because of the count mechanism.

We have introduced some additional modifications to support STP. In addition to
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the latest event e, we also keep track of the first event e∗ to take place in the

current event phase. Unlike Tempo, while we remain in the same event phase the

imposed constraint τe ≤ τa or τe ≤ τa + d(a) is not strict, since e is intended to

be simultaneous with starting or ending a. When we apply the action setstart, we

impose the additional constraint τe ≤ τe∗ , thus ensuring that all events of the current

event phase are scheduled exactly at the same time. When we reach the next event

phase, we reset the first event e∗ and impose a strict constraint τe < τe∗ to ensure

that non-simultaneous events are spaced apart.

4.3 Results

We performed an evaluation in all 10 domains of the temporal track of IPC-2014.

Moreover, we added the DriverlogShift (DLS) domain [25], the AIA domain

(see Section 4.1), and a domain based on an STN example introduced by Cushing

et al. (2007) [26] (from now on, this domain is referred as the Cushing domain).

The STP planner was executed for values of K in the range 1, . . . , 4 and with a fixed

C = 10. We compared STP with other planners that compile temporal planning

problems into classical planning ones. Firstly, we ran the TP planner using the

same values of K than STP. Secondly, the TPSHE planner used the LAMA-2011

setting of Fast Downward to solve the compiled instance. We also ran experiments

for POPF2 [27] (the runner-up at IPC-2011), YAHSP3-MT [28] (the winner at IPC-

2014), and ITSAT [29] (a SAT-based temporal planner).

Table 6 shows, for each planner, the IPC quality score and the coverage, i.e. the

number of instances solved per domain. Experiments were executed on a Linux

computer with Intel Core 2 Duo 2.66GHz processors. Each experiment had a cutoff

of 10 minutes or 4GB of RAM memory.

The TPSHE planner solved at least one instance for all domains except for Cushing

and Floortile. Besides, it obtained the highest IPC score and coverage.

The only domains with required concurrency not in the form of single hard envelopes

are AIA and Cushing. TP and TPSHE cannot handle simultaneous events. Thus,
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Table 6: Comparison among presented planners. IPC quality score / coverage per
domain for each planner. Total number of instances of each domain between brack-
ets.

TPSHE TP(1) TP(2) TP(3) TP(4) STP(1) STP(2) STP(3) STP(4) POPF2 YAHSP3-MT ITSAT
AIA[25] 3/3 3/3 6.5/8 7.5/9 8.5/10 3/3 17.17/22 19.51/24 23.5/25 10/10 3/3 3/3
Cushing[20] 0/0 0/0 0/0 4.07/20 4.93/20 0/0 0/0 3.31/14 2.51/6 20/20 0/0 0/0
Driverlog[20] 14.78/15 1.42/5 0.93/3 1.08/4 0.91/3 0/0 0/0 0/0 0/0 0/0 2.31/4 1/1
DLS[20] 9.37/11 0/0 10/10 7.7/9 8.06/9 0/0 3.78/4 3.9/4 3.49/4 7/7 0/0 16.18/19
Floortile[20] 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 4.93/5 19.7/20
MapAnalyser[20] 17.38/20 10.16/19 13.08/20 12.34/20 12.02/19 9.18/19 9.81/17 10.09/16 7.69/12 0/0 1/1 0/0
Matchcellar[20] 15.72/20 0/0 15.71/20 15.71/20 15.71/20 0/0 15.71/20 15.71/20 15.71/20 20/20 0/0 18.91/19
Parking[20] 6.19/20 5.36/18 5.79/17 5.31/16 5.33/16 2.52/9 2.83/9 2.83/9 2.59/8 12/13 16.84/20 0.96/6
RTAM[20] 16/16 4.62/9 2.45/6 2.73/6 2.79/6 0/0 0/0 0/0 0/0 0/0 0/0 0/0
Satellite[20] 16.63/18 7/18 4.94/13 5.04/13 4.67/12 2.31/6 0/0 0/0 0/0 2.92/3 13.82/20 1.68/7
Storage[20] 4.92/9 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 3.91/9 9/9
TMS[20] 0.05/8 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 16/16
Turn&Open[20] 15.53/19 0/0 5.05/10 5.03/10 5.19/10 0/0 0/0 0/0 0/0 7.31/8 0/0 5.88/6
Total 119.58/159 31.55/72 64.46/107 66.51/127 68.12/125 17.01/37 49.3/72 55.36/87 55.49/75 79.22/81 45.8/62 92.3/106

they only could solve few the AIA instances. In the case of Cushing, TPSHE,

TP(1) and TP(2) could not solve any instance, while TP with higher values of K

(TP(3), TP(4)) could solve them all.

In the case of TP, note that if K is increased, more instances are generally solved.

For example, TP(3) solves 20 more instances than TP(2). However, TP(4) solves two

less instances than TP(3). This might happen because of the additional mechanisms

that TP needs for higher values of K. Therefore, some instances become harder to

solve.

STP is the only algorithm that is able to solve all instances of the AIA domain (given

its support for simultaneous events), specifically with K = 4. As in TP, although

higher values of K generally provide better score and coverage, STP(4) solves twelve

less instances than STP(3). However, TP scales better than STP, since the decrease

in the number of solved instances is not as high as in STP. On the other hand,

TP solves many more instances than STP. Since the STP compilation has a higher

number of fluents and actions than TP, it is more difficult for the planner to find

solutions, so it is a possible reason for which STP does not solve many instances in

domains like RTAM or Satellite.

TPSHE and ITSAT are the planners that return solutions with higher quality,

i.e. shorter makespans. Nevertheless, they behave differently for different domains.

For example, they are the only algorithms providing solutions for the TMS domain,

but TPSHE solutions are much longer than ITSAT’s. This happens because TPSHE
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does not take the duration of actions into account and does not exploit parallelism.

The makespan of plans returned by STP are not as good as those of the other

planners, so the IPC scores are lower. It is just comparable to YAHSP3-MT if

K ≥ 2. We want to highlight that YAHSP3-MT solved all instances in IPC-2014 in

the MapAnalyser and RTAM domains. As shown in the table, we have not been

able to reproduce these results (maybe due to the provided time limit).



Chapter 5

Smart Mobility using Temporal

Planning

In this chapter, we introduce the SmartMobility domain. Firstly, we give a

general description of the concepts concerning this domain. Then, we show how

we can model this problem as a temporal planning problem using PDDL. Finally,

we describe the approach we have followed for implementing the overall system and

how we evaluated it.

5.1 Motivation

Collective Adaptive Systems (CAS) consist of diverse heterogeneous agents com-

posing a socio-technical system [30, 31]. The agents that belong to these systems

self-adapt in order to leverage other agents’ resources and capabilities to perform

their task more efficiently or effectively. Adaptation is done in a collective way: the

agents must be capable of automatically and simultaneously self-adapt while pre-

serving the collaboration and benefits of the system. The goals of each of the agents

should always be fulfilled after an adaptation.

Agents are organized in ensembles. They can be created spontaneously and change

over time: different agents may decide to joint and/or leave an existing ensemble

57
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dynamically and autonomously. Additionally, adaptation in these systems is trig-

gered by the run-time occurrence of an unwanted circumstance, called issue. An

issue is handled by an issue resolution process that involves agents, affected by the

issue, to collaboratively adapt with minimal impact on their own preferences.

The SmartMobility domain is a promising area for CAS. Organizing and man-

aging mobility services within a city, meeting travelers expectations and properly

exploiting the available transport resources, is becoming a more and more complex

task.

Traditional transportation models are currently being substituted by other more

social models aiming to provide a more flexible, customized and collective way of

organizing transport.. For example, carpooling is a service that provides procedures

for offering resources (cars) and to ask for them (i.e. searching a ride). Thus, this

service offers a way to organize a team of citizens that need to reach equal or closed

destinations starting also from different locations.

In this new kind of models, passengers select the resources they want to use. How-

ever, coordination between the participants is needed to reach each destination,

preferably in time. Indeed, depending on their location, their route and additional

activities (like refueling), they coordinate their departure times by communicating

with each other. By sharing a resource, people save gas and money, as well as reduce

auto emissions, pollution, etc. Even if services as carpooling look very promising

and more sustainable, they have limits on how the resolution of unwanted situations

are managed.

In the following sections, we propose a method for resolving issues in this domain.

Besides, we will demonstrate the benefits of adapting collectively instead of selfishly

(e.g. all agents use their own car).

5.2 Problem Modeling

In this section we model the problem of smart mobility using temporal planning.

Even though temporal planning was not specifically invented with multiple agents in
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mind, temporal actions are concurrent and have variable duration. Besides, temporal

planning allows modeling complex features such as deadlines, conditions during the

application of actions, and effects occurring at arbitrary time points.

The smart mobility domain that we consider consists of a set of agents formed by

passengers and carpools. Each agent can move between different locations specified

by a map. Each agent starts from a specific location, and the goal is to reach a

target location. To simplify the model we impose the following restrictions:

• Carpools have infinite capacity.

• Each link between two locations has a fixed distance.

• Each link is a footpath, a street, or both. Footpaths are used by passengers,

while streets are used by carpools.

• Passengers move uniformly at 1 m/s. Carpools move uniformly at a speed

that depends on the speed limit.

• A passenger can embark a carpool only if they are at the same location. This

action takes 1 time unit.

• A passenger can debark a carpool at any location reached by the carpool. This

action takes 1 time unit.

Figure 18 shows a simple instance of this domain that will be used for illustration.

The notation is as follows:

• Locations are denoted by li.

• Footpaths are represented by dashed lines, while streets are represented by

solid lines.

• A label d, s indicates that the distance between locations is d and that the

speed limit is s (for carpools only).
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l1 l2 l3

l4 l5

co1 = l1, c
t
1 = l4

po1 = l2, p
t
1 = l5

po2 = l3, p
t
2 = l5

4, 2

4, 2

4, 2

4, 2

1, 1

Figure 18: Example of the smart mobility domain.

• Carpools are denoted by c, while passengers are denoted by p. They are

identified by subindices.

• The origin location of an agent a is denoted by ao, while its target location is

denoted by at.

To define a temporal planning problem Π = 〈F,A, I,G〉, we first define the fluents

in F as follows:

• For each agent a and location l, a fluent at(a, l) indicating whether a is at l.

• For each passenger p and carpool c, a fluent in(p, c) indicating whether p is

inside c.

• For each passenger p and location pair l1, l2, a fluent has-footpath(p, l1, l2)

indicating whether there is a footpath for p between l1 and l2.

• For each location pair l1, l2, a fluent has-street(l1, l2) indicating whether there

is a street between l1 and l2.

The actions in the set A are defined as follows:

• For each passenger p, carpool c and location l, an action embark(p, c, l) that

makes p embark c at l.

• For each passenger p, carpool c and location l, an action debark(p, c, l) that

makes p debark c at l.
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• For each passenger p and pair of locations l1, l2, an action walk(p, l1, l2) that

makes p walk from l1 to l2.

• For each carpool c and pair of locations l1, l2, an action travel(c, l1, l2) that

makes c travel from l1 to l2.

Figure 19 defines the four types of actions in the graphical representation previously

introduced. For example, the action travel(c, l1, l2) has duration dist(l1, l2)/speed(l1, l2),

which depends on the distance and speed limit between l1 and l2. The precondition

at start is that c is at l1, and the effect at start is that c is no longer at l1 (since c is

now traveling towards l2). The effect at end is that c arrives at l2. The precondition

over all requires there to be a street between l1 and l2.

Finally, the initial state I and goal condition G encode origin and target locations

of agents, as well as footpaths and streets. A temporal plan for solving the example

in Figure 18 is:

start time action duration

0.0000 travel(c1, l1, l2) 2.0000

0.0000 walk(p2, l3, l2) 1.0000

2.0002 embark(p1, c1, l2) 1.0000

2.0002 embark(p2, c1, l2) 1.0000

3.0004 travel(c1, l2, l5) 2.0000

5.0006 debark(p2, c1, l5) 1.0000

5.0006 debark(p1, c1, l5) 1.0000

6.0008 travel(c1, l5, l4) 2.0000

Each action ai is labeled with its starting time ti and duration d(ai). Passenger p1

and carpool c1 both travel to location l2, where both passengers embark the carpool.

The carpool then travels to the target location l5 for both passengers, where they

debark. Finally, the carpool travels to its target location l4. Note that some actions

occur in parallel.

Appendix D contains a full example of this domain for instance in Figure 18 using
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embark(p, c, l)[1]

{at(p, l)}

{¬at(p, l)}

{at(c, l)}

{in(p, c)}

debark(p, c, l)[1]

{in(p, c)}

{¬in(p, c)}

{at(c, l)}

{at(p, l)}

walk(p, l1, l2)[dist(l1, l2)]

{at(p, l1)}

{¬at(p, l1)}

{has-footpath(p, l1, l2)}

{at(p, l2)}

travel(c, l1, l2)[dist(l1, l2)/speed(l1, l2)]

{at(c, l1)}

{¬at(c, l1)}

{has-street(l1, l2)}

{at(c, l2)}

Figure 19: Definition of temporal actions for smart mobility.

PDDL.

5.3 Evaluation

In this section, to show our approach in action, we have implemented a demonstrator

of the carpooling scenario1. The, by using this tool, we provide some results showing

the importance of doing collective adaptation instead of selfish.

5.3.1 Carpooling Demonstrator

The demonstrator has been implemented as an extension of the Collective Adaptation

Engine (CAE) [32, 33] and manages different modules for computing adaptation

solutions and statistics. These new modules are: (i) the Scenario Builder, (ii) the

Concurrent Planner and, (iii) the Scenario Viewer.

The Scenario Builder builds the initial state of the carpooling application given:

• The number of passengers and the number of carpools.

• Two latitude-longitude pairs to form the boundaries of the map area.
1We have made the Smart Carpooling Demo available at the following link: https://github.

com/aig-upf/smart-carpooling-demo

https://github.com/aig-upf/smart-carpooling-demo
https://github.com/aig-upf/smart-carpooling-demo
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Figure 20: Screenshot of the Scenario Viewer.

• The minimum and maximum walking ranges of the passengers. These quanti-

ties express the preference for how far a passenger is willing to walk from/to

their origin/target positions.

The demonstrator uses a real map (localized in the Trento city area) obtained from

OpenStreetMap (OSM)2. OSM maps contain a list of the locations in the map and

the links between them. The latitude and longitude is given for each location.

On the other hand, each link between two locations has a maximum speed limit

and a list of intermediate locations. Random initial and target positions inside the

boundaries are assigned to both passengers and carpools. Moreover, each passenger

has a random walking range between the minimum and maximum ranges specified.

To build an initial random scenario, the OSM parser is used. The OSM parser is

the responsible for parsing the input OSM maps. Thus, it eases the access to the

information of the map by other modules. For example, it allows to get the set of

nodes inside an specific area of the map bounded by two latitude-longitude pairs.

The resulting initial state is processed by the CAE to create the first set of ensem-

bles (i.e. carpool rides) that are instantiated and executed in the demonstrator. The

instantiation of each ensemble is done using the Concurrent Planner, which is re-

sponsible for finding an initial plan for all involved agents in the various ensembles.

Once the concurrent plan is found, all the agents (i.e. drivers and passengers) start

their execution.

The planning algorithm we use is called TPSHE [15]. The reason we choose this al-

2http://www.openstreetmap.org/.

http://www.openstreetmap.org/.
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Figure 21: Sequence diagram showing the communication between the different
implemented modules.

gorithm is that if performs well in the International Planning Competition (IPC) [34]

domains that require concurrent actions. Since on criterion of smart mobility is to

bring each agent to their goal in the shortest time possible, we want to exploit the

ability of temporal planning to express concurrent plans. We remark that TPSHE

is not an optimal algorithm, although it attempts to minimize the total duration

(i.e. makespan) of the temporal plan.

During a normal execution of the ensembles, the demonstrator provides a way to

generate adaptation issues (e.g. blocked streets), and starts the execution of the

collective adaptation algorithm implemented in the CAE. To compare collective

adaptation with a selfish approach to resolving adaptation issues, the CAE also

includes a module able to run the two respective techniques (collective and selfish)

per each adaptation issue and memorize relevant statistics.

Just as for the initial plan, every time that an adaptation issue is triggered, the

Concurrent Planner component is invoked and executes the following steps:

1. It converts the input problem into a temporal planning problem following

the specification described in Section 2.4. To introduce blocked streets in

the planning problem, the corresponding has-street(l1, l2) fluents have to be

removed from the initial state.
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2. It executes a temporal planner (TPSHE) to compute a solution. There are

two types of solutions:

• Collective: Agents interact to reach their target locations (e.g. a carpool

picking up a passenger).

• Selfish: Agents do not interact, i.e. they try to reach their target locations

by themselves.

3. It converts the solution into a more user-friendly format. The OSM parser is

used in this step to get the latitude-longitude coordinates of each location in

the plan. JSON is used by the CAE to compute statistics, while GeoJSON is

used by the Scenario Viewer.

The Scenario Viewer provides a graphical representation of the carpooling applica-

tion through a map showing all the agents of the domain (cars and passengers) in

action executing their plans (see Figure 20). Moreover, there is one chart for each

type of solution indicating the traveled distance by each agent. Thus, it is easy to

find out if the distance traveled by cars in the collective solution is lower than in

the selfish solution.

The overall plan can be navigated step by step, i.e. it shows where each agent is

at a given intermediate time point. Besides, it is also possible to block streets by

clicking on the street.

An adaptation issue can be introduced at any timestamp using the Scenario Viewer

and start the execution of the resolution algorithm. When a solution is found, the

viewer refreshes automatically and displays the new plan assigned to each agent.

The sequence diagram depicted in Figure 21 shows the communication between the

modules that have been previously explained when a new ensemble is created and

when an intra-ensemble adaptation issue must be resolved.
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Figure 22: Kilometers traveled by cars.

5.3.2 Results

To evaluate the performance of the adaptation approach proposed in this paper, we

ran the carpooling demonstrator in continuous mode and collected information on

250 ensembles with adaptation activated. The run was performed on a Windows

laptop with dual-core 2.8GHz CPU with 8GB of RAM.

Each time we computed a collective plan, we measured a number of indicators that

characterized the complexity of the problem and the timing. We then collected these

indicators and organized them into charts in order to draw conclusions about the

performance and scalability of our approach.

Figure 22 shows the number of kilometers traveled by cars in each of the 250 instances

of adaptation. We compare, on one hand, the outcome of collective adaptation, and

on the other hand, the outcome of selfish adaptation. In the case of selfish adapta-

tions, we assume that all passengers use their own car. It is clear that the number

of kilometers traveled by cars is significantly smaller for collective adaptation, in

spite of the fact that the collaborative plans that we compute are not optimal (since

TPSHE is not an optimal temporal planner). This illustrates the importance of

collective adaptation in general, and for smart mobility in particular.
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Figure 23: Execution time per number of agents (in seconds), with number of adap-
tation instances in red.

Figure 23 shows the average execution time of collective adaptation as a function of

the number of agents. Numbers in red indicate the number of adaptation instances

per number of agents (for a total of 250). We can see that execution time is ap-

proximately linear in the number of agents, despite the fact that the search space

increases exponentially with the number of agents (since each additional proposi-

tional variable doubles the total number of possible states). This indicates that our

approach scales reasonably well to large numbers of agents.



Chapter 6

Related Work

In this section, we briefly explain some related work to the content introduced in

Chapters 3, 4 and 5. The title of each section corresponds is the same than its

corresponding chapter’s title.

6.1 Compilation of Multiagent Planning to Classi-

cal Planning

Several other authors consider the problem of concurrent multiagent planning. Boutilier

and Brafman (2001) [12] describe a partial-order planning algorithm for solving

MAPs with concurrent actions, based on their formulation of concurrency con-

straints, but do not present any experimental results. Jonsson and Rovatsos (2011) [10]

present a best-response approach for MAPs with concurrent actions, where each

agent attempts to improve its own part of a concurrent plan while the actions of all

other agents are fixed. However, their approach only serves to improve an existing

concurrent plan, and is unable to compute an initial concurrent plan. FMAP [9]

also allows agents to execute actions in parallel, but the authors do not present

experimental results for MAP domains that require concurrency.

Crosby et al. (2014) [11], as explained in Section 2.3.2, describe a method which

is quite similar to ours since it also converts MAPs with concurrent actions into
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single-agent planning problems. The authors only present results from the Maze

domain, and the actions associated to a specific object subset are always of the same

type. Consequently, all agents always perform the same action in each concurrent

action (either rowing a boat, or crossing a bridge, etc.).

In contrast, the concurrency constraints in our work can be arbitrary and are not tied

to specific objects subsets. For example, in Workshop, there are several instances

for which concurrent actions have to include different individual actions (push switch

and turn key in order to open a security door, and lift pallet and examine pallet

in order to perform inventory). Moreover, ours is the only method that can handle

concurrency in conditional effects, as demonstrated in the TableMover domain,

in which the effect of the blocks falling on the floor is conditional on how many

agents are lifting or putting down a table simultaneously.

6.2 STP: Simultaneous Temporal Planner

Several authors have previously provided theoretical justification for splitting du-

rative actions into classical actions [35] and proposed a compilation for doing so.

An early approach, LPGP [36], turned out to be unsound and incomplete since it

failed to (1) ensure that temporal actions end before reaching the goal, (2) ensure

that the contexts of temporal actions are not violated, and (3) ensure that temporal

constraints are preserved. Rintanen [37] proposed a compilation from temporal to

classical planning that explicitly represents time units as objects. The compilation

includes classical actions that start temporal actions, and keeps track of time elapsed

in order to determine when temporal actions should end. The compilation only han-

dles integer duration, potentially making the planner incomplete when events have

to be scheduled fractions of time units apart and, as far as we know, this compilation

has never been implemented as part of an actual planner.

The planners most similar to ours are TPSHE and TP [15]. Both planners are based

on compiling temporal planning problems to classical planning problems. TPSHE

only handles instances for which required concurrency is in the form of single hard
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envelopes. On the other hand, as explained in Chapter 4, partially compiles tempo-

ral actions into classical planning and introduces an STN into the Fast Downward

classical planner to enforce temporal constraints. There are more algorithms that

use STNs, like POPF [27] and Optic [38]. More precisely, POPF encodes the STN

using linear programming which allows it to compute plans with actions that cause

continuous linear numeric changes, while Optic encodes the STN as a mixed integer

problem which additionally allows handling temporally dependent costs.

With respect to planners that perform explicit state-space search, an interesting

direction is the exploitation of landmarks. This group includes the TEMPLM plan-

ner [39] that discovers classical landmarks from a temporal instance, and builds

a landmark graph that expresses the temporal relations between these landmarks.

This approach has proven useful to detect unsolvable instances under deadline con-

straints. However, in the absence of tightly-constrained dead-ends it does not yield

significant benefits over classical causal landmarks. Karpas et al. [40] do not rely on

the presence of deadlines to discover landmarks that are not causal landmarks and

define notions of temporal fact landmarks, which state that some fact must hold

between two given time points, and temporal action landmarks, which state that

the start or end of an action must occur at a given time point.

Satisfiability checking is also an important trend in temporal planning. Similarly to

the SAT-based approaches for classical planning, temporal planning instances can

be encoded as SAT problems. The SAT encoding for temporal planning instances

is more elaborated since it involves choosing the start times of actions and verifying

the temporal constraints between them. Moreover, PDDL induces temporal gaps

between consecutive interdependent actions that effectively doubles the number of

joint events required to solve a given temporal planning instance and hence affect-

ing the performance of SAT-based search approaches. The ITSAT planner [29] deals

with this issue by abstracting out the duration of actions and separating action se-

quencing from scheduling. ITSAT assumes that actions can have arbitrary duration

and encodes the abstract problem into a SAT formula to generate a causally valid

plan without checking the existence of a valid schedule. To find a temporally valid
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plan, ITSAT then tries to schedule the causally valid plan solving the STN defined

by the duration of the actions in the plan. If the STN can be solved, ITSAT returns

a valid plan, but if not, ITSAT adds the sequence of events that led to the unsolv-

able STN as new blocking clauses in the SAT encoding. The process is repeated

until a valid temporal plan is achieved. A different approach is producing a SAT

encoding that integrates action sequencing and scheduling. Recently the modeling

language NDL has been proposed as an alternative to PDDL for temporal planning

instances with the aim of producing a SAT Modulo Theories encoding where action

sequencing and scheduling are tightly integrated [41]. Rintanen [42] showed that

while PDDL forces temporal gaps in action scheduling (which have a performance

penalty), NDL avoids such gaps using the notion of resources and resulting in better

performances (the number of solved instances in IPC domains is higher).

6.3 Smart Mobility using Temporal Planning

There have been other attempts to compute joint plans for multiple agents in naviga-

tion scenarios [43, 44]. However, the focus is usually on satisfying certain constraints

(e.g. that the agents should not collide), rather than collaboration between agents.

Numeric planning [45] makes it possible to reason with costs and resources during

navigation, but numeric planners are typically more complex and only plan for a

single agent at a time.



Chapter 7

Conclusions and Future Work

This work makes several contributions to concurrent planning. A common frame-

work (notation and definitions) is introduced for different planning forms. We mainly

focused on the relationship that concurrent planning maintains with multiagent and

temporal planning. We proposed methods for compiling concurrent multiagent and

temporal planning problems into classical planning problems.

In the case of the concurrent multiagent compilation, we avoid choosing between

an exponential number of joint actions, which is a problem that current planners

face. Instead, the number of resulting actions is linear in the description of the

multiagent planning problem while respecting explicit concurrency constraints. The

transformation has been proven to be sound and complete. In future work, it would

be interesting to:

1. Explore strategies for encouraging concurrent actions that involve several agents.

2. Compare the performance of the resulting compilation using a classical planner

against those planners participating in the CoDMAP 2015 competition.

3. For each domain, compare the number of actions in our compilation and the

exponential number of actions that current multiagent planners deal with.
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Regarding temporal planning, we propose STP, an extension of the TP planner to

support simultaneous events (i.e. events that occur exactly at the same time) while

keeping temporal constraints safe. Previous temporal planners did not support

problems of this kind. To justify its existence, we introduce a domain called AIA

based on Allen’s Interval Algebra, where different problems requiring simultaneous

events can be created.

The main problem of methods that use a compilation from temporal to classical

planning is the loss of information about duration. Therefore, the quality of planners

like TPSHE, TP or STP is much worse in some domains than those of other temporal

planners. In the future, it would be convenient to investigate how to partially

incorporate information about duration in the compilation.

Finally, we propose a real (although simplified) problem on which we can apply

concurrent planning (specifically, temporal planning). This problem is concerned

with smart mobility, where different vehicles and passengers plan together a path

that allows them to reach their target positions. There are several possible ways

to extend the work on concurrent planning to compute collaborative plans. In

our current version, the temporal planner attempts to minimize the total time of

travel, but does not take into account the cost of fuel or, alternatively, the cost

of contamination. Integrating such costs into the planning process requires careful

modeling, as well as access to a temporal planner that is sensitive to such costs.

Another aspect is that our current system only computes approximately optimal

plans, since optimal planning is typically harder than satisficing planning (finding

any solution). Hence, there is a tradeoff between the response time and the quality

of the proposed solution.
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Appendix A

The TableMover Domain

The domain definition using Kovacs (2012) [13] notation:
(define (domain tablemover)

(:requirements :equality :typing :conditional-effects :multi-agent)
(:types agent block table - locatable

locatable room side)
(:constants Table - table)
(:predicates

(on-table ?b - block)
(on-floor ?b - block)
(down ?s - side)
(up ?s - side)
(clear ?s - side)
(at-side ?a - agent ?s - side)
(lifting ?a - agent ?s - side)
(inroom ?l - locatable ?r - room)
(available ?a - agent)
(handempty ?a - agent)
(holding ?a - agent ?b - block)
(connected ?r1 ?r2 - room)

)
(:action pickup-floor

:agent ?a - agent
:parameters (?b - block ?r - room)
:precondition (and

(on-floor ?b)
(inroom ?a ?r)
(inroom ?b ?r)
(available ?a)
(handempty ?a)
(forall (?a2 - agent)

(not (pickup-floor ?a2 ?b ?r))
)

)
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:effect (and
(not (on-floor ?b))
(not (inroom ?b ?r))
(not (handempty ?a))
(holding ?a ?b)

)
)
(:action putdown-floor

:agent ?a - agent
:parameters (?b - block ?r - room)
:precondition (and

(available ?a)
(inroom ?a ?r)
(holding ?a ?b)

)
:effect (and

(on-floor ?b)
(inroom ?b ?r)
(handempty ?a)
(not (holding ?a ?b))

)
)
(:action pickup-table

:agent ?a - agent
:parameters (?b - block ?r - room)
:precondition (and

(on-table ?b)
(inroom ?a ?r)
(inroom Table ?r)
(available ?a)
(handempty ?a)
(forall (?a2 - agent)

(not (pickup-table ?a2 ?b ?r))
)

)
:effect (and

(not (on-table ?b))
(not (handempty ?a))
(holding ?a ?b)

)
)
(:action putdown-table

:agent ?a - agent
:parameters (?b - block ?r - room)
:precondition (and

(inroom ?a ?r)
(inroom Table ?r)
(available ?a)
(holding ?a ?b)
; check table not lifted
(forall (?s - side) (down ?s))
; check table not intended to be lifted!
(forall (?a2 - agent ?s - side)
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(not (lift-side ?a2 ?s))
)

)
:effect (and

(on-table ?b)
(handempty ?a)
(not (holding ?a ?b))

)
)
(:action to-table

:agent ?a - agent
:parameters (?r - room ?s - side)
:precondition (and

(clear ?s)
(inroom ?a ?r)
(inroom Table ?r)
(available ?a)
(forall (?a2 - agent)

(not (to-table ?a2 ?r ?s))
)

)
:effect (and

(not (clear ?s))
(at-side ?a ?s)
(not (available ?a))

)
)
(:action leave-table

:agent ?a - agent
:parameters (?s - side)
:precondition (and

(at-side ?a ?s)
(not (lifting ?a ?s))

)
:effect (and

(clear ?s)
(not (at-side ?a ?s))
(available ?a)

)
)
(:action move-agent

:agent ?a - agent
:parameters (?r1 ?r2 - room)
:precondition (and

(inroom ?a ?r1)
(connected ?r1 ?r2)

)
:effect (and

(not (inroom ?a ?r1))
(inroom ?a ?r2)

)
)
(:action move-table
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:agent ?a - agent
:parameters (?r1 ?r2 - room ?s - side)
:precondition (and

(lifting ?a ?s)
(inroom ?a ?r1)
(connected ?r1 ?r2)
(exists (?a2 - agent ?s2 - side)

(and
(not (= ?s ?s2))
(move-table ?a2 ?r1 ?r2 ?s2)

)
)

)
:effect (and

(not (inroom ?a ?r1))
(not (inroom Table ?r1))
(inroom ?a ?r2)
(inroom Table ?r2)

)
)
(:action lift-side

:agent ?a - agent
:parameters (?s - side)
:precondition (and

(down ?s)
(at-side ?a ?s)
(handempty ?a)
(forall (?a2 - agent ?s2 - side)

(not (lower-side ?a2 ?s2))
)

)
:effect (and

(not (down ?s))
(up ?s)
(lifting ?a ?s)
(not (handempty ?a))
(forall (?b - block ?r - room ?s2 - side)

(when
(and

(inroom Table ?r)
(on-table ?b)
(down ?s2)
(forall (?a2 - agent)

(not (lift-side ?a2 ?s2))
)

)
(and

(on-floor ?b)
(inroom ?b ?r)
(not (on-table ?b))

)
)

)
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)
)
(:action lower-side

:agent ?a - agent
:parameters (?s - side)
:precondition (and

(lifting ?a ?s)
(forall (?a2 - agent ?s2 - side)

(not (lift-side ?a2 ?s2))
)

)
:effect (and

(down ?s)
(not (up ?s))
(not (lifting ?a ?s))
(handempty ?a)
(forall (?b - block ?r - room ?s2 - side)

(when
(and

(inroom Table ?r)
(on-table ?b)
(up ?s2)
(forall (?a2 - agent)

(not (lower-side ?a2 ?s2))
)

)
(and

(on-floor ?b)
(inroom ?b ?r)
(not (on-table ?b))

)
)

)
)

)
)

An example problem instance:

(define (problem table1_1) (:domain tablemover)
(:objects

a1 a2 - agent
b1 - block
r1x1 r1x2 - room
left1 right1 - side1

)
(:init

(on-floor b1)
(down left1)
(down right1)
(clear left1)
(clear right1)
(inroom a1 r1x1)
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(inroom a2 r1x1)
(inroom b1 r1x1)
(inroom Table1 r1x1)
(available a1)
(available a2)
(handempty a1)
(handempty a2)
(connected r1x1 r1x2)

)
(:goal (and

(on-floor b1)
(down left1)
(down right1)
(inroom b1 r1x2)

)
))
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The Maze Domain

The domain definition using Crosby et al. (2014) notation:
(define (domain maze)

(:requirements :typing :concurrency-network :multi-agent)
(:types agent location door bridge boat switch)
(:predicates

(at ?a - agent ?x - location)
(has-switch ?s - switch ?x - location ?y - location ?z - location)
(blocked ?x - location ?y - location)
(has-door ?d - door ?x - location ?y - location)
(has-boat ?b - boat ?x - location ?y - location)
(has-bridge ?b - bridge ?x - location ?y - location)

)
(:action move

:agent ?a - agent
:parameters (?d - door ?x - location ?y - location)
:precondition (and

(at ?a ?x)
(not (blocked ?x ?y))
(has-door ?d ?x ?y)

)
:effect (and

(at ?a ?y)
(not (at ?a ?x))

)
)
(:action row

:agent ?a - agent
:parameters (?b - boat ?x - location ?y - location)
:precondition (and

(at ?a ?x)
(has-boat ?b ?x ?y)

)
:effect (and
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(at ?a ?y)
(not (at ?a ?x))

)
)
(:action cross

:agent ?a - agent
:parameters (?b - bridge ?x - location ?y - location)
:precondition (and

(at ?a ?x)
(has-bridge ?b ?x ?y)

)
:effect (and

(at ?a ?y)
(not (at ?a ?x))
(not (has-bridge ?b ?x ?y))
(not (has-bridge ?b ?y ?x))

)
)
(:action pushswitch

:agent ?a - agent
:parameters (?s - switch ?x - location ?y - location ?z - location)
:precondition (and

(at ?a ?x)
(has-switch ?s ?x ?y ?z)

)
:effect (and

(not (blocked ?y ?z))
(not (blocked ?z ?y))

)
)
(:concurrency-constraint v1

:parameters (?d - door)
:bounds (1 1)
:actions ( (move 1) )

)
(:concurrency-constraint v2

:parameters (?b - boat ?x - location)
:bounds (2 inf)
:actions ( (row 1 2) )

)
(:concurrency-constraint v3

:parameters (?b - bridge)
:bounds (1 inf)
:actions ( (cross 1) )

)
(:concurrency-constraint v4

:parameters (?s - switch)
:bounds (1 1)
:actions ( (pushswitch 1) )

)
)
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An example problem instance:

(define (problem maze5_4_1) (:domain maze)
(:objects

a1 a2 a3 a4 a5 - agent
loc1x1 loc1x2 loc1x3 loc1x4 loc2x1 loc2x2 loc2x3 loc2x4 loc3x1

loc3x2 loc3x3 loc3x4 loc4x1 loc4x2 loc4x3 loc4x4 - location
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 - door
b1 b2 b3 - bridge
bt1 bt2 bt3 bt4 bt5 bt6 - boat
s1 s2 s3 s4 s5 s6 - switch

)
(:init

(at a1 loc2x3)
(at a2 loc3x3)
(at a3 loc4x3)
(at a4 loc1x4)
(at a5 loc1x4)
(has-door d1 loc1x1 loc1x2)
(has-door d1 loc1x2 loc1x1)
(blocked loc1x1 loc1x2)
(blocked loc1x2 loc1x1)
(has-switch s1 loc4x4 loc1x1 loc1x2)
(has-door d2 loc1x1 loc2x1)
(has-door d2 loc2x1 loc1x1)
(blocked loc1x1 loc2x1)
(blocked loc2x1 loc1x1)
(has-switch s2 loc3x2 loc1x1 loc2x1)
(has-door d3 loc1x2 loc1x3)
(has-door d3 loc1x3 loc1x2)
(has-boat bt1 loc1x2 loc2x2)
(has-boat bt1 loc2x2 loc1x2)
(has-door d4 loc1x3 loc1x4)
(has-door d4 loc1x4 loc1x3)
(has-door d5 loc1x3 loc2x3)
(has-door d5 loc2x3 loc1x3)
(blocked loc1x3 loc2x3)
(blocked loc2x3 loc1x3)
(has-switch s3 loc3x3 loc1x3 loc2x3)
(has-door d6 loc1x4 loc2x4)
(has-door d6 loc2x4 loc1x4)
(blocked loc1x4 loc2x4)
(blocked loc2x4 loc1x4)
(has-switch s4 loc2x3 loc1x4 loc2x4)
(has-bridge b1 loc2x1 loc2x2)
(has-bridge b1 loc2x2 loc2x1)
(has-door d7 loc2x1 loc3x1)
(has-door d7 loc3x1 loc2x1)
(blocked loc2x1 loc3x1)
(blocked loc3x1 loc2x1)
(has-switch s5 loc1x3 loc2x1 loc3x1)
(has-boat bt2 loc2x2 loc2x3)
(has-boat bt2 loc2x3 loc2x2)
(has-door d8 loc2x2 loc3x2)
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(has-door d8 loc3x2 loc2x2)
(has-door d9 loc2x3 loc2x4)
(has-door d9 loc2x4 loc2x3)
(blocked loc2x3 loc2x4)
(blocked loc2x4 loc2x3)
(has-switch s6 loc4x2 loc2x3 loc2x4)
(has-door d10 loc2x3 loc3x3)
(has-door d10 loc3x3 loc2x3)
(has-bridge b2 loc2x4 loc3x4)
(has-bridge b2 loc3x4 loc2x4)
(has-door d11 loc3x1 loc3x2)
(has-door d11 loc3x2 loc3x1)
(has-boat bt3 loc3x1 loc4x1)
(has-boat bt3 loc4x1 loc3x1)
(has-door d12 loc3x2 loc3x3)
(has-door d12 loc3x3 loc3x2)
(has-bridge b3 loc3x2 loc4x2)
(has-bridge b3 loc4x2 loc3x2)
(has-door d13 loc3x3 loc3x4)
(has-door d13 loc3x4 loc3x3)
(has-boat bt4 loc3x3 loc4x3)
(has-boat bt4 loc4x3 loc3x3)
(has-door d14 loc3x4 loc4x4)
(has-door d14 loc4x4 loc3x4)
(has-boat bt5 loc4x1 loc4x2)
(has-boat bt5 loc4x2 loc4x1)
(has-boat bt6 loc4x2 loc4x3)
(has-boat bt6 loc4x3 loc4x2)
(has-door d15 loc4x3 loc4x4)
(has-door d15 loc4x4 loc4x3)

)
(:goal (and

(at a1 loc2x4)
(at a2 loc1x2)
(at a3 loc3x1)
(at a4 loc1x4)
(at a5 loc3x3)

))
)
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The AIA domain

The domain definition:
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Captures possible relations between 2 intervals regarding Allen’s
algebra

(define (domain allen-algebra)
(:requirements :typing :durative-actions)
(:types interval)
(:predicates

(started ?i - interval)
(ended ?i - interval)
(not-started ?i - interval) ;; duplicates used to preserve positive

preconditions
(not-ended ?i - interval) ;;

(before ?i1 ?i2 - interval) ;; desired goal conditions
(meets ?i1 ?i2 - interval)
(overlaps ?i1 ?i2 - interval)
(starts ?i1 ?i2 - interval)
(during ?i1 ?i2 - interval)
(finishes ?i1 ?i2 - interval)
(equal ?i1 ?i2 - interval)

)
(:functions

(length ?i - interval)
)

;;; Apply an interval
(:durative-action apply-interval
:parameters (?i - interval)
:duration (= ?duration (length ?i))
:condition
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(and
(at start (not-started ?i))

)
:effect

(and
(at start (started ?i))
(at start (not (not-started ?i)))
(at end (ended ?i))
(at end (not (not-ended ?i)))

)
)
)

An example problem instance:
(define (problem aa-overlaps-4)
(:domain allen-algebra)
(:objects i1 i2 i3 i4 - interval)
(:init

(not-started i1)
(not-ended i1)
(not-started i2)
(not-ended i2)
(not-started i3)
(not-ended i3)
(not-started i4)
(not-ended i4)
(= (length i1) 5)
(= (length i2) 5)
(= (length i3) 5)
(= (length i4) 5)

)
(:goal

(and
(overlaps i1 i2)
(overlaps i2 i3)
(overlaps i3 i4)

)
)
)
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The SmartMobility domain

The domain definition:
(define (domain journey-planner)
(:requirements :typing :durative-actions)
(:types

bus taxi car bike carpool flexibus - vehicle
pedestrian vehicle - agent
agent location

)
(:predicates

(at ?a - agent ?x - location)
(in ?p - pedestrian ?v - vehicle)
(has-footpath ?p - pedestrian ?x - location ?y - location)
(has-street ?x - location ?y - location)

)
(:functions

(velocity ?a - agent ?x - location ?y - location) - number
(distance ?x - location ?y - location) - number

)
(:durative-action embark

:parameters (?p - pedestrian ?v - vehicle ?x - location)
:duration (= ?duration 1)
:condition (and

(at start (at ?p ?x))
(over all (at ?v ?x))

)
:effect (and

(at end (in ?p ?v))
(at start (not (at ?p ?x)))

)
)
(:durative-action debark

:parameters (?p - pedestrian ?v - vehicle ?x - location)
:duration (= ?duration 1)
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:condition (and
(at start (in ?p ?v))
(over all (at ?v ?x))

)
:effect (and

(at end (at ?p ?x))
(at start (not (in ?p ?v)))

)
)
(:durative-action walk

:parameters (?p - pedestrian ?x - location ?y - location)
:duration (= ?duration (/ (distance ?x ?y) (velocity ?p ?x ?y)))
:condition (and

(at start (at ?p ?x))
(over all (has-footpath ?p ?x ?y))

)
:effect (and

(at end (at ?p ?y))
(at start (not (at ?p ?x)))

)
)
(:durative-action travel

:parameters (?v - vehicle ?x - location ?y - location)
:duration (= ?duration (/ (distance ?x ?y) (velocity ?v ?x ?y)))
:condition (and

(at start (at ?v ?x))
(over all (has-street ?x ?y))

)
:effect (and

(at end (at ?v ?y))
(at start (not (at ?v ?x)))

)
)
)

An example problem instance:

(define (problem p01)
(:domain journey-planner)
(:objects

c1 - carpool
p1 p2 - pedestrian
loc1 loc2 loc3 loc4 loc5 - location

)
(:init

(at c1 loc1)
(at p1 loc2)
(at p2 loc3)

(has-footpath p1 loc2 loc3)
(has-footpath p1 loc3 loc2)

(has-footpath p2 loc2 loc3)
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(has-footpath p2 loc3 loc2)

(has-street loc1 loc2)
(has-street loc2 loc1)

(has-street loc2 loc5)
(has-street loc5 loc2)

(has-street loc4 loc5)
(has-street loc5 loc4)

(has-street loc1 loc4)
(has-street loc4 loc1)

(= (distance loc1 loc2) 4)
(= (distance loc2 loc1) 4)

(= (distance loc2 loc3) 1)
(= (distance loc3 loc2) 1)

(= (distance loc2 loc5) 4)
(= (distance loc5 loc2) 4)

(= (distance loc4 loc5) 4)
(= (distance loc5 loc4) 4)

(= (distance loc1 loc4) 4)
(= (distance loc4 loc1) 4)

(= (velocity p1 loc2 loc3) 1)
(= (velocity p1 loc3 loc2) 1)

(= (velocity p2 loc2 loc3) 1)
(= (velocity p2 loc3 loc2) 1)

(= (velocity c1 loc1 loc2) 2)
(= (velocity c1 loc2 loc1) 2)

(= (velocity c1 loc2 loc5) 2)
(= (velocity c1 loc5 loc2) 2)

(= (velocity c1 loc4 loc5) 2)
(= (velocity c1 loc5 loc4) 2)

(= (velocity c1 loc1 loc4) 2)
(= (velocity c1 loc4 loc1) 2)

)
(:goal (and

(at c1 loc4)
(at p1 loc5)
(at p2 loc5)

))
)
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